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ABSTRACT

Next generation sequencing (NGS) technologies are now widely used in many biological
studies. In NGS, sequence reads are randomly sampled from the genome sequence of in-
terest. Most computational approaches for NGS data first map the reads to the genome and
then analyze the data based on the mapped reads. Since many organisms have unknown
genome sequences and many reads cannot be uniquely mapped to the genomes even if the
genome sequences are known, alternative analytical methods are needed for the study of
NGS data. Here we suggest using word patterns to analyze NGS data. Word pattern
counting (the study of the probabilistic distribution of the number of occurrences of word
patterns in one or multiple long sequences) has played an important role in molecular
sequence analysis. However, no studies are available on the distribution of the number of
occurrences of word patterns in NGS reads. In this article, we build probabilistic models for
the background sequence and the sampling process of the sequence reads from the genome.
Based on the models, we provide normal and compound Poisson approximations for the
number of occurrences of word patterns from the sequence reads, with bounds on the
approximation error. The main challenge is to consider the randomness in generating
the long background sequence, as well as in the sampling of the reads using NGS. We show
the accuracy of these approximations under a variety of conditions for different patterns
with various characteristics. Under realistic assumptions, the compound Poisson approxi-
mation seems to outperform the normal approximation in most situations. These approxi-
mate distributions can be used to evaluate the statistical significance of the occurrence of
patterns from NGS data. The theory and the computational algorithm for calculating the
approximate distributions are then used to analyze ChIP-Seq data using transcription factor
GABP. Software is available online (www-rcf.usc.edu/*fsun/Programs/NGS_motif_power/
NGS_motif_power.html). In addition, Supplementary Material can be found online
(www.liebertonline.com/cmb).
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1. INTRODUCTION

The study of the occurrences of word patterns in sequences has played an important role in

molecular sequence analysis. Here, we shall use word pattern of length k and k-tuple interchangeably;

often word patterns are also just referred to as words. For a given k, the frequencies of word patterns of

length k form a vector, referred to as sequence signature (Campbell et al., 1999). Sequence signatures of

genomic sequences of varying characteristics are usually different. For example, coding and non-coding

sequences usually have different signatures and thus sequence signatures can be useful features to dis-

tinguish coding from non-coding sequences (Uberbacher and Mural, 1991). Sequence signatures within

different parts of a genome tend to be similar, while they differ significantly between genomes (Karlin and

Mrázek, 1997, Nekrutenko and Li, 2000). Thus, sequence signatures have been used to study the evolu-

tionary relationship between different genomic sequences ( Jun et al., 2010, Karlin and Mrázek, 1997, Sims

et al., 2009, Wu et al., 2009), to study horizontal gene transfer (Dalevi et al., 2006, Dufraigne et al., 2005),

and to bin sequence reads from metagenomic studies so that reads in the same bin tend to have similar

sequence signatures (McHardy et al., 2006). The sequence signatures can also be employed to detect

enrichment for short words. For example, the upstream regions of co-regulated genes usually share

common transcription factor binding sites (TFBS) referred to as motifs, and thus motifs are usually

enriched within these sequences. Finding enriched word patterns within these sequences is a powerful tool

for the identification of TFBS (Pavesi et al., 2004).

Due to the many applications of sequence signatures, extensive studies have been carried out to study the

distribution of the number of occurrences of word patterns in one or multiple long sequences consisting of

independent identically distributed (i.i.d.) letters and sequences generated by both Markov and hidden

Markov models (HMM). Several excellent reviews (Reinert et al., 2000, 2005, Schbath, 2000, Schbath and

Robin, 2009) and a book (Robin et al., 2005) on this topic are available. The distribution of the number of

occurrences of a pattern can also be studied using the so-called ‘‘imbedded Markov chain’’ techniques

(Kleffe and Langbecker, 1990, Nuel, 2006, Shan and Zheng, 2009). However, the computation of p-values

using these techniques can be very time consuming and impractical for long sequences. We recently studied

the power of detecting enriched patterns when motifs are randomly distributed along the genome using

HMM (Zhai et al., 2010).

In all these studies, one or several long sequences are available and the word pattern occurrences along

these long sequences are studied. Rather than providing a few long sequences, recent developments in

sequencing technologies make it possible to sequence a large number of relatively short reads (e.g., 30–

80 bp for Illumina/Solexa and 300–500 bp for Roche 454) efficiently and economically. These new se-

quencing technologies have revolutionized current studies of many biological problems including locating

genomic regions of TFBS, histone modification, and chromatin structure using ChIP-Seq, resequencing of

known genomes for the identification of genetic polymorphisms, and sequencing of unknown genomes. For

the applications of these NGS technologies, see recent reviews (Maclean et al., 2009, Mardis, 2008a,b).

Although many computational methods have been developed to analyze NGS data, to our knowledge no

studies on the distribution of the number of occurrences of word patterns in the sequence reads generated

from NGS have been carried out. In this article, we fill this gap. The main challenge compared to word

counts in sequences is that, in NGS, two random processes are involved, namely not only the the ran-

domness in the background genome sequence but also the random sampling of the reads from the back-

ground sequence.

The study of the distribution of the numbers of occurrences of word patterns from NGS read data has

several important applications, in particular, when the complete genome sequences are not available. First,

such distributions are important for the comparison of genomes when NGS short reads are available for

each genome (Song et al., 2012). Second, they can be used to identify enriched or depleted patterns in

genomes whose complete genomes are not known. Such enriched or depleted patterns can be used to

characterize the genome sequences. Third, the null distributions of the numbers of occurrences of patterns

can be used to identify enriched patterns in ChIP-Seq experiments and such enriched patterns can be useful

for the identification of TFBS.

In this article, we not only study the distributions of the numbers of occurrences of word patterns from

NGS read data under a suitable null model, but we also address the issue of the power of the count statistics

against an alternative model which assumes that there are motifs present in the sequence. Our methodology

builds on Zhai et al. (2010), but differs from that article in the consideration of NGS data and the
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consideration of both strands of the genome sequences. In the study of word patterns for long sequences,

both strands are rarely considered except in Pape et al. (2008). For NGS, the consideration of both strands

are essential since the reads can come from both the forward strand and the reverse strand of the genome

sequences. We provide simpler approximate distribution for the number of occurrences of word patterns for

NGS data than the approximations given in Pape et al. (2008).

The article is organized as follows. In Section 2, we first present the probability models for the

background sequence and the sampling process of reads using NGS. Then the results for normal and

compound Poisson approximations for the number of occurrences of patterns in NGS reads are given.

