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Abstract

This study investigates misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 

m resolution, and between multi-temporal Sentinel-2A images at 10 m resolution using a phase 

correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to 

Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation 

proved to be a robust approach that allowed us to identify hundreds and thousands of control 

points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 

30 m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10 m 

resolution between multi-temporal Sentinel-2A images from the same and different orbits, 

respectively, were observed. The non-linear Random Forest regression used for constructing the 

mapping function showed best results in terms of root mean square error (RMSE), yielding an 

average RMSE error of 0.07±0.02 pixels at 30 m resolution, and 0.09±0.05 and 0.15±0.06 pixels 

at 10 m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and 

multiple conditions. A simpler 1st order polynomial function (affine transformation) yielded 

RMSE of 0.08±0.02 pixels at 30 m resolution and 0.12±0.06 (same Sentinel-2A orbits) and 

0.20±0.09 (adjacent orbits) pixels at 10 m resolution.
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1. Introduction

Many applications in climate change and environmental and agricultural monitoring rely 

heavily on the exploitation of multi-temporal satellite imagery. Multi-temporal satellite 

images can help to identify and analyze changes in land cover land use (LCLUC) (Justice et 
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al. 2015), to capture significant trends in land surface properties, e.g. greenness (Ju and 

Masek 2016), or to discriminate specific crop types (Shelestov et al. 2017, Skakun et al. 

2016), that cannot be identified with a single date image. In order to solve these problems 

more efficiently at high spatial resolutions (30 m), combined use of freely available 

Landsat-8 and Sentinel-2 images can offer high temporal frequency of about 1 image every 

3–5 days globally.

Landsat-8 was launched in 2013 within the Landsat Program, a joint effort between the U.S. 

Geological Survey (USGS) and NASA (Roy et al. 2014). The Operational Land Imager 

(OLI) and Thermal Infrared Sensor (TIRS) instruments onboard the Landsat-8 satellite 

capture images of the Earth’s surface in eleven spectral bands of the electromagnetic 

spectrum at 30 m spatial resolution (15 m for panchromatic band and 100 m for thermal 

infrared). The swath of Landsat-8 scene is approximately 185 km, allowing global coverage 

of the Earth’s surface every 16 days. To refine image geolocation, the Landsat-8 processing 

uses ground control points (GCPs) automatically derived from the Global Land Survey 

(GLS) Landsat images (Gutman et al. 2013). The Sentinel-2A satellite was launched in 2015 

within the European Copernicus program (Drusch et al. 2012). Sentinel-2A has a Multi-

Spectral Instrument (MSI) that acquires images of the Earth’s surface in thirteen spectral 

bands at 10 m, 20 m and 60 m spatial resolution. The swath of a Sentinel-2A scene is 

approximately 290 km, allowing global coverage of the Earth’s surface every 10 days. The 

launch of an identical Sentinel-2B satellite will further reduce revisit time to 5 days globally. 

Both Sentinel-2A/B satellites will use a Global Reference Image (GRI) derived from 

orthorectified Sentinel-2 cloud-free images to improve geolocation accuracy and 

repeatability to meet the requirements of multi-temporal registration of 3m for 10 m bands 

(Déchoz et al. 2015). The GRI dataset is currently under development and is expected to be 

completed in 2018 (Storey et al. 2016).

Recent studies are focusing on the combined use of Landsat-8 and Sentinel-2A images to 

increase temporal coverage; however misregistration issues between Landsat-8 and 

Sentinel-2A have already been identified (Storey et al. 2016). It has been found that the OLI 

and MSI misregistration can exceed one 30-meter pixel and, therefore, it is recommended to 

exploit image registration approaches to further improve alignment between Landsat-8 and 

Sentinel-2A images (Storey et al. 2016). These approaches should be automatic and 

computationally efficient in order to perform alignment on a global basis, have sub-pixel 

accuracy and effectively deal with temporal changes, so these approaches can be further 

applied with GLS and GRI.

There have been many studies carried out to develop automatic satellite image registration 

methods (e.g. Gao et al. 2009, Le Moigne et al. 2011, Zitova and Flusser, 2003). The general 

image-to-image registration workflow consists of automatic generation of control points 

(CPs) between the reference (or master) and sensed (or slave) images, building and 

evaluating a spatial transformation (mapping function) that aligns the reference and sensed 

images, and warping the sensed image with radiometric transformation. Area-based and 

feature-based approaches are used to automatically derive CPs. Area-based methods, also 

referred to as correlation-like or template matching, find correspondence between reference 

and sensed images through a similarity measure, for example cross-correlation (in spatial or 
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frequency domain) or mutual information. These measures are usually applied on a sliding 

window basis to derive a dense set of CPs. Feature-based methods aim to find distinctive 

features on images, for example edges, contours, line intersections, closed boundary regions, 

and then match the derived features to find correspondences between reference and sensed 

images. The derived CPs are used to construct and evaluate a mapping function that maps 

points from the reference image to points in the sensed image. Examples of the mapping 

function include translation, affine transformation, high-order polynomials, radial basis 

functions (RBFs), and elastic registration. And finally, radiometric transformation (nearest 

neighbor, bilinear, splines) should be specified to warp the sensed image to the reference 

one.

The problem of Landsat-8/OLI and Sentinel-2A/MSI misregistration has already been 

addressed in several previous studies (Barazzetti et al. 2016, Yan et al. 2016). Yan et al. 

