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Separating Significant Matches from Spurious Matches

in DNA Sequences

HUGO DEVILLERS1,2 and SOPHIE SCHBATH1

ABSTRACT

Word matches are widely used to compare genomic sequences. Complete genome alignment
methods often rely on the use of matches as anchors for building their alignments, and
various alignment-free approaches that characterize similarities between large sequences
are based on word matches. Among matches that are retrieved from the comparison of two
genomic sequences, a part of them may correspond to spurious matches (SMs), which are
matches obtained by chance rather than by homologous relationships. The number of SMs
depends on the minimal match length (‘) that has to be set in the algorithm used to retrieve
them. Indeed, if ‘ is too small, a lot of matches are recovered but most of them are SMs.
Conversely, if ‘ is too large, fewer matches are retrieved but many smaller significant
matches are certainly ignored. To date, the choice of ‘ mostly depends on empirical
threshold values rather than robust statistical methods. To overcome this problem, we
propose a statistical approach based on the use of a mixture model of geometric distribu-
tions to characterize the distribution of the length of matches obtained from the comparison
of two genomic sequences.
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1. INTRODUCTION

For a long time, DNA sequence comparisons essentially relied on local or global alignments (Batzo-

glou, 2005). However, faced with the overwhelming number of completely sequenced genomes, the

development of new methods able to investigate long sequences (several Mb) has exploded (Field et al.,

2006; Treangen and Messeguer, 2006). Indeed, complete alignment of entire genomes is impossible with

classical dynamic programming approaches such as the original Needleman-Wunsch algorithm (Needleman

and Wunsch, 1970). This is mainly due to computation time and space limitation (Miller, 2001; Ureta-Vidal

et al., 2003) but also because most of the time such long sequences cannot be considered as collinear (Mantaci

et al., 2008; Forêt et al., 2009).

There are two different approaches to compare long DNA sequences such as complete genomes. The first

approach is the calculation of a complete alignment based on the principle of anchor alignment (Delcher

et al., 1999; Devillers et al., 2010, 2011). Briefly, it is derived into two steps: (1) all the extremely
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conserved regions between the compared sequences are retrieved; and (2) these regions are sorted, and a

part of them are selected to anchor sequences together. Anchored regions form the backbone that may

correspond to the common ancestral sequence of the compared genomes; the rest are considered as specific

regions (Chiapello et al., 2005). The second approach is more global. It consists in computing a score

evaluating either a distance or the similarities between the compared sequences. These approaches are

called ‘‘alignment-free methods’’ and are based on various theoretical foundations (Vinga and Almeida,

2003).

The critical step in the two above approaches is the detection of highly conserved regions between the

compared genomes. There are two ways to retrieve these regions. The first one consists in performing local

alignments, and the second one consists in identifying word matches (WMs). WMs correspond to exactly

conserved sub-sequences shared by all the compared sequences. While local alignments have been in-

tensively studied, few efforts have been provided regarding the use of WMs in comparative genomics.

Basically, there are two approaches to using WMs in comparative genomics. The first approach is to

retrieve all the matches of a given length, the k-word matches (Forêt et al., 2009), where k is the length of

the matches. k-WMs are essentially used in alignment-free methods such as for the D2 statistic (Forêt et al.,

2009). The second approach consists in retrieving the maximal exact matches (MEMs), which are WMs

that cannot be extended either from their left nor from their right. MEMs are widely used as anchor points

in complete genome alignment (Höhl et al., 2002) as well as in alignment-free methods (Deloger et al.,

2009). It is noteworthy that, in comparative genomics, most of the studies that use WMs are based on the

detection of MEMs rather than k-words. Indeed, it has been shown that k-word approaches often suffer

from serious shortcomings to treat long genomic sequences (Reinert et al., 2009). However, a few recent

studies have proposed k-word methods dedicated to the comparison of complete genomes (Guyon et al.,

2009; Sims et al., 2009).

Computation of k-WMs and MEMs has been well studied (Lippert et al., 2005; Ohlebusch and Kurtz,

2008), and various efficient algorithms to retrieve them are available (Delcher et al., 2002; Khan et al.,

2009). They only require one essential parameter that is the minimal length (‘) of the matches to retrieve.

For the k-WM approaches, ‘ directly corresponds to k, and for the methods using MEMs, ‘ is the length of

the shortest MEMs retrieved.