As the approximations assume that both the length of the reads and the length of the background

sequence go to infinity, whereas in reality they are reasonably short, we also give bounds on the

approximation errors. We consider both single strand and double strand models. This section forms the

core theoretical results of the article. In Section 3, we first present simulation results to show the validity

of the theoretical results for both common and rare patterns, and then use the theoretical results to

analyze a ChIP-Seq data set from Valouev et al. (2008). It is surprising to see that, even in the control

data, some TFBS signals can be identified, indicating that some residue ChIP effects are present in the

control data. Using ChIP-Seq data, we are able to identify the consensus patterns of the motif of interest.

The article concludes with some discussion on the limitations of the approach and future research

directions. Many of the proofs are given in Supplementary Materials (available online at www

.liebertonline.com/cmb).

2. METHODS

2.1. Probabilistic models for the background sequence and sampling of sequence reads
using NGS

In NGS, a large number of M reads are randomly sampled from the genome. For studying the distribution

of the number of occurrences of patterns among the M reads, two random processes are involved. The first

randomness comes from the generation of the background genome sequence and the second randomness

comes from random sampling of the reads from the background sequence.

As in previous studies reviewed in Robin et al. (2005) and Schbath and Robin (2009), the background

sequence is modeled as a homogeneous ergodic Markov chain taking states in the set A = f0‚ 1‚ � � � ‚ L - 1g
with transition probability matrix T = (tll0)L · L. The Markov chain has a unique stationary distribution p0.

The results in this paper can also be extended to sequences generated by hidden Markov models without too

much difficulty.

Next, we model the sampling of reads along the genome sequence using NGS. As it was shown in Zhang

et al. (2008) that the homogeneous Lander-Waterman model (Lander and Waterman, 1988) for genomic

mapping does not model the read distributions along the genome well, we use a modified version of the

Lander-Waterman model to describe the distribution of reads along the genome. We assume that the

sampled reads have the same length of b bp. A total of M reads are independently sampled from the genome

of length n bp. Each read starts at position i with probability ki‚ 1pip�n, where kiq0‚
P�n

i = 1 ki = 1, with

�n = n - b + 1.

Let w = w1w2 � � �ww be any word pattern of length w with wj 2 A‚ j = 1‚ 2‚ � � � ‚ w. Then

P(w) = pw1

Qw - 1
i = 1 twiwi + 1

is the probability of w. Let N w(M‚ n‚ b) be the number of occurrences of w in these

M reads. To calculate the mean ofN w(M‚ n‚ b), note first that in each read of length b, the expected number

of occurrences of w is (b - w + 1)P(w). As there are M reads, we obtain that

E(N w(M‚ n‚ b)) = M(b - w + 1)P(w): (1)

We study the approximate distribution of N w(M‚ n‚ b) and the approximate joint distribution of

(N w(M‚ n‚ b)‚ w 2 S), where S indicates the set of word patterns. We consider both single strand and

double strand models. In the single strand model, we assume that the reads just come from one strand. In

the double strand model, the reads can come from either strand of the genome. We allow for the

occurrences to overlap. For example if the sequence is 50-CAATAATATAATAG-30 and the word is

ATA, then we count four occurrences in the single strand model. A clump of pattern w is a consecutive

region of the sequence with overlapping occurrences of w. For the example given above, there are three
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clumps of occurrences, one clump (ATATA) of size two and two clumps of size one each. Counting the

occurrences of ATA in the complementary sequence 50-CTATTATATTATTG-30 also, there are

4 + 1 = 5 occurrences of w in the double strand model. Note that we always count from the 50 end to the

30 end of the sequences.

2.2. Normal approximation for the number of occurrences of frequent patterns in randomly
sampled NGS reads

In this subsection, we present our results for calculating the covariance of N u(M‚ n‚ b) and N v(M‚ n‚ b)
under the models described in Subsection 2.1 for any two word patterns u and v. Proposition 2.1 presents a

formula to calculate E(N u(M‚ n‚ b)N v(M‚ n‚ b)). The covariance can then be derived using Equation (1).

While the covariance of word counts for a single sequence read can be found in Waterman (1995),

Proposition 12.1, the following Proposition 2.1 takes the randomness in the starting positions of the

sequence reads into account.

Proposition 2.1. Let O1O2 � � �On be the underlying sequence of length n. Let u and v be two word

patterns of length u and v, respectively, with u £ v. Assume that b ‡ u + v. Randomly choose M reads of

length b from a genome of length n base pairs according to the model in Subsection 2.1 and letN u(M‚ n‚ b)
and N v(M‚ n‚ b) be the numbers of occurrences of word patterns u and v in these reads, respectively. Then

E(N u(M‚ n‚ b)N v(M‚ n‚ b)) can be calculated by

M + M(M - 1)
Xn - b + 1

i = 1

k2
i

 !
Eb‚ 0(u‚ v) + M(M - 1)

Xn - b + 1

i = 1

ki

Xn - i - b + 1

g = 1

ki + g(Eb‚ g(u‚ v) + Eb‚ g(v‚ u))‚

where Eb‚ g(u‚ v) = E(Nu[1‚ b]Nv[g + 1‚ g + b]), and Nw[i, i + b - 1] the number of occurrences of word

pattern w in OiOi + 1 � � �Oi + b - 1.

Formulas for calculating Eb‚ g(u‚ v) are given in the supplementary materials, Proposition A.1; they are

based on a slight modification of the proof for Proposition 12.1. in Waterman (1995).

Proof of Proposition 2.1. Let Cw(m) be the number of occurrences of word pattern w in the m-th read,

m = 1‚ 2‚ � � � ‚ M. Then

N w(M‚ n‚ b) =
XM

m = 1

Cw(m):

Let

Eb‚ g(u‚ v) = E(Nu[1‚ b]Nv[1 + g‚ b + g]):

According to our model, it is easy to see that for word patterns u and v, the counts (Cu(m),Cv(m)) have

the same distribution for all m = 1‚ 2‚ � � � ‚ M. Similarly, for any m s m0, (Cu(m),Cv(m0)) have the same

distribution. Thus,

E(Cu(m)Cv(m)) = E(Cu(1)Cv(1))‚ E(Cu(m)Cv(m0)) = E(Cu(1)Cv(2))‚ m 6¼ m0‚

and

E(N u(M‚ n‚ b)N v(M‚ n‚ b)) = ME(Cu(1)Cv(1)) + M(M - 1)E(Cu(1)Cv(2)):

Since the Markovian sequence is stationary, Cu(1) has the same distribution as Nu[1,b]. Thus,

E(Cu(1)Cv(1)) = E(Nu[1‚ b]Nv[1‚ b]) = Eb‚ 0(u‚ v)

Conditioning on the locations of the first and second reads, we have

842 ZHAI ET AL.



EðCu(1)Cv(2)Þ = E
Xn - b + 1

i = 1

kiNu[i‚ i + b - 1]

 ! Xn - b + 1

j = 1

kjNv[j‚ j + b - 1]

 !" #

=
Xn - b + 1

i = 1

Xn - b + 1

j = 1

kikjE(Nu[i‚ i + b - 1]Nv[j‚ j + b - 1])

= Eb‚ 0(u‚ v)
Xn - b + 1

i = 1

k2
i +

Xn - b + 1

i = 1

ki

Xn - i - b + 1

g = 1

ki + g(Eb‚ g(u‚ v) + Eb‚ g(v‚ u)):

The proposition is proved. -

For the special case that the background sequence is i.i.d., we have the following corollary.

