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ABSTRACT

Given molecular genetic data from diploid individuals that, at present, reproduce mostly or
exclusively asexually without recombination, an important problem in evolutionary biology
is detecting evidence of past sexual reproduction (i.e., meiosis and mating) and recombi-
nation (both meiotic and mitotic). However, currently there is a lack of computational tools
for carrying out such a study. In this article, we formulate a new problem of reconstructing
diploid genealogies under the assumption of no sexual reproduction or recombination, with
the ultimate goal being to devise genealogy-based tools for testing deviation from these
assumptions. We first consider the infinite-sites model of mutation and develop linear-time
algorithms to test the existence of an asexual diploid genealogy compatible with the infinite-
sites model of mutation, and to construct one if it exists. In this ideal case, our chance of
detecting signatures of past sexual reproduction is maximized. Then, we relax the infinite-
sites assumption and develop an integer linear programming formulation to reconstruct
asexual diploid genealogies with the minimum number of homoplasy (back or recurrent
mutation) events. If this number is substantially larger than that expected for typical asexual
organisms, then it may suggest that sexual reproduction or recombination may have played
an important role in the evolutionary history. We apply our algorithms on simulated data
sets with sizes of biological interest.

Key words: combinatorial libraries, genetic variation, haplotypes, protein structure, sequence

analysis.

1. INTRODUCTION

Reproduction in asexual organisms usually is less costly than that in sexual organisms. Yet,

sexual reproduction and genetic recombination are common to the majority of higher organisms in

nature, and several different explanations have been put forward to address this intriguing phenomenon

(Barton and Charlesworth, 1998; Keightley and Otto, 2006). Although it still remains debatable as to which

precise evolutionary conditions and mechanisms maintain sex and recombination in natural populations, it is

widely believed that sex and recombination are important for the long-term evolutionary success of an

organism; that is, asexual organisms are believed to be much more susceptible to extinction than are their
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sexual counterparts that undergo meiosis and mating (Maynard Smith, 1978). Contrary to this common

belief, the phylum Rotifera, microscopic aquatic animals widespread throughout the world, contains a

class—namely, Bdelloidea—that seems to have been reproducing asexually for tens of millions of years,

diversifying into 360 known species that constitute four families and 18 genera. Fossil evidence suggests that

bdelloid rotifers have been around for at least 35–40 million years (Waggoner and Poinar, 1993), while

molecular genetic analysis suggests an age that is more than twice as large (Mark Welch and Meselson,

2000). Maynard Smith (1986) referred to the bdelloid rotifers as ‘‘something of an evolutionary scandal,’’ and

it has been questioned in the past whether they indeed have remained asexual for all that while ( Judson and

Normark, 1996).

Recently, Mark Welch and Meselson (2000) analyzed molecular genetic data of four bdelloid species

and provided evidence to support bdelloid rotifers’ ancient, continuous asexuality. Their method was based

on counting synonymous sequence differences between different copies of a gene within an individual,

which, under neutrality, are expected to be over-represented in an old asexual organism (Birky, 2004).

Mark Welch and Meselson showed that allelic sequence differences at synonymous sites are significantly

greater in bdelloid rotifers than in their closest relative class monogonont rotifers, consisting of about 1500

species, which seem to reproduce mostly asexually, but with an occasional sexual reproduction. (More

recent evidence in support of the ancient asexuality of bdelloid rotifers is provided in Fontaneto et al.,

2007.) In contrast to this success, when a similar analysis was applied to other asexual organisms such as

darwinulid ostrocods (Schön and Martens, 2003), of which morphological evidence strongly supports

ancient asexuality (Martens et al., 2003), no significantly high level of sequence divergence was observed.

In another study, a similar sequence divergence test applied to plant-parasitic worms (specifically, root-knot

nematodes from the genus Meloidogyne) supported their ancient asexuality, while further analysis revealed

that interspecific hybridization was involved in the history of this group (Lunt, 2008). From this study, the

author concluded ‘‘genetic signatures of ancient asexuality must be taken with caution due to the con-

founding effect of interspecific hybridization, which has long been implicated in the origins of apomictic

species.’’ As these cases illustrate, a more refined method that makes better use of DNA data is needed for

studying asexuality.

In this article, we develop new methods to test asexuality by explicitly considering the evolutionary

history of diploid individuals. We first consider the infinite-sites model of mutation, which corresponds to

the ideal case in which mutations provide as much information about genealogy as possible. This ideal case

should provide an upper bound on our chance of detecting signatures of past sexual reproduction. Given n

pairs of phased haplotypes or n unphased genotypes, our goal is to test the existence of an n-leaved diploid

perfect phylogeny (DPP)—an asexual diploid genealogy compatible with the infinite-sites model of mu-

tation and no recombination—for the input individuals, and to construct one if it exists. We devise linear-

time algorithms for both phased haplotypic and unphased genotypic input data, and show that a minimal

DPP for a given data set is unique if it exists. If a DPP solution exists for unphased genotypic input data,

our algorithm finds a phasing of the input genotypes into pairs of haplotypes compatible with the DPP, and

the DPP serves as a data structure that encodes all such phasing solutions.

If the input sequences do not admit a DPP solution, then further analysis is required to understand the

evolutionary forces such as homoplasy or recombination that are present in the genealogy. In the second

part of this article, we relax the infinite-sites assumption and study the diploid imperfect phylogeny (DIP)

problem, which is to reconstruct asexual diploid genealogies with the minimum number of homoplasy

(recurrent or back mutation) events. If the minimum number of homoplasy events is significantly greater

than that expected for typical asexual organisms, then it may indicate that other evolutionary forces such as

recombination, hybridization, or sexual reproduction may have played a role in the genealogy of the

organisms. We develop an integer linear programming formulation to tackle this problem and study the

practicality of our approach by applying our algorithms on simulated data sets with sizes of current

biological interest.