(2016) used a hierarchical feature-based matching approach to find CPs through 

construction of image pyramids at various spatial resolutions and an area-based matching 

approach to further refine and reject non-reliable CPs. Translation, affine transformation and 

second order polynomial functions were evaluated in the study for three pairs of Landsat-8 

and Sentinel-2A images with affine transformation giving the best results in terms of root 

mean square error (RMSE) of 0.3 pixels at 10 m resolution. Barazzetti et al. (2016) utilized 

standard software packages to study misregistration between Landsat-8 and Sentinal-2A, 

and achieved RMSE of up to 1.2 pixels at 15 m spatial resolution.

In this paper, we explore a phase correlation approach to automatically generate a dense grid 

of CPs when registering Landsat-8 to Sentinel-2A images, as well as multiple mapping 

functions including those based on machine learning approaches. We also address the issue 

of multi-temporal misregistration between Sentinel-2A images. (For assessment of 

registration accuracy of multi-temporal Landsat-8 images, we refer readers to Storey et al. 

(2014)). Our analysis shows misregistration magnitudes of up to 3 pixels at 10 m resolution 

can be observed. This issue has not been reported in previous studies to our knowledge 

(except Sentinel-2 Data Quality Reports, see ESA (2016a), and reports delivered at the Land 

Cover Land Use Change (LCLUC) Multi-Source Land Imaging (MuSLI) Science Team 

2016, http://lcluc.umd.edu/meetings/2016-lcluc-spring-science-team-meeting-18–19-april-

and-musli-science-team-meeting-20–21), and should be further addressed especially for 

users dealing with Sentinel-2A time-series at 10 m spatial resolution. As in Yan et al. (2016), 

we use near-infrared (NIR) bands from Landsat-8 (band 5, 0.85 – 0.88 um) and Sentinel-2A 

(band 08, 0.842 um) to find CPs on reference and sensed images, since the NIR provides a 

wide dynamic range of values for multiple land cover types and is less sensitive to 

atmospheric effects. Co-registration of Landsat-8 to Sentinel-2A was performed at 30 m 

spatial resolution while co-registration between Sentinel-2A images was undertaken at 10 m 

spatial resolution.

2. Data description

2.1. Landsat-8 and Sentinel-2A products description

We used a standard Landsat-8 Level-1 terrain corrected (L1T) product distributed by USGS 

through the EarthExplorer system (Roy et al. 2014). The product is provided in the World-
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wide Reference System (WRS-2) of path and row coordinates. The size of the Landsat-8 

scene is approximately 185 km × 180 km. The product is provided with the corresponding 

metafile to convert digital numbers (DNs) into the top-of-atmosphere reflectance (TOA) 

values. For Sentinel-2, we used a standard Level-1C (L1C) product which is radiometrically 

and geometrically corrected with ortho-rectification, and provided with the TOA reflectance 

values (ESA 2016b). The product is delivered in tiles, or granules, of approximately 110 km 

× 110 km size. Both Landsat-8 L1T and Sentinel-2A L1C products are provided in the 

Universal Transverse Mercator (UTM) projection with the World Geodetic System 1984 

(WGS84) datum. Each Sentinel-2 tile is assigned a UTM zone, and overlapping tiles 

covering the same geographic region might have different UTM zones assigned. The 

Sentinel-2 tiling grid is referenced to the U.S. Military Grid Reference System (MGRS). A 

tile identifier consists of five signs: two numbers and three letters, e.g. 20HNH. The first two 

numbers in the tile identifier correspond to the UTM zone while the remaining three letters 

correspond to the tile position. ESA provides a kml file with tile coverage and their 

identifiers (https://sentinel.esa.int/documents/247904/1955685/

S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T00

0000_B00.kml).

It should be also noted that pixel value is for the center of the pixel for the Landsat-8 L1T 

product, while it is for the upper left corner of the pixel for the Sentinel-2A L1C product. In 

this work, we used Sentinel-2 tile system as a reference, i.e. Landsat-8 data were subset for 

the corresponding Sentinel-2 tile with the nearest neighborhood resampling and co-

registered to the reference Sentinel-2 scene using the proposed approach. Depending on the 

application and user needs other reference systems can be specified, for example Web 

Enabled Landsat Data (WELD) (Roy et al. 2010) and this proposed approach can be easily 

adapted to it.

2.2. Landsat-8 and Sentinel-2A test data description

This study was carried out for five Sentinel-2 tiles in three countries: Argentina (Sentinel-2 

tile grid numbers 20HNH and 20HPH), US (14SKF) and Ukraine (36UUU, 34UFU) (see 

Figure 1 for examples). The selected tiles cover intensive agriculture regions, where changes 

are rapid due to seasonal crop development, and a mountain region in the Carpathians (tile 

34UFU) where surface elevation varies approximately from 100 m to 1000 m. All selected 

regions feature considerable difference in Landsat-8 and Sentinel-2A image acquisition 

dates ranging from July 4, 2015 to July 25, 2016, as well as variable cloud conditions.

Overall co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to 

Sentinel-2A pairs were analyzed. Table 1 gives details on the Landsat-8 and Sentinel-2A 

imagery used in the study.

3. Methodology

3.1. General overview

The proposed approach follows the general concept of automatic image-to-image 

registration outlined in (Zitova and Flusser 2003). It has the following steps (Figure 2): 
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image pre-processing; automatic identification of CPs; filtering of CPs; building and 

evaluating a transformation, and image warping.