Selecting a suitable value for ‘ is a challenging task. Indeed, when retrieving WMs, two kinds of matches

are found: (1) the significant matches that are related to the homologous relationship of the compared

sequences; and (2) the spurious matches that are obtained only by chance. The shorter the retrieved WMs,

the higher the number of spurious matches. Thus, the challenge is that ‘ has to be high enough to avoid

spurious matches (Guyon and Guénoche, 2008) but not too high to discard significant matches. Figure 1

exemplifies this problem of providing the number and the type of the MEMs retrieved between two short

sequences for different values of ‘.
Until now, approaches aiming at choosing a reliable value for ‘ mostly relied on empirical analyses such

as in Chiapello et al., (2005, 2008) and Wen et al., (2005). There are a few studies that propose statistical

methods to solve this issue. For example, Reinert and Waterman (2006), inspired by the pioneering work of

Karlin and Ost (1985), used a mixed Poisson approximation to analyze the length of the longest match in

random sequences. They showed that, with their model, the probability for a spurious match to be longer

than 22 nucleotides was very low. Guyon and Guénoche (2008) used a Poisson approximation to evaluate

the expected number of MUMs (MEMs that are observed only once in the compared genomes) between

FIG. 1. Retrieving MEMs between

two DNA sequences: impact of the

choice of the minimal length ‘. (A) The

compared sequences have five point

mutations (bold gray) yielding to four

significant matches (black boxes). (B)

Retrieved MEMs when ‘ = 3; all the

significant matches are found but with

28 spurious matches (gray boxes). (C)

Retrieved MEMs when ‘ = 6; no spu-

rious match is retrieved, but a signifi-

cant match is discarded.
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random DNA sequences. They showed that the probability for a MUM to be longer than 22 nucleotides

between two random sequences of about 2 Mb was almost null. By using a Bernoulli model and a Monte

Carlo method, Lippert et al. (2005) showed that a threshold of 35 nucleotides was reliable to avoid spurious

matches. However, most of these studies only investigated random sequences and did not test whether or

not their thresholds were reliable on real DNA sequences. In addition, only a few of them consider the

characteristics of the compared sequences such as their length, their nucleotide composition, or their

relative divergence, although intuitively, one expects that the optimal value for ‘ should depend on these

characteristics.

In this context, we developed a statistical approach based on the use of a mixture model of geometric

distributions to characterize the distribution of the lengths of MEMs retrieved when comparing two ge-

nomes. In this article, after a brief presentation of the method, we show how our model can be used to find

an optimal value for ‘ (‘opt). The strengths and weaknesses of our method are then discussed through

examples drawn from simulated and real genomic sequences.

2. METHOD

2.1. MEM lengths and geometric distribution

When comparing sequences, two kinds of MEMs are retrieved: the significant and the spurious MEMs.

In this subsection, we show how it is possible to consider that the lengths of these two types of MEMs

present a geometric distribution. Briefly, a geometric distribution can be defined as follows. Let’s consider

a sequential experiment in which independent Bernoulli trials with a probability of success p are repeated.

We define the random variable X that corresponds to the number of repeats before the first success of a

Bernoulli trial. The probability that X = k, i.e., k Bernoulli trials that fail followed by one success, is

given by:

Pr(X¼ k)¼ (1� p)kp‚ (1)

for k 2 f0‚ 1‚ 2‚ . . .g. These probabilities define the geometric distribution, and X has a geometric distri-

bution with parameter p.

2.1.1. Significant MEMs. Significant MEMs correspond to the MEMs obtained from the homolo-

gous relationship of the compared sequences. If we consider two aligned homologous sequences, the length

of a MEM is given by the number of identical nucleotides between two point-mutations (Fig. 1A). Let pmut

be the probability of a point-mutation. Here, we assume that point-mutations are independent and iden-

tically distributed (i.i.d.) in the sequences. We define the random variable Lsign as the length of significant

MEMs; it has a geometric distribution with parameter pmut. From equation (1), the probability that a

significant MEM has a length k is given by:

Pr(Lsign¼ ‘)¼ (1� pmut)
‘pmut: (2)

Literally, a MEM of length ‘ corresponds to ‘ failures (probability: (1 –pmut)
‘) followed by one success

(probability: pmut).