Our ultimate goal is to devise genealogy-based tools for testing deviation from asexual evolution. Given

molecular genetic data from diploid individuals that, at present, reproduce mostly or exclusively asexually,

an important open problem is to estimate the frequency of past sexual reproduction, as well as the amount

of recombination (meiotic and mitotic crossovers and gene-conversions). Further, it will be important to

estimate when sexuality was lost and how many independent times. The work described in this article is a

modest step toward that general direction. The preliminary results described here suggest that genealogical

approaches may provide new insights into the study of asexual evolution.
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We carry out simulations to study how often DPPs exist for sample data sets when some of the

underlying assumptions for DPP are violated. In particular, we introduce various amounts of sexual

reproduction and mitotic gene-conversion in the evolutionary history of the population, and test the ex-

istence of DPP solutions for random samples. Our study suggests that the signature of historical sexual

reproduction decays rather fast with time and that occasional sexual reproduction may be difficult to detect.

This article is organized as follows. We first define the DPP problem and formulate the computational

problems to be addressed in this article. We consider the case with haplotypic input data and highlight

several important properties satisfied by DPPs, and describe results for phasing genotypic input data as a

DPP. We then extend the diploid phylogeny method to incorporate back and recurrent mutation events in

the DIP model and formulate integer linear programming methods to solve the resulting problem. Simu-

lation results are discussed, and we conclude with some remarks.

CloneTree, software that implements our algorithms, is available at http://www.eecs.berkeley.
edu/*yss/software.html. It produces a graphical output that displays the diploid genealogy found

by our algorithms.

2. DIPLOID PERFECT PHYLOGENY

We assume that the input data consist of either phased or unphased single nucleotide polymorphisms

(SNPs) from n diploid individuals with m polymorphic sites. Each site has at most two phased alleles,

denoted by {0, 1}. The data we consider are of the following two types:

Definition 2.1 (Haplotype data). A haplotype is a binary string of length m. Let hi and ehhi denote the

pair of haplotypes of individual i; hi and ehhi are called mates. A collection of such pairs of haplotypes for n

individuals is denoted by a 2n-by-m binary matrix H, in which rows 2i–1 and 2i correspond to the two

haplotypes of individual i.

Definition 2.2 (Genotype data). Let gi denote the genotype of individual i. The value of gi at site k is 0 if

individual i has two copies of 0 at site k; 1 if individual i has two copies of 1 at site k; or 2 otherwise. A

collection of genotypes for n individuals is denoted by G, with row i corresponding to gi. A 2n-by-m binary

matrix H is said to be a phasing solution to an n-by-m ternary matrix G if, for all i¼ 1, . . . , n, gi in G is the

genotype consistent with the mates hi and ehhi in H.

In the infinite-sites model of mutation, at most one mutation may occur per site in the entire evolutionary

history. Perfect phylogenies are trees representing evolutionary histories consistent with the infinite-sites

model of mutation (for each site, there is at most one edge in the tree corresponding to mutation at that site)

(Semple and Steel, 2003). We will refer to these as haploid perfect phylogenies (HPP) to distinguish them

from diploid perfect phylogenies (DPP), a new concept defined as follows.

Definition 2.3 (Diploid Perfect Phylogeny). A diploid perfect phylogeny (DPP) for n diploid indi-

viduals is an n-leaved rooted tree T representing the evolutionary history of self-cloning (or asexually

reproducing) individuals satisfying:

1. Mutations occur on edges and each site may mutate at most once in T. Time flows from the root

(which has degree 2) to the leaves (which have degree 1), and each edge in T represents a diploid

lineage. If site k mutates on an edge, only one of the two haplotypes gets modified at that site, and the

newly arising allele (0 or 1) has never been seen before at that site.

2. Depending on whether the input data are pairs of haplotypes or genotypes, every vertex of a DPP is

labeled by a pair of haplotypes or a genotype, respectively.

3. There is a one-to-one correspondence between the n leaves of T and the n input individuals.

A minimal DPP is a DPP in which the two ends of every interior edge have different labels.

Note that a set of 2n haplotypes for n individuals may admit an HPP solution while admitting no DPP

solution. A DPP example is shown in the middle of Figure 1. In this article, we address the following two

algorithmic questions:

DPP for Haplotype Data: Given a haplotypic data set H for n diploid individuals, determine whether H

admits a DPP solution, and find one if it exists.
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DPP Haplotyping for Genotype Data: Given a genotypic data set G for n diploid individuals, deter-

mine whether G can be phased to a haplotypic data set H that admits a DPP solution, and if so, find such a

phasing solution H.

3. DPP FOR HAPLOTYPE DATA

Gusfield (1991) devised a linear-time algorithm to test whether a given haplotypic input data set admits

an HPP solution and to find one if it exists. In this section, we construct an analogous linear-time algorithm

for DPP, making use of Gusfield’s linear-time algorithm for HPP. First, we highlight several important

properties satisfied by DPPs.

3.1. Properties of diploid perfect phylogenies

Suppose there is an n-leaved minimal DPP T for H. Let xr and yr denote the root haplotypes of T.

Following the history of xr on T leads to one haplotype per leaf in T. Denote this set of haplotypes HX and

their history tX. Similarly, follow the history of yr on T to obtain HY and tY . Note that each diploid

individual has exactly one of its two haplotypes in HX and the other in HY. The following properties are

implied by the one-mutation-per-site condition:

P1: The set of mutations in tX and tY are disjoint. (In Figure 1, sites 1 and 3 mutate in tX but not in tY.

Similarly, site 2 mutates in tY but not in tX.)

P2: If xr[k]= yr[k], then both 0 and 1 have already been seen, so part 1 of Definition 2.3 implies that

neither tX nor tY contains a mutation at site k. As a consequence, no individual in T is homozygous at

site k. (In Figure 1, sites 4 and 5 satisfy this property.)