3.2. Image pre-processing

Landsat-8 images were converted from DNs to TOA reflectance values using calibration 

coefficients in the metadata file, so both Landsat-8 and Sentinel-2A images were generated 

with TOA reflectance values. The steps outlined in this and following subsections will also 

be valid, should co-registration be applied for atmospherically corrected products (Vermote 

et al. 2016).

For Landsat-8 to Sentinel-2A co-registration, Sentinel-2A band 08 (NIR) was resampled 

from 10 m to 30 m using averaging, and Landsat-8 data were subset to the corresponding 

Sentinel-2A tile using the nearest neighborhood resampling technique. Sentinel-2A to 

Sentinel-2A co-registration was performed at the original 10 m spatial resolution without 

further resampling.

3.3. Automatic generation of CPs

In this study, we exploited a phase-only correlation image matching method introduced by 

Guizar-Sicairos et al. (2008). It uses a cross-correlation approach in the frequency domain 

by means of the Fourier transform and exploits a computationally efficient procedure based 

on nonlinear optimization and Discrete Fourier Transforms (DFTs) to detect sub-pixel shifts 

between reference and sensed images. For the detailed description of the algorithm, we refer 

readers to Guizar-Sicairos et al. (2008).

The phase-correlation algorithm allows detection of translation between reference and 

sensed images, and therefore is routinely applied using a moving square window. The size of 

the window and the step are selected empirically. Window size should be large enough to 

capture similarities on the reference and sensed images, and small enough to have a dense 

grid of CPs to accurately construct a transform function. In this study, window size and step 

were selected 100 and 50 pixels, respectively when co-registering Landsat-8 to Sentinel-2A, 

and 64 and 32 when co-registering multi-temporal Sentinel-2A images.

Compared to other area-based methods (e.g. cross-correlation in the spatial domain), the 

phase-correlation image usually contains a sharp peak corresponding to the dominant shift 

between images, and is usually more robust to temporal changes between reference and 

sensed images (Kravchenko et al. 2014). Compared to feature-based methods, the phase-

correlation approach with a moving window allows detection of a dense grid of CPs, 

especially in cases where features cannot be reliably identified and detected, including at the 

30 m spatial resolution imagery.

No matter what method is applied for automatic generation of CPs, filtering is necessary to 

remove unreliable CPs. First, a peak cross-correlation normalized magnitude is used for 

initial rejection of CPs. In our study, this value was set to 0.5. After that, a RANdom 

SAmple Consensus (RANSAC) algorithm (Fischler and Bolles 1981) is run for the linear 

transformation model to detect inliers and outliers. The RANSAC is a widely used algorithm 

in computer vision and image processing to detect strong outliers with large deviations 
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(Brown and Lowe 2007). However, one should be careful to not aggressively remove outliers 

that can be actually inliers. In our study, we ran a conservative approach for removing 

outliers, i.e. the RANSAC parameters were set in such a way to remove only outliers with a 

high confidence level. In our particular case, the number of RANSAC trials was set to 100, 

and a confidence level for selecting outliers was set to 0.99. The detected inlier CPs are 

further used to construct and evaluate a transformation function.

3.4. Transformation function

The goal of constructing a transformation function F() is to find correspondence between 

points in the reference image xr = (xr, yr) and points in the sensed image xs = (xs, ys):

xs, ys = F xr, yr . (1)

Function F() is constructed using the set of CPs identified in the previous steps. In this study 

we compared three different approaches to creating the transformation function: polynomial 

models, radial basis functions, and random forest regression trees (see below for details). 

Regardless of transformation approach, all available CPs were randomly split into a training 

(calibration) set (80%) and a testing set (20%). The training set was used to build the model 

and identify its parameters, while the testing set was used to evaluate the model on 

independent data. We will denote CPs from the testing set with (xr,l, yr,l) and (xs,l, ys,l) where 

l = 1, L and L is the number of points with corresponding shifts:

Δx, l = xr, l − xs, l, Δy, l = yr, l − ys, l (2)

The quality of the transformation is evaluated using a root mean square error (RMSE) 

between reference values (xs,l, ys,l) and estimated values xs, l, ys, l  by transformation 

function F() using the testing set:

xs, l, ys, l = F xr, l, yr, l , (3)

RMSE = 1
L ∑l = 1

L xs, l − xs, l
2 + ys, l − ys, l

2 . (4)

3.4.1. Polynomial models—Selection of the type of the transformation function 

depends on a-priori knowledge of expected geometric deformations and distortions between 

reference and sensed images, and required registration accuracy (Zitova and Flusser 2003). 

Polynomial functions of the n-th degree have the following form:

xs = Px, n xr, yr = ∑i = 0
n ∑i + j ≤ nai jxr

i yr
j, (5)
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ys = Py, n xr, yr = ∑i = 0
n ∑i + j ≤ nbi jxr

i yr
j . (6)

In the case of n=0, the models (5)–(6) are simple translation models where the same values 

of shift, namely a00 and b00, are applied in x and y directions, respectively:

xs = Px, 0 xr, yr = a00, (7)

ys = Py, 0 xr, yr = b00 . (8)

A linear model, also referred to as affine, can be reduced to the following form:

xs = Px, 1 xr, yr = a00 + a10xr + a01yr, (9)

ys = Py, 1 xr, yr = b00 + b10xr + b01yr . (10)

Model parameters aij and bij are estimated through the ordinary least square (OLS) method, 

by minimizing the sum of the squares of the differences between predicted values of the 

model and reference values.