2.1.2. Spurious MEMs. Spurious MEMs randomly occur between the compared sequences. Let us

consider random positions in the genomes. The length of a spurious MEM starting at these positions is

given by the number of nucleotides that match before the first mismatch. Let pmis be the probability of a

mismatch between random positions in the compared sequences, and let the random variable Lspur be

defined as the length of spurious MEMs; it has a geometric distribution with parameter pmis. From equation

(1), the probability that a spurious MEM has a length ‘ is given by:

Pr(Lspur¼ ‘)¼ (1� pmis)
‘pmis: (3)

2.2. Mixture model

To model the length L of the MEMs retrieved between two genomic sequences, we propose the following

K-component geometric mixture distribution:
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Pr(L¼ y)¼
XK

j¼ 1

pjf (y; pj)‚ (4)

where

f (y; pj)¼ (1� pj)
ypj‚

and C¼ (p1‚ � � � ‚ pK� 1‚ p1‚ � � � ‚ pK )T , the vector containing all the unknown parameters in the mixture

model. Here, pj denotes the mixing proportion of the jth component of the model such that
PK

j¼ 1 pj¼ 1 and

pj is the parameter of the jth component. The number of components is at least equal to two (K = 2), i.e.,

one component for the significant MEMs, equation (2), and one for the spurious MEMs, equation (3). In

that case, C = (pmut, pmut, pmis). It is also possible to have K > 2, for example, if it is necessary to consider

several different point-mutation probabilities simultaneously.

2.3. EM algorithm

An Expectation-Maximization (EM) algorithm (Dempster et al., 1977) was used to estimate the pa-

rameters C of the mixture model. EM algorithms are iterative optimization methods that estimate unknown

parameters in statistical models. A comprehensive and detailed presentation of EM algorithms is available

in Mclachlan and Krishnan (1997). Briefly, let y1‚ � � � ‚ yn be the observed data, i.e., the lengths of all the

MEMs retrieved between two sequences. The EM algorithm we used consists in applying the following

procedure:

1. Initialization. The parameter values C(0)¼ (p(0)
1 ‚ � � � ‚ p(0)

K� 1‚ p
(0)
1 ‚ � � � ‚ p

(0)
K )T are randomly initialized.

2. Expectation Step. The E-step, on the (t)th iteration, only requires the computation of the a posteriori

probability c(t)
ij , which is the probability that the observation y i belongs to the jth component of the

mixture model. Here, c(t)
ij is computed as follows:

c(t)
ij ¼

p(t� 1)
j f

�
yi; p

(t� 1)
j

�

PK
k¼ 1 p(t� 1)

k f
�

yi; p
(t� 1)
k

� : (5)

3. Maximization Step. The M-step, on the (t)th iteration, consists in identifying the values of C that

maximize the Q-function:

Q(C‚C(t))¼
Xn

i¼ 1

XK

j¼ 1

c(t)
ij log (pjf (yi; pj))‚

knowing the value of c(t)
ij computed in the E-step. In the case of a finite geometric mixture model, the

maximization yields:

p(t)
j ¼

1

n

Xn

i¼ 1

c(t)
ij ‚ (6)

and

p
(t)
j ¼

Pn
i¼ 1 c(t)

ijPn
i¼ 1 c(t)

ij yi

: (7)

4. Iterations. Steps 2 and 3 are iterated until convergence to a stationary value of the Q-function.

2.4. Selecting the number of components K

The selection of the number of components in the mixture model approaches is a critical task that

requires a statistic evaluation (Mclachlan and Krishnan, 1997). This question has been intensively
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investigated, and different solutions based on various statistical approaches have been proposed (Leroux,

1992; Green, 1995; Solka et al., 1998). In the domain of mixture modeling, the Bayesian Information

Criterion (BIC) (Schwarz, 1978) is probably the most used statistical tool to face this task. It is defined

as follow:

BIC¼ � 2 � ln (L)þ k � ln (n)‚

where L is the likelihood of the model, k is the number of parameters to estimate, and n the number of

observed data (i.e., the total number of MEMs). The smaller the BIC, the better the model. Increasing the

number of components K simultaneously yields the decrease of � ln (L) and the increase of k. In this work,

the BIC criterion was used to choose the value of K.

2.5. Software tools and implementation

The EM algorithm was implemented in C and run under the statistical environment R (version 2.11.1).

The source code is available upon request. We used the MUMmer tool (version 3) (Kurtz et al., 2004) to

retrieve the MEMs. MUMmer is rooted on a suffix tree algorithm and is widely used to retrieve maximal

matches between sequences.