For a given input data set H, the one-mutation-per-site condition imposes tight constraints on the possible

root haplotypes of a DPP. In what follows, we use E(H) to denote the set of all sites in H at which every

individual is heterozygous.

Lemma 3.1 (Constraints on the root). The haplotypes xr,yr of any possible root individual of a DPP

satisfy the following properties:

1. For all k, k 62 E(H), there cannot be two distinct homozygous genotypes at site k. If any individual i in

H has a homozygous genotype hi[k]¼ ehhi[k]¼ c, then the root individual also has the same genotype

xr[k]¼ yr[k]¼ c.

2. H restricted to the sites in E(H) has exactly two distinct haplotypes, and those haplotypes are equal to

the root haplotypes xr,yr restricted to E(H). More precisely, for any particular site j 2 E(H), let HX

(respectively, HY ) denote the set of n haplotypes with a 1 (respectively, 0) at site j. Then, for all

k 2 E(H), both HX and HY are non-polymorphic at site k, with HX and HY having different alleles.

Further, xr (respectively, yr) restricted to the sites in E(H) is the same as any haplotype in HX

(respectively, HY ) restricted to E(H). So, for all k 2 E(H), the root is heterozygous at site k.

Proof. If there exists a DPP, Property P1 implies that no two distinct homozygous genotypes may exist

at any site. Further, Property P2 implies that if H contains an individual homozygous at site k, then the root

FIG. 1. (a) A haplotype data set

H for four individuals. (b) Its

unique minimal diploid perfect

phylogeny (DPP) T. (c) Evolu-

tionary histories of the haplotypes

embedded in T. We use tX and tY

to denote the solid and the dotted

trees in T, respectively. An open

circle labeled k represents a mu-

tation at site k.
a b c
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individual of any DPP solution for H must be homozygous at that site. The first part of this lemma then

follows from these two facts.

Let T denote an n-leaved DPP for the n individuals in H, and suppose that the root r of T is homozygous

at some site j 2 E(H). Then, since every individual in H is heterozygous at that site, r is not in H. Now, the

one-mutation-per-site condition implies that there is an edge that separates r from all individuals in H, thus

implying that T contains a leaf not labeled by any individual in H, which in turn implies that T is not an

n-leaved DPP for H, a contradiction. Hence, the root individual of a DPP must be heterozygous at every site

j 2 E(H). This fact and the one-mutation-per-site condition together imply that there is no mutation event at

any site j 2 E(H) in T, and the second part of the lemma immediately follows. &

Lemma 3.1 implies that if a DPP exists for H, there is a unique choice for the root. Using this lemma, we

can show several useful results that hold if a DPP exists. First, we need two definitions.

Definition 3.2 (Resolution of a vertex). In a graph G, resolution of a degree-d vertex v incident to

edges e1, . . . , ed (with d> 3), is an operation that splits v into two new vertices v1 and v2, such that (i) v1

and v2 are joined by a new edge, (ii) each of e1, . . . , ed is incident with either v1 or v2, (iii) both v1 and v2

have degree� 3, and (iv) the remaining vertices and edges of G remain the same.

Definition 3.3 (ffl, Join operation). For two k-by-l matrices M1 and M2, the k-by-2l matrix M1fflM2 is

obtained by appending row i of M2 to row i of M1.

The following result provides a way to find the partition of H into HX and HY if a DPP solution exists.

Proposition 3.4 (Partition of H into HX and HY). For n> 1, suppose there exists an n-leaved DPP T for

the n individuals in H. Then, the 2n haplotypes in H admit a unique 2n-leaved minimal unrooted haploid

perfect phylogeny t satisfying the following:

1. If E(H) 6¼ �, then there exists a unique edge in t such that cutting that edge partitions t into two n-

leaved subtrees such that, for each individual i, haplotype hi appears as a leaf of one subtree while its

mate haplotype ehhi appears as a leaf of the other subtree (Fig. 2a).

2. If E(H)¼ �, then there exists a unique vertex v in t with degree d, where d> 3, such that resolving v

and cutting the edge between the newly created vertices partitions t into two n-leaved subtrees such

that, for each individual i, haplotype hi appears as a leaf of one subtree while its mate haplotype ehhi

appears as a leaf of the other subtree (Fig. 2b).

Proof. Define tX, tY, xr, and yr as in the beginning of this section. If xr and yr are not identical, then add

a new edge between the root of tX and the root of tY, and add mutation events on that edge for all sites k

where xr[k]= yr[k]. If xr and yr are identical, combine tX and tY by identifying the root vertex rX of tX with

the root vertex rY of tY , such that the new vertex rX�Y obtained from identifying rX and rY is incident with

all the edges that were incident with rX or rY. Then, Properties P1 and P2 imply that the resulting tree tX�Y

is an unrooted HPP for the haplotypes in H. Now, contract interior edges in tX�Y with no mutations and call

the resulting tree t. Note that t is a unique 2n-leaved minimal unrooted HPP for the haplotypes in H.

If E(H) 6¼ �, then xr and yr are not identical by definition of E(H), implying t described above contains an

edge between xr and yr with at least one mutation. Therefore, t satisfies part 1 of the proposition. If

E(H)¼ �, then Lemma 3.1 implies that the root haplotypes xr and yr are identical, so t has the vertex rX�Y

described above. Note that rX�Y has degree > 3, and part 2 of the proposition is satisfied by construction. &

FIG. 2. Haploid perfect phylog-

eny (HPP) and diploid perfect

phylogeny (DPP) examples for

Propositions 3.4 and 3.5. (a) There

is a unique edge (namely, the edge

on which sites 4 and 5 mutate)

satisfying the property described in

part 1 of Proposition 3.4. (b) There

is a unique vertex (labeled v in the figure) satisfying the property described in part 2 of Proposition 3.4. (c) The unique

minimal DPP consistent with the HPP shown in (b).

a b c
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If a DPP exists for H and E(H)¼ �, part 2 of Proposition 3.4 indicates that there is a unique degree-d

vertex v, where d> 3, such that a partition of H into HX and HY can be obtained from resolving that vertex.