3.4.2. Radial Basis Functions (RBFs)—The transformation function based on Radial 

Basis Functions (RBFs) has the following form (Zitova and Flusser 2003):

xs = a0 + a1xr + a2yr + ∑k = 1
K wkK xr, xk , (11)

ys = b0 + b1xr + b2yr + ∑k = 1
K wkK xr, xk , (12)

where K(∙,∙)is the kernel function with parameters (centers) xk and xk and weights wk and 

wk.

In this study, we used two types of kernels, namely Gaussian and thin-plate splines (TPS):

Gaussian: K(x, xk) = exp(− x − xk
2), (13)

TPS: K x, xk = x − xk
2ln x − xk . (14)

There are several ways of selecting a set of centers xk: randomly, on a regular grid, or 

adaptively through clustering. We used the k-means clustering approach (Lloyd 1982, Forgy 

1965) to adaptively select centers in the models (11)–(12). We varied number of clusters K 
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and found values from 1 to 10 producing best results. Increasing the number over 10 did not 

improve results.

And finally, weights wk and wk in models (11)–(12) were estimated from training data using 

the RANSAC algorithm (Fischler and Bolles 1981).

As with polynomial models, RBF models are the global mapping functions, however, they 

are able to account for local non-linear distortions (Zitova and Flusser 2003).

3.4.3. Random forest (RF) regression—Random forest (RF) is a machine learning 

algorithm that represents an ensemble of decision trees (DTs) (Breiman 2001). A DT 

classifier or regression model is built from a set of data using the concept of information 

entropy. At each node of the tree, one attribute of the data, that most effectively splits its set 

of samples into subsets enriched in one class or the other, is selected. Its criterion is the 

normalized information gain that results from choosing an attribute for splitting the data. 

The attribute with the highest normalized information gain is chosen to make the decision. 

The algorithm then recurs on the smaller sublists. One disadvantage of the DT classifier is 

the considerable sensitivity to the input dataset, so that a small change to the training data 

can result in a very different set of subsets (Bishop 2006). In order to overcome 

disadvantages of a single DT, an ensemble of DTs is used to form a random forest. Each DT 

represents an independent expert (or weak classifier) in the RF that is trained based on 

different input datasets that are generated through a bagging procedure (Bishop 2006). RF 

can be used for building classification and regression models.

In this study, the RF regression was used to build a transformation function. We used points 

from the reference image xr = (xr, yr) as inputs to the RF regression model with a 

polynomial preprocessing. For example, in case of the 2nd degree polynomial function, the 

following features were input to the RF model: xr, yr, xr
2, yr

2, xryr. The RF model was further 

trained to predict points in the sensed image xs = (xs, ys). In this study, the number of DTs in 

the RF models was kept low (about 5) to avoid overfitting. The optimal number of DTs in 

the RF model in terms of RMSE error was identified through the cross-validation procedure.

As with RBFs based mapping functions, RF belongs to the class of global mapping models 

that can account for local non-linear distortions.

4. Results

The use of phase correlation allowed us to generate hundreds and thousands of CPs when 

co-registering Landsat-8 to Sentinel-2A at 30 m spatial resolution (hereafter referred as 

LandSen30), and when co-registering multi-temporal Sentinel-2A images at 10 m spatial 

resolution (hereafter referred as SenSen10) (Figure 3). The average misregistration between 

Landsat-8 and Sentinel-2A calculated on a tile basis, using identified CPs, varied from 0.11 

pixels to 1.35 pixels among tiles considered in the study with the maximum misregistration 

value varying from 0.25 to 1.59 pixels (per tile). Misregistration between Landsat-8 and 

Sentinel-2A was stable in time over the same tile (Table 2, Figure 4) with average standard 
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deviation of the misregistration through the time varying from 0.03 pixels to 0.16 pixels with 

average of 0.10 pixels (at 30 m resolution).

In the SenSen10 case, performance depended on whether the reference and sensed 

Sentinel-2A images were acquired from the same or different (adjacent) orbits. In case of the 

same orbits, the average misregistration calculated on a tile basis varied from 0.05 pixels to 

0.46 pixels among tiles (with the maximum misregistration up to 1.21 pixels) with average 

0.23±0.12 pixels at 10 m resolution. In case of different Sentinel-2 orbits over the same tile, 

the average misregistration calculated on a tile basis varied from 0.14 pixels to 1.45 pixels 

among tiles (with the maximum misregistration up to 2.83 pixels) with average 0.61±0.42 

pixels at 10 m resolution (Table 3, Figure 5). This might be the result of the satellite yaw 

bias that was corrected within the recent baseline processing version 02.04 (ESA, 2016a). 

Overall, our estimates of the multi-temporal misregistration in the Sentinel-2A imagery were 

consistent with the Sentinel-2 Data Quality Reports (ESA, 2016a).