3. RESULTS

The mixture model presented in the previous section can be used to identify an optimal value for ‘ to

limit the number of spurious MEMs. Considering the lengths of the MEMs that are retrieved between a pair

of sequences, the EM algorithm estimates values for the parameters ( pi) for the K components of the

mixture model. Depending on these estimations, it is then possible to determine if a component describes

the length of spurious MEMs or the length of significant MEMs. Changing the minimal length (‘) of the

MEMs impacts the proportion of each type of MEMs. More especially, if ‘ is high enough, the proportion

of spurious MEMs will be low enough to be ignored, and hence, the component corresponding to them will

not be identified by our model. This latter value of ‘ could be used as a threshold to limit the amount of

spurious MEMs.

All the results presented in this section were obtained from 1000 repetitions of the EM algorithm and

selection of the estimation that led to the highest likelihood. First, controlled simulated sequences were

investigated to illustrate the use of our method, and second, real DNA sequences were studied to show its

practical interest.

3.1. Simulated random DNA sequences

3.1.1. Selecting an optimal value for ‘:‘opt. Let’s consider a pair of 2-Mb sequences with equal

proportion of each base (25%). The first sequence (S1) was randomly generated, and the second one (S2)

was obtained by applying substitutions on S1 with a rate of 0.01 substitution per site. Figure 2 displays the

results obtained when adjusting a two-component mixture model (K = 2) to compare S1 and S2.
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FIG. 2. Estimations obtained with

the EM algorithm with two compo-

nents (K = 2) for the comparison of

S1 and S2. (A) Number of MEMs

observed with respect to their length

(gray curve) and number of MEMs

expected according to the mixture

model (black curve) with ‘ = 10. (B)

Estimated values for the parameters

pj with respect to the minimal length

(‘) of MEMs.
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Figure 2A provides an observed versus fitted plot of MEM length distribution when the minimal length

of the retrieved MEMs is fixed at 10 nucleotides (‘ = 10). It clearly shows that the model fits the observed

data exactly. This means that, if all the MEMs with a minimal length of 10 nucleotides are considered, it is

possible to characterize the two distributions that correspond to significant MEMs and spurious MEMs.

Interestingly, the estimated p̂mut value is exactly equal to the substitution rate value chosen to obtain S2. The

parameter pmis, the probability that two nucleotides mismatch, is estimated by p̂mis¼ 0:749. This corre-

sponds to the probability of mismatch between random position from two sequences with equal proportion

of each base ( pmis = 0.75).

Figure 2B gives the estimated values of the geometric distribution parameters ( pj) with respect to the

minimal length (‘) of MEMs. The model had two components (K = 2), and thus two ( pj) values were

estimated. The black curve corresponds to the lowest estimated values. It does not vary with ‘ values, and it

is globally equal to 0.01. This is exactly the substitution rate chosen to obtain S2. Consequently, it is

possible to associate this curve with pmut (i.e., the component corresponding to significant MEMs). The

gray curve can be associated with pmis, the component of spurious MEMs. It displays a completely different

tendency. For ‘ of 10–15, it has steady values around 0.75; then it varies and rapidly falls to 0.01 for ‘ ‡ 19.

This means that for ‘ £ 15 the model is able to clearly detect the spurious MEM component, while for

‘ ‡ 19 the parameters of the two components are identical, p1 = p2 x pmut, providing us a threshold to

discriminate spurious MEMs. As a consequence, in this example, we considered ‘opt = 19 as threshold

value. Note that, for ‘ equal to 16, 17, and 18, spurious MEMs are still detected, but they are not enough to

accurately estimate the value of pmis, implying the observed fluctuations.

3.1.2. Impacts of sequence characteristics on ‘opt. Impacts of the characteristics of the compared

sequences on the value of ‘opt were investigated with simulated data. Three parameters were considered:

the length, the divergence (measured in substitutions per site), and the base composition (measured in

GC%). For each condition of length, divergence, and base composition, the mean of ‘opt was computed

over 50 trials. For each trial, the evaluation of ‘opt was performed by using the same approach than in

Figure 2B. The obtained results are summarized in Figure 3.

Figure 3A is a plot of the empirical mean of ‘opt values with respect to the divergence of the compared

sequences for three different lengths at 1–4 Mb. This figure clearly shows that the length and the relative

divergence of the compared sequences yield the selection of different ‘opt values. First, ‘opt decreases for

substitution rates ranged between 0 and 0.1, and then reached a globally steady state for higher values of

substitution rates. This means that, for very closely related sequences, the optimal ‘ value should be higher

than for more distant sequences. Moreover, the longer the compared sequences, the higher the ‘opt.