However, there can be more than one admissible resolution of that vertex (and hence more than one

possible partition of H) that is consistent with the existence of a DPP. Below, we show that all such

resolutions imply the same minimal DPP. For illustration, consider the HPP shown in Figure 2b. It admits

two possible partitions of H into HX and HY—either HX ¼fh1, ehh2, h3, ehh4, h5, ehh6g and HY ¼
fehh1, h2, ehh3, h4, ehh5, h6g, or HX ¼fh1, ehh2, ehh3, h4, h5, h6g and HY ¼fehh1, h2, h3, ehh4, ehh5, ehh6g. It is easy to see that

both cases lead to the same DPP (Fig. 2c). Now, the following result establishes the uniqueness of a

minimal DPP solution:

Proposition 3.5 (Uniqueness). If a DPP exists for H, then H admits a unique minimal DPP.

Proof. Suppose that H admits a DPP. If E(H) 6¼ �, then part 1 of Proposition 3.4 implies that there is a

unique way to partition H into HX and HY. The root haplotypes xr and yr are as described in Lemma 3.1. A

minimal DPP for H must be a minimal HPP for HXfflHY with xrffl yr as the root sequence, and its

uniqueness follows from the uniqueness of a rooted minimal HPP for a binary matrix with a given root.

Suppose that E(H)¼ �, and let t and v be as in Proposition 3.4. Lemma 3.1 implies that the root

haplotypes xr and yr of a DPP are identical. For ease of exposition, suppose that those haplotypes are all-

zero. Then, the haplotypes assigned to v are all-zero. To each mutation in t, one can associate a binary

character for the n individuals f1, 2, . . . , ng as follows. For each mutation occurring on some edge in t,

imagine cutting that edge, and consider the subtree not containing v that would be cut. Assign a 1 to every

individual i with either hi or ehhi as a leaf in that subtree, and assign 0s to all other individuals. (Since there

exists a DPP, no individual has both of its haplotypes in that subtree.) Now, the tree shape and the

assignment of mutations to the edges of a minimal DPP for H must be the same as that of a minimal HPP

for the set of binary characters just described with the all-zero sequence as the root, and the uniqueness of

that DPP is immediate. &

3.2. A linear-time algorithm for haplotype data

Using the above results and Gusfield’s linear-time algorithm for HPP (Gusfield, 1991), we can devise the

following O(mn)-time algorithm to find a DPP solution, if it exists:

1. Check that the conditions in Lemma 3.1 are satisfied. If not, there is no DPP solution. Otherwise, the

root haplotypes xr and yr are uniquely determined.

2. Check whether there exists a 2n-leaved minimal unrooted HPP t for H. If not, there is no DPP

solution. Otherwise, check whether a partition of the 2n-by-m input matrix H into two n-by-m

matrices HX and HY can be found as described in Proposition 3.4.

(a) If E(H) 6¼ �, the two ends of the edge in t needed to be cut should be labeled by xr and yr.

(b) If E(H)¼ �, then xr¼ yr. The vertex v described in the second part of Proposition 3.4 is the one

labeled by xr¼ yr. Determine whether there exists a resolution of v such that cutting the newly

created edge partitions H into HX and HY. If not, there is no DPP solution.

3. Test whether there exists an n-leaved HPP for the n-by-2m matrix HXfflHY with xrffl yr as the root

sequence. If so, then it corresponds to the unique minimal DPP for H. Otherwise, there is no DPP

solution.

4. DPP HAPLOTYPING FOR GENOTYPE DATA

Gusfield (2002) considered phasing (or haplotyping) genotypic input data as an HPP and provided a

nearly-linear-time algorithm for the problem. Simpler but slower solutions (Bafna et al., 2003; Eskin et al.,

2003) were subsequently proposed for the problem, and linear-time algorithms were recently found (Ding

et al., 2005; Vijayasatya and Mukherjee, 2005). The absence of recombination and homoplasy imposes

stringent constraints on the genealogy of asexual diploid individuals. In this section, we exploit such

constraints to devise a simple linear-time algorithm for the DPP Haplotyping Problem under the assumption

of asexual reproduction. Our approach has two stages. First, for a given input genotype data set G, we find a

DPP if it exists. Then, we use that DPP to find a phasing solution for G.
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4.1. A linear-time algorithm for constructing a DPP for genotype data

When using 0, 1, and 2 to denote genotypic states, recall that 0 and 1 denote homozygotes, while 2

denotes a heterozygote. Lemma 3.1 implies that genotypic states 0 and 1 cannot both appear in any column

in G. Further, the one-mutation-per-site condition implies that, when a mutation occurs at a site, it is either

of type 0? 2 or 1? 2, but never 2? 0 or 2? 1. Using these facts, we devise the following linear-time

algorithm for constructing a DPP for G, if it exists:

1. For every column k¼ 1, . . . , m in G do the following:

(a) Check whether both 0 and 1 appear in column k. If so, there is no DPP solution, so terminate the

algorithm.

(b) If column k contains neither a 0 nor a 1, then set zr[k]¼ 2.

(c) Else, if column k contains a 0 (respectively, 1), then set zr[k]¼ 0 (respectively, zr[k]¼ 1).

2. If the above step has succeeded, then there are at most two distinct genotypic states in each column of

G. Viewing each column as a two-state character and each row as a haplotype, test whether G admits

an n-leaved HPP with zr as the root sequence, with mutations of type 0? 2 or 1? 2, depending on

the root character state. If such an HPP exists, it corresponds to the unique minimal DPP for G.