Corollary 2.1. Suppose that the background sequence is i.i.d. With the same notation as in Proposition

2.1, we have

1. The covariance of N u(M‚ n‚ b) and N v(M‚ n‚ b) can be calculated as

M + M(M - 1)
Xn - b + 1

i = 1

k2
i

 !
(Eb‚ 0(u‚ v) - (b - u + 1)(b - v + 1)P(u)P(v))

+ M(M - 1)
Xb - 1

g = 1

Xn - b - g + 1

i = 1

kiki + g(Eb‚ g(u‚ v) + Eb‚ g(v‚ u) - 2(b - u + 1)(b - v + 1)P(u)P(v)):

2. If limn!1 (n - b - g + 1)
Pn - b - g + 1

i = 1 kiki + g = rg and M depends on n such that limn/NM/n = h, then

lim
n!1

Cov(N u(M‚ n‚ b)‚N v(M‚ n‚ b))

M
= (1 + hr0)(Eb‚ 0(u‚ v) - (b - u + 1)(b - v + 1)P(u)P(v))

+ h
Xb - 1

g = 1

rg(Eb‚ g(u‚ v) + Eb‚ g(v‚ u) - 2(b - u + 1)(b - v + 1)P(u)P(v)):

In particular, if the reads are uniformly sampled from the genomic sequence, i.e. ki = 1/(n - b + 1), then

rg = 1‚ g = 1‚ 2‚ � � � ‚ b - 1.

Corollary 2.1 follows by noting that for the i.i.d. case and g ‡ b,

Eb‚ g(u‚ v) = E(Nu[1‚ b])E(Nv[g + 1‚ g + b]) = E(Nu[1‚ b])E(Nv[1‚ b]) = (b - u + 1)(b - v + 1)P2(w):

The second part follows directly by taking the limit of Cov(N u(M‚ n‚ b)‚N v(M‚ n‚ b)) in Part 1) over M as

n tends to infinity.

Given the approximate mean and variance ofN w(M‚ n‚ b), it is tempting to approximate the distributions

of N w(M‚ n‚ b) using a normal distribution. The approximation is based on the heuristic that the counts in

different reads are independent unless the reads overlap, and if the words are not too long, the count in each

read would be approximately normally distributed.

As reads are not very long, the approximation error may not be negligible, and hence we give an upper

bound on the approximation error. Our result is phrased in terms of

dK(standardized count‚ Z) = sup
x
jP(standardised count px) - P(Zpx)j‚

where Z denotes a standard normal variable. Thus P (standardized count £ x) pP(Zpx) + dK , and a bound

on dK can be used to obtain a conservative p-value for the observed standardized count.

Here, we employ Theorem 2.6 in Chen and Shao (2004), and assume the i.i.d. model for the underlying

background sequence. Then Nw[i, i + b - 1] and Nw[j, j + b - 1] are independent unless ji - jj £ b, where

Nw[l, l0] is the number of occurrences of word w in the interval [l, l0] along the long sequence. Using the

notation r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(N w(M‚ n‚ b))

p
and �n = n - w + 1, the following result holds.
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Theorem 2.1. Assume the i.i.d. model for the background sequence and let Z be standard normally

distributed. Then for a word w of length w,

dK

1

r
(N w(M‚ n‚ b) - M�bP(w))‚ Z

� �
p2M

X�n

i = 1

k2
i + 375(10�b + 1)2 1

r3

X�n

i = 1

M�bP(w)ki

� �3
4(945�b2wP(w) max (1‚ (Mki)

3) + 4(�bP(w))3)
3
4‚

where �b = b - w + 1.

In the case that all letters are equally likely and independent, and all ki = �n - 1, the bound will be of order

O((ln n) - 1) when the word length is not too large, w < log L(b/ ln(n)), while the read length b = c1Lw ln n

for a constant c1 > 1 and the number of reads M = c2n/(ln n) for a constant c2 > 0. This type of regime is

rather specific, for example the above regime with n = 5,000 and w = 4 on a 4-letter alphabet would require

b > 2,181, while n / (ln n) = 587; if n = 20,000 and w = 7 we would need b > 162, 259, while n / (ln

n) = 2019.5. Moreover, the above regime would require that M/n is small. Hence, it is no surprise that the

normal approximation does not work well in many situations.

In particular, in many practical applications of NGS, the coverage of the sequenced reads is

moderate to high depending on the biological applications. Thus, the normal approximation may not

work well in these situations. The theorems also explain the poor performance of normal approxi-

mation in our simulations in Section 3. We emphasize that the bound may not be the best possible in

all settings.

A similar result is available for multivariate word counts. The generalization to a Markovian sequence is

straightforward, using the arguments from Huang (2002) for the joint counts starting at a specified position,

and a local dependence argument as above.

Finally, note that if Mki is large for some i, thenN w(M‚ n‚ b) might be better approximated by the sum of

products of normally distributed variables, which is approximately normal only when the number of

summands is large.

2.3. Compound Poisson approximation for the number of occurrences of rare patterns
in randomly sampled NGS reads

For rare patterns along the background sequence, the normal approximation as described in Subsection

2.2 is not appropriate; instead, we present a compound Poisson approximation for the number of occur-

rences of such patterns. This compound Poisson approximation takes clumps of occurrences directly into

account. Recall that a clump of word w is a maximum consecutive region of the background sequence with

overlapping occurrences of w. For the clumps, we first introduce some notation. Let w(p) = w1w2 � � �wp be

the p-th prefix composed of the first p letters of w. The set of periods of the word w of length w (Guibas and

Odlyzko, 1981, Lothaire, 1983) is defined by

P(w) = fp 2 f1‚ 2‚ � � � ‚ w - 1g : wi = wi + p‚ for any i = 1‚ 2‚ � � � ‚ w - pg:

The set of principal periods of word pattern w, P0(w), are those periods that cannot be written as multiples

of other periods. It was shown in Reinert and Schbath (1998) and Schbath (1995) that the number of

clumps, Nc,n, in a Markovian sequence of length n can be approximated by a Poisson random variable with

mean L(w) = (n - w + 1)l̂(w), where

l̂(w) = P(w) -
X

p2P0(w)

P(w(p)w): (2)

We also consider Xi, the number of occurrences of word pattern w in the i-th clump. Let