Figure 3B gives the variations of ‘opt with respect to the GC content of the compared sequences when

considering 1-Mb and 2-Mb sequences and with substitution rates set at 0.01 and 0.1. It clearly shows that

values of ‘opt are highly influenced by the GC content of the compared sequences. The higher the GC bias,

the higher the ‘opt.

Selection of ‘opt is influenced by the intrinsic characteristics of the compared sequences. The overall

variation observed in this analysis was 15–30 nucleotides.

In the next subsection, real DNA sequences were investigated to illustrate the applicability of our method

on real data.
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FIG. 3. Mean of ‘opt values and

confidence interval (95%), com-

puted over 50 trials, with respect to

the characteristics of compared se-

quences on simulated data. (A)

Impact of the length and the diver-

gence of the compared sequences.

(B) Impact of the base composition

(GC%).
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3.2. Analysis of real DNA sequences

3.2.1. Impact of the number of components K. The main difficulty when analyzing real DNA

sequences is to select a suitable number of components (K) for the mixture model. Indeed, for simulated

data, the substitution rate is fixed all along the sequences while real genomes are considerately more

heterogeneous, including more or less conserved regions that are sometimes rearranged (i.e., non collinear).

Consequently, considering more than one substitution rate is relevant to analyze real DNA sequences.

Moreover, variations of K can have an impact on the selection of ‘opt. This is exemplified in Figure 4.

Figure 4A provides the estimations of pmis, the parameter associated with spurious MEMs, for the com-

parison of the genomes of two strains of Staphylococcus aureus (MSSA476 and JH1) when considering

K = 2 (black curve) and K = 3 (gray curve). This figure clearly shows that the values of ‘opt for both models

are the same: ‘opt = 18. This is not the case in Figure 4B, which deals with two strains of Bacillus cereus

(ATCC 10987 and E33L). In this example, the two-component model yields ‘opt = 17, while the three-

component model yields ‘opt = 18. It is thus crucial to set K before the determination of ‘opt.

Intrinsically, the greater K, the higher the likelihood of the model. This is illustrated in Figure 5, which

compares the observed data with the predictions of the mixture model when K = 2 and K = 3 for the

comparison of two Staphylococcus aureus strains (MSSA476 and JH1). It shows that, for this example, the

model K = 3 is significantly better than for the model K = 2. On the other hand, increasing the number of

components also increases the complexity of the model (i.e., number of parameters to estimate). Thus, the

challenge is to find a trade-off between the precision of the model (its likelihood) and its complexity. To

face this task, the BIC information defined above was used.

3.2.2. Analysis of complete bacterial genomes. Comparison of complete bacterial genomes at the

nucleotide scale is very often limited to closely related genomes (Chiapello et al., 2005). This is why most

of the existing approaches deal with intra-species comparisons. In this context, 53 pairs of bacterial

genomes from the same species or from very close species were selected to be analyzed with our method.

These bacterial genomes are listed in Table 1.

Pairs of genomes were selected in order to have a representative range of lengths and divergence. To

evaluate the distance between each pair, we used the MUMi index that was especially designed to measure

distances between closely related complete genome sequences (Deloger et al., 2009). Briefly, MUMi

evaluates the ratio of cumulative length of maximal unique matches (MUMs) to the total genome length. It

varies between 0 and 1: the lower the MUMi, the closer the genomes. For each pair, three models were

considered: K = 2, K = 3, and K = 4. The best one, according to the BIC, was selected and used to evaluate

the value of ‘opt. All the results of this analysis are given in Table 1. The pairs of genomes are sorted

according to their divergence (MUMi).

The models with K = 2, K = 3, and K = 4 were selected 6, 30, and 17 times, respectively. A slight

relation between the selected model, and the divergence of the genomes is observed; more distant se-

quences seem to require fewer components than closer ones. Intuitively, this can be explained by the fact

that close genomes share more MEMs than distant ones, and thus more components are necessary to model

the distribution of their length.