With appropriate renaming of character states, the above algorithm can be carried out in O(mn) time using

Gusfield’s (1991) linear-time HPP algorithm for binary matrices.

Remark 4.1 (Uniqueness of the root genotype). Note that if a DPP exists for an input genotype data,

its root genotype zr is uniquely determined as described in the above algorithm.

4.2. Solutions to the DPP haplotyping problem

If G admits a unique minimal DPP T with root zr, a DPP haplotyping solution can be obtained using the

following linear-time algorithm:

1. Let xr, yr denote an arbitrary pair of haplotypes such that their corresponding genotype is equal to zr.

2. Propagate xr, yr down the tree T as follows. Suppose that a mutation event, of type either 0? 2 or

1? 2, occurs at site k on a directed edge e in T, and let hd, ehhd denote the descendant haplotype mate

pair labeling the vertex incident with the head of e. Then, either set hd[k]¼ 0, ehhd[k]¼ 1 or set

hd[k]¼ 1, ehhd[k]¼ 0.

This procedure leads to pairs of haplotypes at the leaves consistent with G. As the above algorithm

suggests, if there exists a DPP solution for G, then its unique minimal DPP T serves as a data structure that

encodes all DPP haplotyping solutions for G. There are two sources that lead to multiple DPP haplotyping

solutions. First, if the root genotype zr contains C heterozygous sites, then there are 2C–1 choices for x r,yr.

Second, for a given pair xr,yr, the freedom described in step 2 of the above algorithm can lead to multiple

haplotyping solutions.

The counting goes as follows. Suppose that there are me mutations on an edge e, and let ha, ehha denote

the ancestor haplotype mate pair labeling the tail vertex of e. Then, the number m(e) of choices for

descendant haplotype mate pair hd, ehhd, are given by

l(e)¼ 2me � 1, if ha and ehha are identical , and me � 1,

2me , otherwise:

�
(1)

Hence, if G admits a minimal DPP T, the total number m(G) of DPP haplotyping solutions is

l(G)¼ 2C� 1
Y

e2E(T)

l(e), (2)

where E(T) denotes the set of edges in T. All m(G) haplotyping solutions can be obtained from T by

switching hd[k] with ehhd[k] in step 2 of the above algorithm. An example is shown below.

Consider the genotype data set G shown at the top of Figure 3. Using our DPP algorithm for genotype

data, we can show that there exists a unique minimal DPP T for G; that unique minimal DPP is shown in

Figure 3. Then, it follows from (1) and (2) that there are exactly eight DPP haplotyping solutions for G.

Those eight solutions, shown in Table 1, can easily be obtained from T as described above.
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5. DIPLOID IMPERFECT PHYLOGENY

If a set of diploid sequences does not allow a DPP, then other forces must be present in the evolutionary

history. These may include homoplasy or recombination events, and further analysis is necessary to

distinguish between these possibilities. In this section, we relax the infinite-sites assumption and develop an

integer linear programming formulation to reconstruct asexual diploid genealogies with the minimum

number of homoplasy events.

Definition 5.1 (Diploid Imperfect Phylogeny). A diploid imperfect phylogeny (DIP) for n diploid

individuals is an n-leaved rooted tree T satisfying conditions (2) and (3) in the definition of DPP, and

satisfying condition (1) with the modification that multiple mutations are possible at each site.

In order to measure the strength of evidence to distinguish between homoplasy and recombination

events, we define a measure of deviation from a DPP. For a DIP T displaying a set of sequences S, let

MT (k) denote the number of edges in T corresponding to mutation at site k.

Definition 5.2. A diploid imperfect phylogeny T is q-imperfect (or q-near-perfect) ifP
k:MT (k)�1 (MT (k)� 1)¼ q:

The DIP problem is to find a DIP T displaying the input sequences which minimizes the imperfection q.

In particular, if the sequences can be displayed in a DPP T, then MT (k)� 1 for each site k, and T satisfies

q¼ 0.

In the case of haploid input sequences, the problem of constructing imperfect haploid phylogenies has

received much attention from both theoretical and practical points of view. Fernandez-Baca and Lagergren

(2003), Halperin and Eskin (2004), and Sridhar et al. (2006) analyzed theoretical bounds for algorithms to

solve this problem to optimality, while Sridhar et al. (2006) showed that the problem is fixed-parameter

tractable in the imperfection of the resulting phylogeny. Further, it has been shown that linear programming

approaches can efficiently handle data sets of biological interest (Sridhar et al., 2007). We now consider the

case of constructing DIPs and introduce a problem which casts this problem in the framework of com-

binatorial optimization.

FIG. 3. (a) A genotype data set G for four individuals.

(b) Its minimal diploid perfect phylogeny (DPP) T. An

open circle labeled k represents a mutation event at site

k. There are eight DPP haplotyping solutions, shown in

Table 1.

a b

Table 1. A Complete List of Diploid Perfect Phylogeny Haplotyping Solutions

for the Genotype Data Set Shown in Figure 3

Individual Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

1 11101 11001 11101 11001 11101 11001 11101 11001

01001 01101 01001 01101 01001 01101 01001 01101

2 11101 11101 11101 11101 11101 11101 11101 11101

01101 01101 01101 01101 01101 01101 01101 01101

3 11111 11111 11101 11111 11111 11111 11101 11101

01101 01101 01111 01111 01101 01101 01111 01111

4 01101 01101 01101 01101 01100 01100 01100 01100

00100 00100 00100 00100 00101 00101 00101 00101

There are eight solutions in total.
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5.1. Group Steiner tree problem

The problem of reconstructing phylogenies is closely related to the Steiner Tree Problem, a well-studied

problem in combinatorial optimization. Given a graph G¼ (V, E) with edge costs and a set of terminals

R�V, a Steiner tree in G is a subgraph of G containing a path between any pair of terminals. The cost of a

Steiner tree T is the sum of the edge costs in T, and the Steiner Tree Problem is to find the minimum cost

Steiner tree in G.