Ck = fw(p1)w(p2) � � �w(pk - 1)w : p1‚ p2‚ � � � pk - 1 are the principal periods of wg

be the set of all possible ways a clump of size k can occur. It was shown in Reinert and Schbath (1998) and

Schbath (1995) that

P(Xi = k) = l̂k(w)=l̂(w)‚ (3)
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where

l̂k(w) = P(Ck) - 2P(Ck + 1) + P(Ck + 2)‚ k = 1‚ 2‚ � � � : (4)

A compound Poisson approximation for N w(M‚ n‚ b) can be motivated as follows. Let Zi be the number

of reads covering the first occurrence of w in the i-th clump. We can reasonably assume that the read will

cover the whole clump as the clump size is generally not long. Then we may approximate

N w(M‚ n‚ b) �
XNC‚ n

i = 1

XiZi: (5)

We note that the above equation may slightly over-estimate the number of occurrences of w in the M reads

since we only require that the reads cover the first w, not the whole clump. However, the approximation is

reasonable since the sequence reads are generally much longer than the length of clumps and the reads

covering the first w are most likely covering the whole clump.

Next, we study the distribution of Zi. If the i-th clump starts at j, then the number of reads containing the

first w in the clump is a binomial random variable B(M‚ kj - b + w + � � � + kj) which is asymptotically Poisson

with mean Lj = M
Pj

i = (j - b + w)_1 ki. Since the occurrences of clumps follow asymptotically a Poisson

process, the starting point of the ith clump is approximately uniformly distributed in [1, n - w + 1]. Thus,

the independent random variables ~Zi with distribution

Pf~Zi = kg =
1

n - w + 1

Xn - w + 1

j = 1

(Lj)
k

k!
exp ( -Lj) (6)

are a reasonable approximation to the random variables Zi.

The next theorem makes the heuristic argument precise. Recall that the total variation distance between

two Z+ -valued random variables X and Y (defined on the same probability space) is defined by

dTV(X‚ Y) = supA2Z + jP(X 2 A) - P(Y 2 A)j:

Thus, if the total variation distance between X and Y is small, then for any subset, A, of the nonnegative

integers, the difference between the probability for X to be in A and that for Y is also small. A bound in total

variation distance can be applied to get conservative p-values for counts via the formula

P(Xpx)pP(Ypx) + dTV(X‚ Y):

To state the results we need some more notation. Let a = a2 be the second-largest eigenvalue of the

transition matrix T; the Perron-Frobenius Theorem ensures that jaj < 1. Let D be the matrix with the

eigenvalues of T on the diagonal, ordered such that the first entry is a1 = 1, and zero entries everywhere

else. Then we decompose T = PDP - 1 such that the first column of P is (1‚ 1‚ . . . ‚ 1)T . For all

t 2 f0‚ 1‚ . . . ‚ L - 1g, let Jt denote the L · L matrix such that all its entries are equal to 0 except Jt(t, t) = 1,

and we define

Qt := PJtP
- 1:

Let p(x) be the probability of letter x and

c2(v) =
X

x‚ y2f0‚ ...‚ L - 1g
p(x) max

a‚ b2f0‚ ...‚ L - 1g

1

p(b)

X
(t‚ t0) 6¼(1‚ 1)

��� av
t a

v
t0

av
Qt(x‚ b)Qt0 (a‚ y)

��� 
+
XjLj
t = 2

��� a5v - 3
t

av
Qt(x‚ y)

���!:
Let pmin be the smallest value of fp(a)‚ a 2 f0‚ 1‚ � � � ‚ L - 1gg. Put

B(T‚ w‚ n) = (n - w + 1)bl(w)

�
2(w - 1)P(w) + (6w - 5)l̂(w) + c2(w)jajw

�
+ 2(n - w + 1)

P2(w)

p(w1)

X2w - 2

s = 1

Ts(ww‚ w1) +
l̂(w)

lmin

((w - 2)P(w) + l̂(w))

( )
: (7)
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Theorem 2.2 Let fNCn have Poisson distribution with mean L(w), let ~Zi‚ i = 1‚ . . . ‚ n - w + 1 have

distribution (6), let Xi‚ i = 1‚ . . . ‚ n - w + 1 have distribution (3) and assume that all these variables are

independent. Then

dTV N w(M‚ n‚ b)‚
XeNCn

i = 1

Xi
~Zi

0@ 1ApB(T‚ w‚ n) + 2M
X�n

i = 1

k2
i + 2(w - 1)(P(w) - bl(w)):

Here B(T, w, n) is given in (7).

Let Lj = M
Pj

i = (j - b + w)_1 ki. Then the probability gk = P(N w(M‚ n‚ b) = k) can be calculated using the

recursion (Panjer, 1981, Willmot and Panjer, 1987)

gk =
L(w)

k

Xk

j = 1

j fjgk - j (8)

with initial value g0 = exp ((f0 - 1)L(w))‚ fj = P(Xi
~Zi = j) =

P
l�m = j P(Xi = l)P( ~Zi = m)‚ and f0 =

1
n - w + 1

Pn - w + 1
i = 1 exp ( -Li).

While B(T, w, n) has a complicated expression, when the Markov chain is reasonably well mixed then its

leading term will be of the order gl̂(w)wP(w). The bound in Theorem 2.2 will be small when, firstly, the

compound Poisson approximation for intervals of length b is good; secondly, the distribution of starting

points of reads is relatively homogeneous; thirdly, the number M of reads is not too large compared to n;

and fourthly,
P

p2P0(w) P(w(p)w) is small.

Theorem 6.6.4 in Reinert et al. (2005) gives the analogous approximation for counts of different words

w1‚ . . . ‚ wr, where r is an integer. The bounds are of similar flavor but involve more notation which

considers the possible overlaps between different words. We omit the result here.

2.4. Extending the approximations to the double-strand model

In the above subsections, we assume that the sequence under study is single-stranded for simplicity. However,

DNA sequences are double-stranded and the sequence reads from NGS can come from either strand and it is not

known which strand the reads come from. To take both strands into consideration, we consider both the reads and

their complements. Among the M pairs of reads, the number of occurrences of w, ~Nw(M‚ n‚ b), is equal to the

number of occurrences of the complement of w, ~N�w(M‚ n‚ b), because we consider the complement of each read.

Next we study the distribution of ~Nw(M‚ n‚ b) for any word pattern w by considering the following scenarios.

We first assume a palindrome such that w = �w, for example, w = ACGT or CGCG. For such word patterns, it

is obvious that ~Nw(M‚ n‚ b) = 2N w(M‚ n‚ b). Next we assume w 6¼ �w. For each pair of complementary reads,

we consider the one from the forward strand. Thus, we have a new set of M reads all from the forward strand.