When building a transformation function, all considered approaches showed a similar 

performance (Table 4 and Table 5) with the complex non-linear RF regression slightly 

outperforming other methods, namely, a simple translation (Eq. 7–8), 1st order polynomial 

(Eq. 9–10), Gaussian RBFs (Eq. 11–12, 13) and TPS (Eq. 11–12, 14). For the RF regression, 

RMSE values varied from 0.02 to 0.12 pixels for the LandSen30 case at 30 m resolution, and 

from 0.025 to 0.22 pixels for the SenSen10 case at 10 m resolution for the same orbits and 

from 0.05 to 0.26 pixels for adjacent orbits. The RF model was built using a 1st order 

polynomial function for input CP coordinates. Increasing the order of the polynomial 

function did not improve performance of the RF model. It means that the RF was able to 

capture non-linearity when building a transformation function between CPs on the reference 

and sensed images.

Our results obtained for the 1st order polynomial function were comparable to previous 

studies by Barazzetti et al. (2016) and Yan et al. (2016).

Temporal fluctuations of the RMSE error were analysed to explore temporal stability of the 

constructed transformation functions for multi-temporal Sentinel-2A images co-registration. 

Figure 7 shows dependence of the RMSE error with time for the 1st degree polynomial 

function for different Sentinel-2A orbits. For the case of the same orbits, there are not too 

many variations in time, except three cases with RMSE values over 0.2 pixels. These are due 

to heavy cloud contamination presented in the sensed imagery. As to the adjacent orbits, the 

tile T20HNH shows a trend which is due to the difference between the sensed and reference 

images: the difference is up to 103 days. For the T36UUU case, high RMSE error can be 

attributed to the 70 day difference between the reference and sensed images acquired over 

highly intensive agriculture region that features a lot of changes within this time period 

(Figure 1, D). Also, reduction of the RMSE error for 36UUU tile comparing to the 20HNH 

tile can be related to the improvements made in the baseline processing version 02.04 (ESA, 

2016a).

Results on correcting misregistration between Landsat-8 and Sentinel-2A are shown in 

Figure 8.
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The proposed workflow was implemented in Python programming language using the 

Geospatial Data Abstraction Library (GDAL) for managing geospatial datasets, the 

‘skimage package’ for phase correlation implementation, and the ‘sklearn package’ for the 

RF regression and RANSAC implementations, and was computationally efficient. Typical 

processing times on the Dell Laptop with processor Inter® Core™ i7–4810MQ CPU @ 

2.80GHz with 16 Gb RAM are presented in Table 7.

5. Conclusions

Since many applications involving satellite imagery require the use of multi-temporal 

datasets, misregistration issues can lead to incorrect results. This study investigated 

misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 m resolution, and 

between multi-temporal Sentinel-2A images at 10 m resolution using a phase correlation 

approach and multiple transformation functions. Phase correlation proved to be a robust 

approach that allowed us to identify hundreds and thousands of control points on images 

acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30 m 

resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels (for the same orbit) 

and 2.8 pixels (for different orbits) at 10 m resolution between multi-temporal Sentinel-2A 

images were observed. The non-linear RF regression used for constructing the mapping 

function showed best results in terms of error, yielding the average RMSE error of 

0.07±0.02 pixels at 30 m resolution and 0.09±0.05 and 0.15±0.06 pixels at 10 m resolution 

for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple 

conditions. On the other hand, a simple linear model such as 1st order polynomial function 

can provide an error of up to 0.08±0.02 pixels at 30 m resolution and 0.12±0.06 (same 

Sentinel-2A orbits) and 0.20±0.09 (adjacent orbits) pixels at 10 m resolution.
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Figure 1. 
Examples of TOA true color images acquired by Sentinel-2A/MSI (left) and Landsat-8/OLI 

(right): (A) tile 20HNH over Argentina, dates of Sentinel-2A/MSI and Landsat-8/OLI 

acquisitions are 2015358 and 2015361 respectively; (B) tile 20HPH over Argentina, 

acquisitions dates are 2015358 and 2015258; (C) tile 14SKF over Texas, US, dates of 

acquisitions are 2016012 and 2016104; (D) tile T36UUU over Ukraine, acquisition dates are 

2016169 and 2016108; (E) tile T34UFU over the Carpathian Mountains, Ukraine, 

acquisitions dates are 2016198 and 2016063.

Skakun et al. Page 14

Int J Digit Earth. Author manuscript; available in PMC 2020 February 04.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 2. 
General workflow of Landsat-8 and Sentinel-2A image co-registration.
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Figure 3. 
Location of CPs shown in the form of vectors outlining the direction and magnitude of shifts 

(Δx and Δy (Eq. 2)) found between Landsat-8 image acquired on 2016021 (21-Jan-2016), 

and Sentinel-2A image acquired on 2015358 (24-Dec-2015) and used as a reference image, 

over the study area in Argentina, tile T20HNH. Vector lengths were multiplied by 100 for 

visual clarity. Overall, 1634 CPs were found using the phase correlation approach in this 

case. The background is a Landsat-8 TOA NIR (band 5) image with TOA reflectance values 

scaled from 0.05 to 0.65.
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Figure 4. 
Distribution of misregistration values Δx and Δy (Eq. 2) when co-registering Landsat-8 to 

Sentinel-2A images for different tiles used in the study. Units are shown in pixel values at 30 

m spatial resolution.
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Figure 5. 
Distribution of misregistration values Δx and Δy when co-registering multi-temporal 

Sentinel-2A images from the same orbits for different tiles used in the study. Units are 

shown in pixel values at 10 m spatial resolution.
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Figure 6. 
Distribution of misregistration values Δx and Δy when co-registering multi-temporal 