Let H be a set of input sequences of length m, and let graph G be the m-cube defined on vertices V¼
{0, 1}m and edges E¼f(u, v) 2 V · V :

P
i jui� vij ¼ 1g. Let R�V be the set of binary sequences corre-

sponding to the rows of input H. The minimum (haploid) imperfect phylogeny problem is then equiva-

lent to the minimum Steiner tree problem on underlying graph G with terminal vertices R. Even in this

restricted setting, the Steiner tree problem is NP-complete (Foulds and Graham, 1982).

To solve the DIP problem, we introduce the following more general Steiner tree problem. Let G¼ (V, E)

be an undirected graph, let d be a non-negative cost function on edge set E, and let R¼R1 [ R2 . . . Rk � V

be a partition of the terminal vertices into disjoint groups. A group Steiner tree of G is a Steiner tree

containing at least one vertex from each group Ri and the Group Minimum Steiner Tree (GMST) Problem is

to find the group Steiner tree of minimum cost.

The DIP problem can be transformed to an instance of the Group Steiner Tree problem as follows. Let

H¼fhi, ehhign
i¼ 1 be the input set of paired haplotype sequences to the DIP problem, where hi and ehhi are

binary sequences of length m. Let graph G be the 2m-cube (where vertices are binary sequences of length

2m and edges are pairs of binary sequences with Hamming distance equal to one), and for each i, let

terminal group Ri be the pair of vertices fhi
ehhi, ehhihig � V(G). The GMST on this instance is then equivalent

to the minimum DIP problem on H.

Because of its computational complexity, an important component of any computational approach for

solving the Steiner Tree problem is to eliminate vertices that cannot be present in any optimal tree. Such a

preprocessing step can substantially reduce the size of the input data without affecting the final output. In

the haploid imperfect phylogeny problem, it has been shown that the Buneman graph of the input se-

quences contains all optimal trees (Bandelt et al., 1989; Buneman, 1971). Restricting the underlying graph

of the problem in such a way has been shown to be efficient and practical on real data sets (Sridhar et al.,

2007). The following proposition shows an analogous results holds for the diploid phylogeny problem:

Proposition 5.3. Let H be a set of n pairs of haplotype sequences fhi, ehhig and let B(H) denote the

Buneman graph on [ifhi
ehhi, ehhihig. Then every minimum imperfect diploid phylogeny T*(H) is a subgraph of

B(H).

We prove this proposition using the following theorem of Bandelt et al. (1989) for haploid imperfect

phylogeny construction:

Theorem 5.4 (Bandelt et al., 1989; Semple and Steel, 2003). For binary haplotype input sequences

H, let B(H) denote the Buneman graph on H. Then every minimum imperfect phylogeny T*(H) is a

subgraph of B(H).

Proof of Proposition 5.3. Let H¼fhi, ehhign
i¼ 1 be a set of n pairs of haplotype sequences of length m.

Suppose T*(H) is a minimum GMST on the hypercube of dimension 2m with terminal groups

Ri¼fhi, ehhigð1�i�n). By definition, T*(H) must contain at least one terminal ti from each terminal group

Ri¼fhi
ehhi, ehhihig. It follows that T*(H) is a minimum Steiner tree on terminal set ftign

i¼ 1. By Theorem 5.4,

T*(H) is a subgraph of the Buneman graph B(ftign
i¼ 1). Since ti 2 fhi

ehhi, ehhihig, it follows that T*(H) is a

subgraph of the Buneman graph B(fhi
ehhi, ehhihign

i¼ 1)¼B(H). &

Using this proposition, our problem can be reduced to constructing the Buneman graph on input H and

solving the problem on underlying graph B(H).

5.2. Integer linear programming formulation

One approach for solving Steiner tree problems is to use integer linear programming (ILP) methods. We

use the multicommodity flow formulation for the GMST problem, in which one unit of flow is sent from the

root vertex to every group. For a subgraph S of a graph G with edge set E, associate a vector xS 2 RE, where

edge variable xe
S takes value 1 if e appears in S and 0 otherwise. Each edge (v, w) 2 E has two binary
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variables f i
v, w and sv,w: f i

v, w represents the amount of flow along edge (v, w) whose destination is group Gi

and variables sv,w are binary selection variables denoting the presence or absence of edge (v, w) in the group

Steiner tree. The ILP is:

min
X

v, w2V

dv, wsv, w (3)

subject to
X
w2V

f i
v, w¼

X
w2V

f i
w, v for all v 2 Vn( [i Ri) (4)

X
v2V

X
t2Ri

f i
v, t¼ 1,

X
v2V

X
t2Ri

f i
t, v¼ 0,

X
v2V

f i
r, v¼ 1 8 groups Ri (5)

0 � f i
v, w � sv, w for all t 2 T , sv, w 2 f0, 1g for all e 2 E: (6)

Constraints (4) impose flow conservation on all vertices not belonging to any group. Constraints (5)

impose the inflow/outflow constraints on groups Ri. Finally, Constraints (6) impose the condition that there

is positive flow on an edge only if the edge is selected. This ILP solves the DIP problem to optimality.

By Proposition 5.3, it is sufficient to solve this ILP on the Buneman graph B(H). The method of

preprocessing using the Buneman graph and solving the resulting integer linear program has proved

extremely efficient in practice, allowing the possibility of solving larger and more difficult datasets to

optimality.

6. SIMULATION RESULTS

To mimic what was done in previous experimental studies (Mark Welch and Meselson, 2000; Schön and

Martens, 2003), we considered only a single locus, where a locus is a collection of sites. No recombination

was considered in our simulations. We implemented a forward simulator for a single locus in a diploid

population of constant size N undergoing discrete-time random mating with non-overlapping generations.