Note that the word pattern w occurs in one of the strands of a pair of complementary reads if the forward read

contains either w or �w. Thus, the total number of occurrences of w in the M pairs of complementary reads equals

the number of occurrences of either w or �w along the forward reads. Thus, we are interested in the joint word

counts of w and its complement �w, but in contrast to Reinert and Schbath (1998) we allow for mixed clumps of

occurrences, that is, the clumps can be composed of combinations of w and its complement. A compound

Poisson approximation, with bounds, for the joint count of w and its complement can be found in Roquain and

Schbath (2007). The approximation is valid only for non-palindromes; it also requires that the word and its

complement have non-zero probability of appearing in the sequence. Here we illustrate how such a compound

Poisson approximation for word counts in single reads can be combined for NGS data.

Let

Ck = ŵ
(p1)
1 ŵ

(p2)
2 � � � ŵ(pk - 1)

k - 1 ŵ‚ pi 2 P0(ŵi‚ ŵi + 1)
n o

‚

where ŵi‚ i = 1‚ 2‚ � � � can be either w or �w, and

P(u‚ v) = fp : up + 1 = v1‚ up + 2 = v2‚ � � � ‚ uu = vu - pg‚

and P0(u‚ v) is a subset of P(u‚ v) by removing those that are multiple of other numbers. By the definition,

we have, for any word pattern w,

P(w‚ w) =P(�w‚ �w):
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Let Ck(w) be the subset of Ck such that the first word ŵ1 = w, and Ck(�w) be the subset of Ck

such that the first word ŵ1 = �w: Define Sw = fw(p)‚ p 2 P0(w‚ w)g
S
f�w(p)‚ p 2 P0(�w‚ w)g and

S �w = fw(p)‚ p 2 P0(w‚ �w)g
S
f�w(p)‚ p 2 P0(�w‚ �w)g.

Given the above notation, we consider the distribution of clumps starting with w and �w, respectively.

Here a clump is defined as a maximum region with overlapping occurrences of either w or �w. Note that a

clump starting with w occurs at a position i if 1) w occurs at position i, 2) sequences in Sw do not occur just

before i. Thus, a w-clump starts at a particular position with probability

l̂0(w) = P(w) - P(Sww): (9)

Similarly, the probability that a �w-clump starts at a particular position

l̂0(�w) = P(�w) - P(S �w �w): (10)

We refer to the clumps starting with w the w-clumps and those starting with �w the �w-clumps. Both

the w-clumps and �w-clumps can be approximated by a Poisson process with parameters l̂0(w) and

l̂0(�w), respectively. The joint of the two approximate Poisson processes can again be approximated

by a Poisson process with parameters l̂0(w) + l̂0(�w). Thus, the number of clumps including both the

w-clumps and the �w-clumps, N 0C‚ n, can be approximated by a Poisson random variable with mean

(n - w + 1)(l̂0(w) + l̂0(�w)).
We order the w- and �w-clumps from the 50-end to the 30-end. Let Ii = 1 and Ii = 0 be the events that the

i-th clump is a w-clump and �w-clump, respectively. We have

P(Ii = 1) = 1 - P(Ii = 0) =
l̂0(w)

l̂0(w) + l̂0(�w)
: (11)

Next we study the distribution of the number of occurrences of w or �w in w-clumps and �w-clumps,

separately. A k-clump starting with w is referred as a k-w-clump. Similarly, a k-clump starting

with �w is referred as a k- �w-clump. Then a k-w-clump occurs at a specific position i if (1) Ck(w)

occurs at position i, (2) sequences in Sw do not occur just before i, and (3) Ck + 1(w) does not occur at

position i. Note that when we deduct the probability of the second and the third events, we deduct

the probability of the event SCk + 1(w) twice. Thus, we need to add the probability of this event,

giving

l̂0k(w) = P(k-w-clump at a position) = P(Ck(w)) - P(SwCk(w)) - P(Ck + 1(w)) + P(SwCk + 1(w)): (12)

Similarly, we have for �w

l̂0k(�w) = P(k-�w-clump at a position) = P(Ck(�w)) - P(S �wCk(�w)) - P(Ck + 1(�w)) + P(S �wCk + 1(�w)): (13)

Let Xi and �Xi be the numbers of occurrences of w or �w in a w-clump and �w-clump, respectively. Then the

distributions of Xi and �Xi are

P(Xi = k) =
l̂0k(w)

l̂0(w)
‚ P( ~Xi = k) =

l̂0k(�w)

l̂0(�w)
: (14)

Similar as above, let eZi be the number of reads covering the first occurrence of w or �w in the i-th clump.

The distribution of Ui = (IiXi + 1(1 - Ii) �Xi)eZi can be calculated by

f 0j = P(Ui = j) =
X

l‚ m;l · m = j

P(eZi = m)
l̂0(w)

l̂0(w) + l̂0(�w)
P(Xi = l) +

l̂0(�w)

l̂0(w) + l̂0(�w)
P( �Xi = l)

� �
:

The number of occurrences of w along the M pairs of reads can be approximated by

eNw(M‚ n‚ b) =
XN 0C‚ n

i = 1

Ui =
XN 0C‚ n

i = 1

(IiXi + (1 - Ii) �Xi)eZi: (15)

The argument is made precise in the next proposition.

PATTERN OCCURRENCES IN NGS READS 847



Theorem 2.3. Let fNC0n have a Poisson distribution with mean (n - w + 1)(l̂0(w) + l̂0(w)) let
~Zi‚ i = 1‚ . . . ‚ n - w + 1 have distribution (6), let Xi‚ i = 1‚ . . . ‚ n - w + 1 have distribution (14), let

Ii‚ i = 1‚ . . . ‚ n - w + 1 have distribution (11) and assume that all these variables are independent. Then

dTV N w(M‚ n‚ b)‚
XeNC0n

i = 1

(IiXi + (1 - Ii) �Xi)eZi

0@ 1A p C(T‚ w‚ n) + 2M
X�n

i = 1

k2
i + 2w(P(w) + P(�w)):

Here

C(T‚ w‚ n) := CnwP(w)2 + C0n(P(w) + P(�w))jajw‚

where C > 0 and C0 > 0 are two explicit constants that only depend on the transition matrix T, and a is the

second largest eigenvalue in modulus of T.

2.5. The approximate power of detecting enriched patterns using the compound Poisson
approximation for the distribution of the number of occurrences of word patterns

The framework for the normal and compound Poisson approximations for the number of occurrences of

word patterns can equally be applicable to sequences generated by hidden Markov models. In particular, a

regulatory sequence with many instances of transcription factor binding sites can be modeled by a hidden

Markov model as in Zhai et al. (2010). Specifically, the long background sequence is modeled as an i.i.d.

sequence. In addition, instances of a motif with a given position weight matrix are randomly inserted into

the background sequence with probability 1 - q at each position. We refer to 1 - q as motif density. Next

generation sequencing is then used to sample M reads from the long sequence as modeled in Subsection 2.1.