The selected values of ‘opt are 17–23. More than 50% of the selected values of ‘opt are equal to 18, and

approximately 25% of the others are equal to 21. Note that, for 70% of these pairs of genomes, the value
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K = 2 FIG. 4. Impact of the number of

components (K) on the selection of

‘opt. Estimated pmis with respect to

the value of ‘ when K = 2 and

K = 3. (A) Comparison of two

Staphylococcus aureus strains

(MSSA476 and JH1): similar esti-

mations. (B) Comparison of two

Bacillus cereus strains (ATCC

10987 and E33L): dissimilar

estimations.
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of ‘opt for the best model (selected from BIC) was also found in at least one of the two other models

(Table 1). These predictions were confronted with the characteristics of the compared genomes. Figure 6

summarizes these analyses when considering the length and the GC content of the sequences. Interestingly,

the highest values of ‘opt (22 and 23 nucleotides) were obtained for genomes with high GC bias, and the

smallest value of ‘opt (17 nucleotides) was obtained for genomes with a low GC bias. Moreover, it is

noteworthy that in this dataset the length of the genomes is correlated with the GC content; small genomes

have a high GC bias, and long genomes have a low GC bias. Consequently, the relationship between ‘opt

and the length of the compared sequences is balanced by the GC bias. Lastly, no relation was identified

between the selection of ‘opt and the MUMi index. This study confirms that the relationship between ‘opt

and the characteristics of the genomes is complex and involves various factors.

4. DISCUSSION

The method presented in this article is is based on the principle that the distribution of the length of

spurious and significant MEMs between two sequences can be distinguished by using a mixture model

of geometric distributions. First, our model identifies the components that characterize the two types of

matches. Second, it allows us to establish a threshold for the MEM minimal length (‘) values to dis-

criminate between spurious and significant MEMs.

Our model was developed to analyze MEMs retrieved from two sequences. However, it is possible to

treat data obtained from more than two sequences. Indeed, the inputs of our model are only the lengths of

the retrieved MEMs, and thus, they can come from the comparison of two sequences or more. The only

limitation is when considering more than two sequences, the biological significance of the estimated

parameters is less intuitive, especially if the compared sequences are very distant.

In this study, two kinds of data were analyzed: simulated DNA sequences and real bacterial genomes.

Results obtained with simulated data were particularly interesting. The model was able to retrieve very

accurately the parameters of each component. We were also able to identify a relation between the optimal

value of ‘ (‘opt) and some characteristics of the sequences. Applications to real DNA sequence were also

successful. The applicability of the method is the same as for simulated data. The main difficulty remains in

the choice of a suitable number of components. We solve this problem by using the BIC. From the analysis

of 53 bacterial genomes, we confirmed that characteristics of the compared sequences impact on the

determination of ‘opt.

For sake of simplicity, in our model we assumed that point-mutations are i.i.d. in genomes. Although this

is true in simulated sequences, it is obviously not the case in most real DNA sequences. However, we

FIG. 5. Impact of the number of components (K)

on the model predictions. Comparison of two Sta-

phylococcus aureus strains (MSSA476 and JH1):

observed data versus fitted values when K = 2 and

K = 3.