Given N diploid parents at generation t� 1, individuals at generation t were obtained as follows: With

probability 1� ps, one parent was randomly chosen with replacement, and it produced a progeny via self-

cloning. With probability ps, a pair of parents was randomly chosen with replacement, and they produced a

progeny via meiosis and mating. When producing a progeny, either by self-cloning or by sexual repro-

duction, new mutations were introduced according to a specified rate. This procedure was repeated until N

progenies were produced for generation t. With probability g, a gene-conversion event started between a

pair of consecutive sites, and the tract length was assumed to be geometrically distributed with mean l (in

gene-conversion, a new sequence is formed from a prefix of one sequence, followed by an internal segment

of a second sequence, followed by a suffix of the first sequence). No crossovers were considered in our

simulations.

Forward simulations are computationally intensive, so we used N¼ 1000 to obtain simulations in a

reasonable time. We started each simulation at generation 0 with N identical diploid individuals, and then

ran the simulation for t¼ 4000 generations with ps> 0, followed by tA generations of asexual phase (i.e.,

with ps¼ 0). Note that the average number of sexual reproductions in the history of the entire popula-

tion is tpsN. We took n diploid samples at the end of each simulation. We performed the following

simulations:

S1: Infinite-sites mutation model with the mutation rate fixed at 5 · 10�3:

(i) In the first simulation, we set g¼ 0, used varying values of n, tA, and ps, and performed 500

simulations for each parameter setting.

(ii) In the second simulation, we set ps¼ 0, gene-conversion rate g> 0, and considered a locus

consisting of 25000 sites.

S2: Finite-sites mutation model with homoplasy, using 25000 sites and mutation rate u per locus; the per-

site mutation rate u/25000. We fixed n¼ 40 and used varying values of u, tA, and ps. We performed 50

simulations for each parameter setting.

Infinite-sites case (S1): Under this ideal toy model with no recombination or homoplasy, if the input

data set does not admit a DPP solution, then it would indicate that sexual reproduction has played a role in
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the evolutionary history. To assess our chance of detecting signatures of past sexual reproduction, we

examined how often DPP solutions exist even if some amount of sexual reproduction actually took place in

the evolutionary history of the population.

(i) The results of the first simulation are summarized in Table 2. These results suggest that infrequent

sexual reproduction may be difficult to detect and that the signature of past sexual reproduction may

decay rather quickly with time. However, note that the chance of detecting signatures of past sexual

reproduction increases with the sample size n. Likewise, the chance increases with the number of

segregating sites in the sample (results not shown).

(ii) The results of the second simulation are summarized in Table 3. These results indicate that the

probability of the existence of a DPP solution decreases with increasing mean conversion tract length

l and that even a moderate amount (i.e., comparable to the mutation rate) of gene-conversion can

frequently lead to samples admitting no DPP solutions.

Instead of looking at one or a few genes at a time, as done in the past (Fontaneto et al., 2007; Mark

Welch and Meselson, 2000; Schön and Martens, 2003), analyzing larger fractions of diploid genomes

should increase the chance of detecting signatures of past sexual reproduction.

Finite-sites case with homoplasy (S2): To test the performance of the ILP described in Section 5.2, we

analyzed data from the above-mentioned finite-sites simulation with homoplasy. We report the results

obtained from solver CPLEX 12, but have also used the GNU Linear Programming Kit in order to release a

free version of our software. We performed extensive testing to analyze the scaling behavior of our

algorithms to larger number of sites and samples. While CPLEX is significantly faster for larger instances,

GLPK is fast enough to illustrate the practicality of our algorithms on data sets of sizes of current biological

interest. For each simulation instance, we used the ILP to find the minimum DIP and then calculated the

imperfection q (see Definition 5.2) of the resulting diploid genealogy. This number corresponds to the

minimum number of back or recurrent mutations needed in addition to the number of mutations Z that

would be present if the data admitted a DPP solution. As Table 4 shows, for each setting of the mutation

rate u, increasing the probability ps of sexual reproduction or decreasing the number of generations in the

asexual phase tends to increase the mean ratio q
g. This suggests that, for a given mutation rate, the amount of

detected homoplasy may provide some information about past sexual reproduction. For most of the sim-

ulations, the solver CPLEX solved the resulting ILP in fractions of a second, with the largest instance

taking 1.3 seconds.

Table 2. Proportion of Data Sets Admitting DPP Solutions

Asexual phase tA

n ps 0 100 500 1000 2000

10 1 · 10�5 0.98 0.99 0.99 1.00 1.00

25 1 · 10�5 0.96 0.99 0.99 0.99 1.00

50 1 · 10�5 0.95 0.99 0.99 0.99 1.00

75 1 · 10�5 0.94 0.98 0.99 0.99 1.00

10 1 · 10�4 0.79 0.86 0.94 0.96 1.00

25 1 · 10�4 0.67 0.79 0.93 0.96 1.00

50 1 · 10�4 0.60 0.77 0.92 0.95 1.00

75 1 · 10�4 0.56 0.75 0.92 0.95 1.00

10 1 · 10�3 0.20 0.34 0.65 0.83 0.95

25 1 · 10�3 0.08 0.20 0.57 0.80 0.95

50 1 · 10�3 0.03 0.15 0.52 0.79 0.95

75 1 · 10�3 0.01 0.14 0.50 0.78 0.95

10 1 · 10�2 0.01 0.05 0.43 0.71 0.95

25 1 · 10�2 0.00 0.01 0.29 0.65 0.94

50 1 · 10�2 0.00 0.00 0.25 0.63 0.93

75 1 · 10�2 0.00 0.00 0.24 0.62 0.93

Simulations performed a sexual phase (i.e., ps> 0) of t generations followed by an asexual phase (i.e.,

ps¼ 0) of tA generations, with g¼ 0 throughout.
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7. CONCLUSION