Based on the reads, we want to test the null hypothesis H0 : q = 1, i.e, no motif instances are inserted,

versus the alternative hypothesis H1 : q < 1, i.e, motif instances are inserted in the underlying background

sequence. Consider the dominant pattern w(d) in the motif consisting of the nucleotide with the highest

probability in each position. We can use N w(d)(M‚ n‚ b) as a statistic to test the hypotheses. For a given type

I error a, we can obtain a threshold ta, that is, the smallest value of t such that

P1(N w(d)(M‚ n‚ b)qt)pa‚ (16)

based on the theory for P1 developed above, where P1 is the approximate probability distribution of

N w(d)(M‚ n‚ b) when no motifs are inserted, i.e. q = 1.

The approximate power of the test statistic when q < 1 is given by

power = Pq(N w(d)(M‚ n‚ b)qta)‚ (17)

where Pq is the probability distribution under the alternative model. The approximate power for detecting

the enrichment of certain patterns under the double-strand model can be calculated similarly. In the

following, for convenience we use the term ‘‘power’’ to mean approximate power.

3. RESULTS: SIMULATION STUDIES AND BIOLOGICAL APPLICATIONS

3.1. Evaluation of the accuracy of the normal and compound Poisson approximations using
simulations

We study nucleotide sequences consisting of four states (A, C, G, T) and consider three relatively short

patterns (‘‘TAT,’’ ‘‘ACGT,’’ and ‘‘CGCG’’) and two relatively long patterns (‘‘ACGTATC’’ and ‘‘AA-

GAAGAA’’). The pattern ‘‘ACGT’’ does not have any periods and the patterns ‘‘TAT’’ and ‘‘CGCG’’ have

a period 2. The pattern ‘‘ACGTATC’’ does not have any periods and the pattern ‘‘AAGAAGAA’’ has three

periods {3, 6, 7} with principal periods {3, 7}. For each pattern, we compare the histogram of the simulated

number of occurrences of a pattern with the theoretical compound Poisson approximation probability mass

function given in Section 2. For patterns having relatively high number of occurrences, e.g, mean at least 50

in the cases we consider, we also plot the density function of the normal approximation.

In all our simulations, we use the following parameters: the nucleotide frequencies of (A, C, G, T) are (a)

GC-rich (0.15, 0.35, 0.35, 0.15), (b) uniform (0.25, 0.25, 0.25, 0.25), and (c) GC-poor (0.35, 0.15, 0.15,
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0.35). These settings allow us to see the effect of nucleotide frequency on the accuracy of the theoretical

approximations. The sequence length n is chosen as either 5000 for the two short patterns or 20,000 for the

two long patterns. The number of sequence reads M is either 500 for the two short patterns or 4000 for the

two long patterns. The read length b = 80. We assume that the sequence reads are either homogeneously or

heterogeneously chosen from the long sequence. In heterogeneous sampling of the reads, we divide the

sequence into 100 consecutive blocks. For each block, we sample a random number from the gamma

distribution G(1, 20) and the sampling probability ki for each position in the block is proportional to the

chosen number (Zhang et al., 2008). We consider both the single- and double-strand models in our

simulation studies. The number of simulations for each case is 10,000. Note that the sequence length and

the number of reads simulated here are much smaller than the corresponding values in real studies. These

numbers are chosen to save computational time. The qualitative results should hold for much longer

sequences and higher number of reads.

Due to page limitations, we present the figures for the simulation results as Figures S1–S9 in the

Supplementary Material (see www.liebertonline.com/cmb for Supplementary Material). We make the

following observations. First, when the average number of occurrences of the pattern of interest is relatively

large, for example, greater than 500, both the normal and compound Poisson approximations work well.

However, for most of the cases we considered in this study, the compound Poisson approximation out-

performs the normal approximation. Second, when the sequence reads are heterogeneously sampled from

the long background sequence, the range of the number of occurrences of the patterns will be larger than

that under the homogeneous sampling scheme. Third, the distribution of the number of occurrences of

patterns can have multiple peaks under some situations and the compound Poisson approximation can

accurately capture such features.

3.2. Power studies using simulations

We next study the power of detecting enriched patterns when such patterns indeed occur more frequently

than expected. For this we consider sequences with random instances of a motif on a background i.i.d.

sequences as described in Subsection 2.5. Under this model, a motif instance is inserted at each position of

the background sequence with probability 1 - q (motif density). Thus, the consensus pattern of the motif is

enriched compared to the background. The background sequence models and the inserted motifs ‘‘TAT,’’

‘‘ACGT,’’ ‘‘CGCG,’’ ‘‘ACGTATC,’’ and ‘‘AAGAAGAA’’ are all the same as in Subsection 3.1. For a

type I error a = 0.025, we first use Equation 16 to find the threshold ta based on the approximate distri-

bution for N w(d)(M‚ n‚ b) under the null model q = 1. The theoretical power under the alternative model

that q < 1 is calculated using Equation 17. We run 10,000 simulations based on the alternative model and

record the number of occurrences of the corresponding pattern. The simulated power is approximated by

the fraction of times that N w(d)(M‚ n‚ b)qta, where w(d) is the consensus pattern of the motif and it is the

inserted pattern in our simulations.

Tables 1 and 2 compare the theoretical and the simulated power of N w(M‚ n‚ b) for detecting the

corresponding enriched patterns for different values of motif density 1 - q for the patterns: ‘‘TAT,’’

‘‘ACGTATC,’’ and ‘‘AAGAAGAA’’ under the single- and double-strand GC-poor models, respectively.

The power of detecting the patterns ‘‘ACGT’’ and ‘‘CGCG’’ using the single- and double-strand model is

the same because the counts for the double-strand model is twice the count for the single-strand model. The

power results for these two patterns under the GC-poor model are given as Table S1 and the complete

results for the GC-rich and uniform background models are given as Tables S2–S7 in Supplementary

Material. The following conclusions can be obtained from the tables. First, the threshold value calculated

from Equation 16 is conservative in that the simulated type I error rate is smaller than the specified type I

error a in most of the situations. Second, the theoretical power given in Equation 17 is very close to the

simulated power when the theoretical power is relatively large (e.g, greater than 50%). Third, the power of

detecting enriched patterns under heterogeneous read sampling is smaller than that under homogeneous

read sampling.

3.3. Applications to a ChIP-Seq data set in Valouev et al. (2008)

Now we apply the theory to a ChIP-Seq data set using transcription factor GABP in Valouev et al.