0 50 100 150 200

0
1

2
3

4
5

8 DEVILLERS AND SCHBATH



Table 1. Analysis of 53 Intra-Species Bacterial Genomes

Species (strains) Length MUMi K ‘opt GC

Yersinia pestis (KIM/CO92) 4600755/4653728 0.017 4 17* 47.6

Yersinia pestis (91001/CO92) 4595065/4653728 0.023 4 18 47.6

Yersinia pestis (KIM/91001) 4600755/4595065 0.025 4 18 47.6

Staphylococcus aureus (Newman/USA300) 2878897/2872769 0.049 4 19 32.8

Staphylococcus aureus (Newman/COL) 2878897/2809422 0.050 4 19 32.9

Francisella tularensis (LVS/OSU18) 1895994/1895727 0.052 3 23 32.2

Francisella tularensis (LVS/FTA) 1895994/1890909 0.055 3 22 32.2

Escherichia coli (UT189/APEC_O1) 5065741/5082025 0.073 4 21 50.6

Streptococcus pyogenes (MGAS6180/MGAS10270) 1897573/1928252 0.102 4 20 38.4

Staphylococcus aureus (N315/MSSA476) 2814816/2799802 0.105 4 18* 32.8

Staphylococcus aureus (MSSA476/JH1) 2799802/2906507 0.107 4 19 32.9

Streptococcus pyogenes (SF370/MGAS10270) 1852441/1928252 0.138 3 20 38.5

Staphylococcus aureus (RF122/COL) 2742531/2809422 0.159 4 18* 32.8

Haemophilus influenzae (86-028NP /PittGG) 1913428/1887192 0.209 3 21* 38.1

Bacillus thuringiensis (97-27 / A1Hakam) 5237682/5257091 0.210 4 19 35.4

Haemophilus influenzae (86-028NP /PittEE) 1913428/1813033 0.211 3 21 38.1

Haemophilus influenzae (PittEE/ATCC51907) 1813033/1830138 0.216 3 21 38.1

Bacillus cereus/ B. thuringiensis (E33L/A1Hakam) 5300915/5257091 0.228 4 18* 35.4

Escherichia coli (K12/O157:H7) 4639675/5498450 0.248 3 18* 50.7

Shigella flexneri/ E. coli (301/O157:H7) 4607203/5498450 0.308 3 19 50.7

Campylobacter jejuni (NCTC11168/ATCCBAA) 1641481/1845106 0.321 3 21* 30.6

Campylobacter jejuni (ATCCBAA/NCTC11828) 1845106/1628115 0.331 3 21* 30.6

Shigella dysenteriae/E. coli (Sd97/UT189) 4369232/5065741 0.371 3 18* 50.9

Bacillus cereus (ATCC10987/E33L) 5224283/5300915 0.394 4 18* 35.5

Prochlorococcus marinus (AS9601/MIT9301) 1669886/1641879 0.409 3 18* 31.3

Pseudomonas aeruginosa (UCBPP-PA14/PA7) 6537648/6588339 0.415 4 21* 66.4

Salmonella enterica (ATCC9150/RSK2980) 4585229/4600800 0.478 3 18* 51.8

Salmonella enterica (RSK2980/ATCCBAA-1250) 4600800/4858887 0.490 3 18* 51.7

Salmonella enterica (CT18/RSK2980) 4809037/4600800 0.496 3 21* 51.7

Prochlorococcus marinus (AS9601/MIT9215) 1669886/1738790 0.528 3 18* 31.2

Bacillus cereus/ B. anthracis (ATCC14579/Ames a.) 5411809/5227419 0.539 3 18* 35.3

Prochlorococcus marinus (MIT9301/MIT9215) 1641879/1738790 0.543 3 18* 31.2

Bacillus cereus (ATCC14579/ATCC10987) 5411809/5224283 0.555 3 18* 35.4

Prochlorococcus marinus (MIT9312/AS9601) 1709204/1669886 0.598 3 18* 31.3

Prochlorococcus marinus (MIT9312/MIT9215) 1709204/1738790 0.637 3 18* 31.2

Bacillus cereus (ATCC14579/KBAB4) 5411809/5262775 0.644 3 18* 35.4

Bacillus cereus (ATCC_10987/KBAB4) 5224283/5262775 0.647 3 18 35.6

Pseudomonas syringae (1448A/B728a) 5928787/6093698 0.666 3 18* 58.6

Rhodopseudomonas palustris (HaA2/BisB5) 5331656/4892717 0.716 3 21* 65.4

Lactococcus lactis (IL1403/MG1363) 2365589/2529478 0.723 4 18* 35.5

Lactococcus lactis (IL1403/SK11) 2365589/2438589 0.738 3 18* 35.6

Pseudomonas syringae (DC3000/1448A) 6397126/5928787 0.740 4 18* 58.2

Pseudomonas syringae (DC3000/B728a) 6397126/6093698 0.753 4 18* 58.8

Rhodopseudomonas palustris (BisB18/BisA53) 5513844/5505494 0.815 3 21* 64.7

Rhodopseudomonas palustris (ATCCBAA-98/BisB5) 5459213/4892717 0.817 3 21* 64.9

Rhodopseudomonas palustris (BisB5/BisA53) 4892717/5505494 0.851 3 21* 64.6

Wolbachia pipientis (wMel/TRS) 1267782/1080084 0.853 2 18* 34.7

Buchnero aphidicola (Sg/APS) 641454/640681 0.885 2 19 25.8

Prochlorococcus marinus (AS9601/MIT9515) 1669886/1704176 0.920 3 19* 31.1

Buchmera aphidicola (Sg/Cc) 641454/416380 0.932 2 22* 22.7

Candidatus Blochmannia (floridanus/BPEN) 705557/791654 0.955 2 18 28.5

Prochlorococcus marinus (CCMP1375/NATL2A) 1751080/1842890 0.982 2 18* 35.8

Prochlorococcus marinus (CCMP1378/NATL2A) 1657990/1842899 0.982 2 19 33.0

*Selected value of ‘opt that was retrieved a least once with an other value of K.