Sentinel-2A images from the adjacent orbits for different tiles used in the study. Units are 

shown in pixel values at 10 m spatial resolution.
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Figure 7. 
Changes of RMSE error of building a 1st degree polynomial transformation function when 

registering multi-temporal Sentinel-2A images over the time for different tiles and different 

Sentinel-2A orbits: (A) same orbits; (B) adjacent orbits.
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Figure 8. 
A 30 m “chessboard” composed of alternating Landsat-8 (acquired on 20-Dec-2015) and 

Sentinel-2A (24-Dec-2015) images before (left panel) and after co-registration (right panel). 
Near infrared images from band 5 (Landsat-8) and band 8 (Sentinel-2A) were used to 

produce these “chessboard”. TOA reflectance values were scaled from 0.05 to 0.55. This 

subset covers the area in the south-east part of the tile 20HNH over Argentina (Figure 1, A). 

Misregistrations between satellite images can be seen in the irrigated fields (circles, middle 
left image) and in the bridge over the lake (bottom left image) with corrections applied and 

misregistration disappearing in the right images (middle and bottom). Middle and bottom 

subset images are shown in corresponding boxes on the top images.

Skakun et al. Page 21

Int J Digit Earth. Author manuscript; available in PMC 2020 February 04.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Skakun et al. Page 22

Table 1.

Description of data used in the study. Acquisition dates are given in the format YYYYDOY (where DOY is 

the day of the year).

Country Tile 
number

Acquisition date 
of Sentinel-2A 
reference image

Acquisition dates of Landsat-8 co-
registered images

Acquisition dates of Sentinel-2A co-
registered images

Argentina 20HNH 2015358 2015354, 2015185, 2015201, 2015242, 
2015249, 2015258, 2015290, 2015306, 
2015329, 2015338, 2015345, 2015361, 
2016021, 2016037, 2016053

2015341, 2016006, 2016013, 2016016, 
2016023, 2016026, 2016036, 2016043, 
2016046, 2016063, 2016065, 2016073, 
2016083, 2016093, 2016096

Argentina 20HPH 2015358 2015242, 2015258, 2015290, 2015306, 
2015338, 2015354, 2016021, 2016037, 
2016053

2016003, 2016013, 2016023, 2016043, 
2016063, 2016073, 2016083, 2016093

US (Texas) 14SKF 2016012 2015245, 2015261, 2015293, 2015309, 
2015325, 2015341, 2015357, 2016024, 
2016040, 2016056, 2016072, 2016088, 
2016104

2016042, 2016072, 2016132

Ukraine 36UUU 2016169 2016076, 2016092, 2016108, 2016156, 
2016172, 2016188

2016096, 2016109, 2016119, 2016156, 
2016166, 2016179, 2016196, 2016199, 
2016206

Ukraine 34UFU 2016198 2016063, 2016182 2016048, 2016208
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Table 2.

Results of identifying CPs on the sensed (Landsat-8) and reference (Sentinel-2A) images using phase 

correlation approach at 30 m spatial resolution. Values for shifts Δx and Δy (Eq. 2) are shown in pixel units.

Δx Δy

Tile Date of sensed image acquisition Number of CPs mean std min max mean std min max