(2008). We consider the promoter region of Nuclear Matrix Transcription Factor 4 gene (ZNF384) between

position 6,667,900 and position 6,669,500 (a total of 1600 bp) on human chromosome 12, NCBI build 36.
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The gene ZNF384 has been shown to be the regulatory target of GABP and the region is enriched with

ChIP-Seq reads as shown in the supplementary materials of Valouev et al. (2008). Our objective is to show

the applicability of the theory developed in this article, not as a comparison with other computational

methods of peak calling for ChIP-Seq data. The position weight matrix (PWM) of the GABP binding side is

given in Table S8 ( JASPAR, http://jaspar.cgb.ki.se/; ID number MA0062.2) in Supplementary Material.

The consensus sequence formed by the dominant nucleotide at each position is ‘‘CCGGAAGTGGC’’.

In a typical ChIP-Seq experiment, DNA regions of interest are sheared into short fragments and the

specific DNA fragments interacting with the protein of interest are isolated by immuno-precipitation. Then

NGS is used to sequence either end of the sequence. These end sequences are referred as tag sequences. In

Table 1. Comparison of the Simulated and Theoretical Power ( ·100) for Patterns TAT,

ACGTATC, and AAGAAGAA Under the Single-Strand GC-Poor Model

Scaled motif density

Threshold 0 1 2 3 4 5 6 7 8 9

Homogeneous read sampling

TAT Simulation 1966 1.2 2.2 4.7 8.9 14.5 21.9 33.3 45.1 55.2 67.1

Theory 1966 2.4 4.8 8.4 13.7 20.7 29.3 39.1 49.4 59.5 68.9

ACGTATC Simulation 54 1.8 14.8 32.0 51.8 70.8 83.5 89.3 93.5 97.1 98.4

Theory 54 2.4 14.9 34.9 55.3 71.8 83.3 90.6 94.9 97.4 98.7

AAGAAGAA Simulation 49 2.2 15.6 38.8 56.3 74.2 87.0 92.3 95.3 97.0 99.2

Theory 49 2.3 16.6 38.2 58.9 74.9 85.6 92.1 95.9 97.9 99.0

Heterogeneous read sampling

TAT Simulation 2026 1.3 2.1 5.1 7.9 11.2 16.5 24.2 32.3 40.3 49.6

Theory 2026 2.4 4.2 6.7 10.1 14.6 20.1 26.5 33.8 41.6 49.6

ACGTATC Simulation 70 2.4 9.7 19.6 33.6 46.0 62.6 72.7 81.3 87.9 93.3

Theory 70 2.4 9.7 21.4 35.4 49.5 62.3 72.9 81.2 87.4 91.7

AAGAAGAA Simulation 63 2.0 12.2 27.5 38.7 51.8 67.7 76.0 85.3 89.8 93.0

Theory 63 2.4 11.2 24.4 39.5 54.1 66.7 76.8 84.4 89.8 93.5

The sequence length n = 5000, the number of reads M = 500, and the scaled motif density = 1000(1 - q) for the pattern TAT. For

the two long patterns, the sequence length n = 20000, the number of reads M = 4000 and the scaled motif density = 20000(1 - q). The

read length b = 80. Type I error a = 2.5%. The ‘‘Threshold’’ is obtained using Equation 16 based on the theoretical approximate

distribution of the number of occurrences of a pattern under the null model. The number of simulations is 10,000.

Table 2. Comparison of the Simulated and Theoretical Power ( ·100) for Patterns TAT,

ACGTATC, and AAGAAGAA Under the Double-Strand GC-Poor Model

Scaled motif density

Threshold 0 1 2 3 4 5 6 7 8 9

Homogeneous read sampling

TAT Simulation 3875 0.9 1.5 2.9 5.7 8.8 13.9 21.5 30.1 37.9 48.2

Theory 3875 2.49 4.3 6.9 10.6 15.4 21.4 28.3 36.0 44.2 52.4

ACGTATC Simulation 82 2.3 13.8 37.1 53.8 73.6 83.5 91.8 94.7 98.1 98.9

Theory 82 2.4 16.1 37.4 58.3 74.5 85.4 92.0 95.8 97.9 99.0

AAGAGAA Simulation 73 1.9 10.5 26.3 43.3 60.7 72.9 83.5 89.3 93.3 97.0

Theory 73 2.3 11.2 26.4 44.2 60.9 74.3 84.0 90.4 94.5 97.0

Heterogeneous read sampling

TAT Simulation 3982 1.2 1.9 2.9 4.5 6.9 10.6 16.8 21.5 27.5 33.4

Theory 3982 2.49 3.8 5.7 8.1 11.2 14.9 19.4 24.4 30.0 36.0

ACGTATC Simulation 101 2.2 7.7 12.9 27.7 37.5 51.3 60.0 68.9 79.2 83.7

Theory 101 2.46 7.4 15.5 26.0 37.8 49.7 60.7 70.4 78.3 84.5

AAGAAGAA Simulation 91 2.48 7.1 15.6 26.1 38.3 53.5 66.2 71.9 79.1 86.2

Theory 91 2.4 7.9 16.9 28.2 40.6 52.8 63.8 73.2 80.7 86.4

The parameters are the same as in Table 1.
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Valouev et al. (2008), the tag sequences are of length 25 bp. Since the tag sequences from ChIP-Seq can

come from either the forward or the reverse strand of the selected fragments and the tag sequences may not

contain the GABP binding sites, we extend both the forward and reverse strands to the whole sequence

fragments as follows. It was estimated in Valouev et al. (2008) that the median read length in the GABP

data set is 56 bp with mean around 57 bp. So we extend the forward strand by 31 bp in the forward direction.

We also extend the reverse strand in the reverse direction by 31 bp so that each tag is associated with a read

of 56 bp.

We analyze three different read data sets mapped to the forward strand only, the reverse strand only, and

both the forward and the reverse strands combined. For each k-tuple (k = 6), we first approximate the p-

value corresponding to the k-tuple using the control (Rx-noIP) data and the compound Poisson approxi-

mation. In such calculations, we use the nucleotide frequencies calculated from the extended reads. The

distribution of the reads along the genomic region is estimated empirically by the fraction of reads starting

from each position as follows. Since the number of reads starting from individual positions is generally

small and the estimated distribution of reads ki using the number of reads starting at the i-th position is not

reliable, we estimate ki within a window using the following approach. For a given window size S, we

estimate ki by the average number of reads starting at the positions within the window of size S centered at

i, in other words,

k̂i =

Pi + [S=2]
i0 = i - [S=2] Mi

S · M
‚

where Mi is the number of reads starting at position i and M is the total number of reads. Using these

estimated parameters, we can approximate the p-value corresponding to each k-tuple.

We use our approach to analyze both the control and the ChIP-Seq data. We expect that no k-tuples are

significant for the control data while the dominant patterns in the motif should be enriched in the ChIP-Seq

data set. Different window sizes S = 1 to 50 by step 5 are used and the results are similar. Table 3 presents

the top 10 k-tuples using k = 6 with the smallest p-values when S = 20 using the reads mapped to the

forward strand, reverse strand, and both strands for the control data, and Table 4 presents the results based

on the ChIP-Seq data.