For each pair, the following is provided: the species name, the strain names and their corresponding lengths (nuc.), a measurement of

their relative divergence with the MUMi index, the number of components K selected according to the BIC value, the selected value of

‘opt, and the average GC content (%).
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showed (Fig. 5) that our model is able to capture the overall distribution of MEM length between two

genomes, despite this assumption.

The lack of effect of the MUMi index on the values of ‘opt can have different explanations. First,

measuring the distances between complete genomes is not as simple as for short DNA sequences. Most of

the existing approaches deal with the evaluation of the cumulative length of common words between

sequences such as the D2 statistic (Forêt et al., 2009) or the MUMi index (Deloger et al., 2009) or, with a

more flexible definition, the determination of the conserved subsequences between genomes, called the

‘‘backbone’’ (Chiapello et al., 2005). This means that distant genomes are not sequences that share

homologous regions with a low percentage of identity, but rather they are sequences that share few highly

conserved subsequences. This can explain why, when considering very distant genomes (Table 1), no

impact was observed on the values of ‘opt, while when increasing the substitution rate in simulated data, ‘opt

significantly decreases. Another possible explanation comes from the following observation: the greater the

distance between the compared genomes, the smaller the conserved sequences and thus, the fewer the

MEMs. Consequently, when considering very distant genomes, the number of significant MEMs may not

be sufficient to accurately estimate the parameter pmut.

For about 75% of the real sequences, estimated ‘opt values were 18–21. These results are very close to the

empirical values used in former studies such as in the complete bacterial genome alignment procedure

proposed in Chiapello et al., (2005) (‘opt = 20) or the definition of the MUMi index in Deloger et al., (2009)

(‘opt = 19). Our results are also comparable to those obtained in some preliminary statistical studies such as

in Guyon and Guénoche (2008) (‘opt = 22). However, the advantage of our approach is to provide a value

of ‘opt adapted to each pair of genomes studied.

Note that our model provides directly estimations of the probabilities that MEMs belong to spurious or

significant components, according to their length (see equation 5). Consequently, in addition to the de-

termination of the threshold (‘opt), these probabilities can be directly used to weigh MEMs in comparison

purposes (e.g., to improve anchor selection in complete genome alignments).

The method presented here can be of interest in several domains. It helps to choose suitable anchor

lengths in anchor-based alignments of complete genomes and to calibrate statistical tools to compare large

sequences. Other secondary applications can be considered. For example, indexing methods are based on

the use of word matches. The size and the precision of an index is directly linked to the length of WMs:

increasing the length of WMs increases the precision of the index, but it also increases the index size. Our

method could probably provide a good trade-off to balance between size and precision of an index.

Beyond the determination of an optimal value of MEM minimal length, our method is also able to

estimate very accurately one or several substitution rates between two sequences. There only exist a few

recent methods able to do such estimations on genomic sequences, but to our knowledge, none of them are

able to identify several substitution rates for the same pair of genomes. In addition, mixture proportions of

our model can provide fruitful information concerning the structure of the compared sequences. Thus, for

example, by considering the lengths of the sequences and the mixing proportion of spurious matches (pmis)

over the mixing proportion of significant matches (pmut), it is possible to estimate the proportion of

0.3 0.4 0.5 0.6
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20

21
22

23

FIG. 6. Selected values of ‘opt for

the 53 pairs of bacterial genomes

with respect to the GC content (ab-

scissa) and the length of the genomes

(point size and grey scale).
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sequences that are specific in each compared genome, providing an estimation of the backbone coverage

(Chiapello et al., 2005). Moreover, if several substitution rates are considered (K > 2), mixing proportions

(pj) allow us to estimate the different proportions of sequences that are governed by the different estimated

substitution rates (data not shown).

Lastly, in this study, we only considered exact matches because they are used over whelmingly in

comparative genomics. However, some recent developments use non-exact matches or spaced seeds (Choi

et al., 2004), that consist in allowing one or several mismatches. These kind of approaches also suffer

from a lack of expertise concerning the length of the seeds and the number of mismatches to consider.

Consequently, adapting our method to spaced seeds should provide benefits to the development of such

approaches.
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