20HNH 2015185 694 1.15 0.08 0.96 1.34 0.24 0.06 0.12 0.35

2015201 652 1.18 0.11 0.85 1.46 0.22 0.08 0 0.45

2015242 718 0.91 0.09 0.74 1.07 0.04 0.05 −0.07 0.13

2015249 512 1.14 0.11 0.88 1.34 0.13 0.06 −0.03 0.25

2015258 679 0.97 0.13 0.63 1.31 0.03 0.05 −0.1 0.16

2015290 939 0.98 0.09 0.72 1.23 −0.01 0.08 −0.24 0.17

2015306 810 0.99 0.08 0.8 1.17 0.02 0.05 −0.1 0.19

2015329 454 1.34 0.11 1.02 1.59 0.05 0.09 −0.16 0.28

2015338 1854 1 0.09 0.76 1.25 −0.03 0.11 −0.31 0.2

2015345 866 1.22 0.05 1.1 1.35 0.14 0.02 0.08 0.19

2015354 2338 0.96 0.13 0.59 1.32 −0.03 0.07 −0.24 0.13

2015361 1268 1.22 0.06 1.08 1.36 0.07 0.04 −0.03 0.16

2016021 1419 0.96 0.11 0.69 1.27 0.01 0.06 −0.17 0.18

2016037 1017 0.95 0.12 0.6 1.29 0.12 0.07 −0.06 0.29

2016053 876 0.81 0.15 0.41 1.19 0.08 0.06 −0.07 0.21

20HPH 2015242 726 0.88 0.11 0.53 1.14 −0.06 0.07 −0.27 0.1

2015258 652 0.93 0.13 0.54 1.19 −0.01 0.05 −0.13 0.09

2015290 848 0.89 0.1 0.56 1.13 −0.08 0.07 −0.27 0.06

2015306 709 0.98 0.07 0.73 1.16 −0.03 0.04 −0.17 0.06

2015338 2637 0.79 0.12 0.46 1.08 −0.09 0.07 −0.28 0.07

2015354 2912 0.82 0.11 0.53 1.08 −0.13 0.07 −0.3 0.04

2016021 1634 0.77 0.1 0.5 1 −0.08 0.07 −0.28 0.09

2016037 1070 0.82 0.1 0.54 1.05 0.02 0.07 −0.18 0.18

2016053 574 0.71 0.11 0.41 0.91 0 0.07 −0.21 0.16

36UUU 2016076 770 0.28 0.08 0.08 0.47 0.6 0.07 0.44 0.76

2016092 695 0.33 0.1 0.08 0.62 0.58 0.06 0.41 0.73

2016108 856 0.29 0.09 0.1 0.55 0.6 0.06 0.45 0.79

2016156 796 0.27 0.09 0.08 0.51 0.57 0.06 0.38 0.72

2016172 2379 0.31 0.08 0.14 0.5 0.6 0.05 0.46 0.73

2016188 818 0.37 0.07 0.2 0.55 0.61 0.06 0.39 0.75

14SKF 2015245 721 −0.45 0.14 −0.75 −0.12 0.13 0.1 −0.09 0.39

2015261 472 −0.43 0.18 −0.89 0.01 0.05 0.11 −0.22 0.37

2015293 721 −0.48 0.14 −0.76 −0.06 −0.24 0.11 −0.53 0.12

2015309 1195 −0.38 0.13 −0.65 −0.05 0.36 0.08 0.18 0.55
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Δx Δy

Tile Date of sensed image acquisition Number of CPs mean std min max mean std min max

2015325 1095 −0.38 0.14 −0.67 −0.04 −0.12 0.12 −0.49 0.19

2015341 703 −0.03 0.08 −0.21 0.22 0.06 0.06 −0.06 0.18

2015357 1100 −0.36 0.14 −0.65 0 −0.16 0.1 −0.42 0.12

2016024 729 −0.05 0.11 −0.28 0.26 0.11 0.09 −0.11 0.32

2016040 1258 −0.05 0.09 −0.23 0.19 −0.08 0.07 −0.29 0.11

2016056 1117 −0.39 0.12 −0.66 −0.08 0.33 0.09 0.12 0.6

2016072 752 −0.05 0.08 −0.24 0.18 0.19 0.06 0.02 0.34

2016088 1085 −0.37 0.1 −0.59 −0.08 0.14 0.08 −0.04 0.36

2016104 992 −0.06 0.08 −0.22 0.16 0.19 0.07 0.01 0.4

34UFU 2016063 636 0.61 0.07 0.46 0.78 0.15 0.1 −0.16 0.46

2016182 1498 0.76 0.04 0.66 0.87 0.14 0.05 0.05 0.29
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Table 3.

Results of identifying CPs on the sensed (Sentinel-2A) and reference (Sentinel-2A) images using phase 

correlation approach at 10 m spatial resolution. Values for shifts Δx and Δy (Eq. 2) are shown in pixel units.

Δx Δy

Tile Date of sensed image acquisition 
(baseline processing version, orbit 
relative to the orbit of reference 
image)