In this article, we considered a new problem in phylogenetics. Reconstructing the genealogy of diploid

individuals is not only an interesting problem, but also has important practical applications. We believe that

such a genealogical approach offers much more than can existing tests based on counting sequence

differences (Mark Welch and Meselson, 2000; Schön and Martens, 2003) or considering a single haplotype

per individual (Frumkin et al., 2005). To gain intuition on this new problem, we have explored algorithmic

aspects of reconstructing diploid genealogies. It remains an important open problem to develop a sound

Table 3. Simulations Performed with Asexual Reproduction with Gene-Conversion,

Under a Finite-Sites Recombination Model with 25000 Sites

Mean tract length l

n g 100 500 1000 1500

10 2 · 10�9 0.99 0.95 0.93 0.91

25 2 · 10�9 0.99 0.93 0.89 0.86

50 2 · 10�9 0.98 0.92 0.88 0.83

75 2 · 10�9 0.97 0.91 0.86 0.81

10 2 · 10�8 0.93 0.69 0.58 0.47

25 2 · 10�8 0.87 0.58 0.40 0.30

50 2 · 10�8 0.84 0.49 0.32 0.21

75 2 · 10�8 0.81 0.43 0.28 0.18

10 2 · 10�7 0.40 0.07 0.02 0.01

25 2 · 10�7 0.23 0.00 0.00 0.00

50 2 · 10�7 0.16 0.00 0.00 0.00

75 2 · 10�7 0.11 0.00 0.00 0.00

10 2 · 10�6 0.01 0.00 0.00 0.00

25 2 · 10�6 0.00 0.00 0.00 0.00

50 2 · 10�6 0.00 0.00 0.00 0.00

75 2 · 10�6 0.00 0.00 0.00 0.00

We used N¼ 1000, t¼ 4000, and u¼ 5 · 10�3 per locus.

Table 4. Average Ratio q/Z of the Amount of Homoplasy to the Total Number

of Mutating Sites in the Finite-Sites Simulation Study S2, with n¼ 40 and 25000 Sites

Asexual phase tA

u ps 100 500 1000 2000

1 · 10�3 1 · 10�5 0.159 0.134 0.126 0.122

1 · 10�3 1 · 10�4 0.212 0.181 0.096 0.091

1 · 10�3 1 · 10�3 0.265 0.261 0.247 0.213

1 · 10�3 1 · 10�2 0.559 0.290 0.242 0.112

2 · 10�3 1 · 10�5 0.162 0.157 0.159 0.129

2 · 10�3 1 · 10�4 0.179 0.169 0.132 0.124

2 · 10�3 1 · 10�3 0.445 0.254 0.241 0.161

2 · 10�3 1 · 10�2 0.469 0.241 0.229 0.165

3 · 10�3 1 · 10�5 0.098 0.092 0.099 0.091

3 · 10�3 1 · 10�4 0.115 0.105 0.119 0.069

3 · 10�3 1 · 10�3 0.344 0.209 0.139 0.109

3 · 10�3 1 · 10�2 0.496 0.231 0.158 0.134

4 · 10�3 1 · 10�5 0.074 0.119 0.087 0.083

4 · 10�3 1 · 10�4 0.147 0.136 0.109 0.098

4 · 10�3 1 · 10�3 0.301 0209 0.138 0.097

4 · 10�3 1 · 10�2 0.440 0.206 0.183 0.136

n, number of diploid individuals sampled; ps, probability of sexual reproduction; u, per-locus mutation rate.
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statistical framework for studying the evolutionary history of asexual diploids, allowing for occasional

sexual reproduction, recombination, and hybridization. Explicitly modeling the genealogy of asexual

diploids will help to address a number of important questions in evolutionary biology: Could it be that

sexual reproduction has actually occurred in the history of reputed ancient asexuals? If so, how big a role

has sexual reproduction played in their long-term evolutionary success? If not, when was sexuality lost and

how many independent times? For those species that are mainly asexual but occasionally reproduce

sexually, how can we estimate the frequency of sexual reproduction? Can we distinguish the effects of

mitotic recombination from that of past sexual reproduction? How does natural selection act on asexual

diploids? The work described in this article is a modest step toward addressing such questions. If a DPP for

two-state characters exists, we have shown that its root is uniquely determined and that there exists a unique

minimal DPP. These results seem to be useful properties likely to have concrete applications in ancestral

inference. Although we have focused on the single-locus case in this article, the algorithms developed here

can easily be generalized to handle multiple loci, with unspecified relative phasing between the haplotypes

at different loci. Depending on the distribution of variation within a locus, there could be much more power

(to detect deviations from DPP) if fewer sites in many unlinked loci were surveyed. Identification of the

optimal strategy to detect no DPP under various parameterizations is of practical importance, and the

approach we have taken here can easily be extended to address this power and design issue.

As mentioned in the introduction, no significantly high level of sequence divergence was observed in the

purportedly ancient asexual organism darwinulid ostrocods. It remains an open question whether this finding

for ostrocods can be attributed to gene-conversion. It would be interesting to extend the work described in this

article to develop a method of reconstructing parsimonious diploid genealogies that explicitly incorporate

sexual reproduction and gene-conversion. As a first step, it will be interesting to investigate whether there

exists an efficient algorithm for reconstructing diploid genealogies with constrained patterns of sexual re-

production and recombination, similar to the recent work on the so-called galled-trees (Gusfield, 2005;

Gusfield et al., 2004; Huynh et al., 2005; Nakhleh et al., 2004). Although we have focused on DPP for two-

state characters in this article, generalizing the work to handle multi-state characters and polyploidy seems

possible. (For all fixed number of states, polynomial-time algorithms exist for the haploid perfect phylogeny

problem [Agarwala and Fernandez-Baca, 1994; Kannan and Warnow, 1997].) These results may have in-

teresting implications for phylogenetics and ancestral inference involving asexual organisms.
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