Number of CPs mean std min max mean std min max

20HNH 2016013 (v02.01, same) 20622 −0.03 0.04 −0.16 0.08 0.04 0.04 −0.04 0.15

2016023 (v02.01, same) 21934 0.06 0.04 −0.04 0.16 0.05 0.04 −0.06 0.15

2016043 (v02.01, same) 15453 −0.03 0.06 −0.17 0.1 0.02 0.06 −0.13 0.18

2016063 (v02.01, same) 6133 0.12 0.11 −0.37 0.41 0.19 0.12 −0.14 0.45

2016073 (v02.01, same) 12919 −0.11 0.07 −0.23 0.03 0.21 0.1 −0.03 0.48

2016083 (v02.01, same) 13439 −0.27 0.11 −0.6 0.03 0.11 0.1 −0.18 0.42

2016093 (v02.01, same) 4160 −0.16 0.17 −0.61 0.31 0.35 0.31 −0.54 1.09

2015341 (v02.00, adjacent) 15056 0.22 0.09 0 0.43 −0.42 0.19 −0.93 0.12

2016006 (v02.01, adjacent) 17858 0.08 0.04 −0.01 0.16 −0.76 0.18 −1.2 −0.3

2016016 (v02.01, adjacent) 18265 0.24 0.08 0.05 0.44 −0.6 0.3 −1.3 0.15

2016026 (v02.01, adjacent) 16795 0.41 0.18 −0.12 0.92 −0.53 0.24 −1.15 0.1

2016036 (v02.01, adjacent) 2281 −0.04 0.12 −0.34 0.28 −0.05 0.16 −0.42 0.34

2016046 (v02.01, adjacent) 8566 0.3 0.14 −0.08 0.68 −0.34 0.15 −0.69 0

2016065 (v02.01, adjacent) 9997 0.23 0.12 −0.01 0.49 −0.36 0.23 −1.04 0.33

2016096 (v02.01, adjacent) 1060 −0.02 0.17 −0.47 0.47 0.02 0.16 −0.35 0.4

20HPH 2016003 (v02.01, same) 2286 0.01 0.15 −0.35 0.38 0 0.14 −0.42 0.47

2016013 (v02.01, same) 29887 0 0.04 −0.08 0.08 0.01 0.04 −0.08 0.11

2016023 (v02.01, same) 20264 0.07 0.05 −0.05 0.19 0 0.06 −0.18 0.15

2016043 (v02.01, same) 10197 −0.04 0.07 −0.24 0.19 −0.01 0.07 −0.19 0.21

2016063 (v02.01, same) 7065 0.24 0.12 −0.02 0.51 0.15 0.11 −0.18 0.45

2016073 (v02.01, same) 7492 −0.09 0.07 −0.27 0.12 0.03 0.07 −0.12 0.17

2016083 (v02.01, same) 9020 −0.24 0.08 −0.43 −0.05 −0.07 0.11 −0.35 0.22

2016093 (v02.01, same) 1981 −0.06 0.15 −0.39 0.25 0.05 0.17 −0.38 0.47

36UUU 2016109 (v02.01, same) 18989 0.18 0.12 −0.16 0.47 0.2 0.24 −0.5 0.93

2016119 (v02.01, same) 21363 0.08 0.11 −0.26 0.45 −0.17 0.29 −1.16 0.61

2016179 (v02.04, same) 19300 0 0.04 −0.08 0.08 0.21 0.05 0.08 0.33

2016199 (v02.04, same) 16647 −0.07 0.06 −0.24 0.08 0.14 0.06 −0.03 0.3

2016096 (v02.01, adjacent) 10046 −0.1 0.13 −0.47 0.29 1.44 0.51 −0.13 2.82

2016156 (v02.02, adjacent) 8145 −0.32 0.13 −0.68 0.1 1.19 0.4 −0.04 2.02

2016166 (v02.02, adjacent) 10436 0.01 0.04 −0.09 0.14 0.13 0.05 −0.02 0.24

2016196 (v02.04, adjacent) 8530 −0.06 0.07 −0.22 0.08 0.25 0.08 0.01 0.47

2016206 (v02.04, adjacent) 4905 −0.17 0.09 −0.38 0.07 0 0.08 −0.23 0.2

14SKF 2016042 (v02.01, same) 28459 −0.17 0.04 −0.27 −0.05 0.1 0.06 −0.02 0.22
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Δx Δy

Tile Date of sensed image acquisition 
(baseline processing version, orbit 
relative to the orbit of reference 
image)

Number of CPs mean std min max mean std min max

2016072 (v02.01, same) 19183 −0.37 0.09 −0.56 −0.13 0.21 0.09 −0.08 0.45

2016132 (v02.01, same) 18091 −0.26 0.1 −0.58 0.05 0.35 0.17 −0.22 0.94

34UFU 2016048 (v02.01, same) 16528 0.28 0.08 0.06 0.55 0.05 0.18 −0.37 0.61

2016208 (v02.04, same) 26453 0.16 0.03 0.06 0.25 0.22 0.04 0.08 0.33
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Table 4.

Average and standard deviation of the RMSE error (Eq. 4) calculated for different transformation functions 

using CPs from testing set when co-registering Landsat-8 and Sentinel-2A images. RMSE values are shown in 

pixel units at 30 m spatial resolution.

Translation (Eq. 7–8) 1st order polynomial 
(Eq. 9–10)

Gaussian RBFs (Eq. 
11–12, 13)

RF regression TPS (Eq. 11–12, 14)

Tile Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

20HNH 0.119 0.031 0.091 0.026 0.093 0.027 0.084 0.024 0.090 0.025

20HPH 0.123 0.014 0.078 0.016 0.081 0.017 0.073 0.018 0.079 0.018

36UUU 0.108 0.011 0.072 0.015 0.074 0.015 0.059 0.014 0.073 0.015

14SKF 0.145 0.037 0.094 0.018 0.095 0.018 0.074 0.018 0.094 0.017

34UFU 0.095 0.045 0.056 0.034 0.060 0.038 0.044 0.030 0.054 0.033
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Table 5.

Average and standard deviation of the RMSE error (Eq. 4) calculated for different transformation functions 

using CPs from testing set when co-registering multi-temporal Sentinel-2A images from the same orbit. 

RMSE values are shown in pixel units at 10 m spatial resolution.

Translation (Eq. 7–8) 1st order polynomial 
(Eq. 9–10)

Gaussian RBFs (Eq. 
11–12, 13)

RF regression TPS (Eq. 11–12, 14)

Tile Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

20HNH 0.141 0.104 0.125 0.076 0.125 0.076 0.105 0.060 0.126 0.074

20HPH 0.133 0.064 0.128 0.062 0.127 0.062 0.114 0.059 0.129 0.064

36UUU 0.181 0.126 0.114 0.046 0.114 0.046 0.088 0.035 0.112 0.048

14SKF 0.133 0.066 0.123 0.050 0.118 0.046 0.089 0.036 0.123 0.051

34UFU 0.122 0.101 0.092 0.086 0.091 0.084 0.066 0.059 0.093 0.088
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Table 6.

The same as Table 5, but for adjacent Sentinel-2A orbits.

Translation (Eq. 7–8) 1st order polynomial 
(Eq. 9–10)

Gaussian RBFs (Eq. 
11–12, 13)

RF regression TPS (Eq. 11–12, 14)

Tile Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

20HNH 0.239 0.048 0.207 0.031 0.202 0.028 0.164 0.032 0.205 0.031

36UUU 0.248 0.212 0.191 0.139 0.189 0.138 0.138 0.087 0.193 0.142

Int J Digit Earth. Author manuscript; available in PMC 2020 February 04.



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Skakun et al. Page 30

Table 7.

Typical processing times (in s) for the main steps of the proposed approach.

Processing step SenSen10 LandSen30

CPs identification 135 22

Precomputing shifts with 1st order polynomial function 5 0.5

Precomputing shifts with the RF regression 220 8

Warping (single scene) 210 25
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