For family-wise type I error 0.05, using the Bonferroni correction, only 6-tuples with p-value less than

0.05/46 & 1.25 · 10 - 5 are declared as significant. With this criterion, one 6-tuple ‘‘CACTTC’’ was

identified as significant using the reads mapped to the forward strand based on the control data. The tuple

‘‘CACTTC’’ is complementary to the dominant pattern at positions [4,9]. The next pattern with relatively

small p-value, although not significant using our criterion, is ‘‘ACTTCC’’ which is complementary to the

dominant pattern at positions [5,10]. From the two patterns, it is possible to construct a consensus sequence

of seven nucleotides ‘‘CACTTCC’’ which is complementary to the dominant pattern at positions [4,10].

We see some GABP motif signals in the control data set.

Table 3. Top 10 k-Tuples (k = 6) with Smallest p-Values Using Reads Mapped to the Forward, Reverse,

and Both Forward and Reverse Strands for the Control Data Set with Transcription Factor GABP

Forward Reverse Combined

6-tuple p-value 6-tuple p-value 6-tuple Complement p-value

CACTTC 5.82E-06 GAAGTG 9.53E-05 CACTTC GAAGTG 6.01E-07

ACTTCC 0.000349 GTGAGT 0.000584 CTATAG CTATAG 5.76E-05

CTTCTG 0.000956 AGTCCT 0.000678 ACTTCC GGAAGT 6.98E-05

TCCTTG 0.000956 GGAGGG 0.000731 CCCTCC GGGAGG 1.11E-04

CCACTT 0.001367 CCGGAA 0.000961 CCGGAA TTCCGG 1.56E-04

CCTTCC 0.001672 GTCCTC 0.001143 CAGAAG CTTCTG 2.24E-04

CCTTGC 0.001743 AAGTGG 0.001221 ACTTCT AGAAGT 3.26E-04

TTCCGG 0.001816 GAAGAA 0.001353 GCTATA TATAGC 6.02E-04

CTCCTT 0.001828 CTATAG 0.001355 CGGAAG CTTCCG 8.47E-04

CCTTGT 0.001899 GCTATA 0.001355 AAGTGG CCACTT 1.02E-03
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For the ChIP-Seq data, six 6-tuples are significant based on reads mapped to the forward strand. The top

four 6-tuples with p-value at most 6.47 · 10 - 10—‘‘CACTTC,’’ ‘‘ACTTCC,’’ ‘‘TTCCGG,’’ and

‘‘CTTCCG’’—are complementary to the dominant patterns at positions [4,9], [3,8], [1,6], and [2,7], re-

spectively. From these four patterns, we are able to construct a consensus sequence of 9 nucleotides

‘‘CACTTCCGG.’’ Similar observations can be made based on reads mapped to the reverse strand and both

strands. We also carried out similar studies using k = 4 and 5, and the results are similar (data not shown).

4. DISCUSSION

In this article, we study the distribution of the number of occurrences of patterns in sequence reads

randomly sampled from long Markovian sequences. This problem comes naturally from the analysis of

sequence reads generated from NGS including ChIP-Seq and RNA-Seq. In this article, we first develop

probabilistic models for the background sequences and the sampling of sequence reads using NGS. The

background sequence is modeled as a Markovian sequence. Each sequence read starts from the i-th position

of the background sequence with probability ki and the sampling of sequence reads from the background

sequence is assumed to be independent. Based on the model, we study the limit distribution of the number

of occurrences of any k-tuple patterns. Two approximate distributions are considered. We assume

throughout the paper that both the background sequence length and the number of sequence reads are large

and that the sequence reads do not concentrate on particular regions of the background sequence. We first

give a normal approximation for the number of occurrences of frequent patterns and provide formulas to

calculate the mean and variance of the approximate normal distribution. For relatively rare patterns, we

provide a new compound Poisson approximation for the number of occurrences. Simulation studies are first

used to evaluate the theoretical results, and it is shown that the compound Poisson approximation seems to

work well in most of the situations. The compound Poisson approximation is then used to analyze ChIP-Seq

data mapped to the promoter region of the gene ZNF384 using transcription factor GABP. Surprisingly, we

found GABP binding motif signals in the control data set indicating some ChIP residue effect even within

the control data. With the ChIP-Seq data, we are able to recover the consensus patterns of the motif.

Despite the usefulness of the models and the approximations, there are some limitations. First, we

assume that the background sequence follows a homogeneous Markov chain. In reality, the sequence to be

sequenced may be heterogeneous with different regions following varied Markov models. If we have some

idea about the composition of the nucleotides at different parts of the sequence, hidden Markov models can

potentially be used to model such sequences. In our study, an empirical method to estimate the distribution

of sequence reads along the genome sequence is used. Due to the relative low number of reads starting at

particular positions, the empirically estimated read distribution may not be accurate, resulting in less

reliable estimated p-values for each pattern. Several investigators studied the distribution of sequence reads

from NGS technologies based on the sequence content surrounding a specific location (Hansen, et al. 2010,

Table 4. Top 10 k-Tuples (k = 6) with Smallest p-Values Using Reads Mapped to the Forward, Reverse,

and Both Forward and Reverse Strands for the ChIP-Seq Data Set with Transcription Factor GABP

Forward Reverse Combined

6-tuple p-value 6-tuple p-value 6-tuple Complement p-value

CACTTC 5.55E-11 CGGAAG 2.06E-08 ACTTCC GGAAGT 1.78E-15

ACTTCC 1.75E-10 CCGGAA 2.1E-08 CAGAAG CTTCTG 1.78E-15

TTCCGG 4.97E-10 CTTCCG 2.75E-07 CGGAAG CTTCCG 2.33E-15

CTTCCG 6.47E-10 TAGCGG 3.26E-07 CACTTC GAAGTG 3.55E-15

CAGAAG 8.82E-07 GAAGCT 5.42E-07 GCAGAA TTCTGC 7.44E-15

GCAGAA 1.16E-06 CTAGCG 1.2E-06 CCGGAA TTCCGG 1.42E-14

AAATAG 1.25E-05 CACTTC 1.31E-06 CTATAG CTATAG 2.80E-13

GAAATA 1.3E-05 ACTTCC 1.48E-06 AAGTGA TCACTT 4.21E-12

TCACTT 1.32E-05 GAAGTG 1.53E-06 GCGGAA TTCCGC 6.54E-12

ACACTT 2.45E-05 GGAAGT 1.77E-06 CCGCTA TAGCGG 1.46E-10
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Li et al., 2010) and showed that the local sequence content can predict the read distribution well. These

results can potentially be used to model the read distribution along the genome sequence. The effect of such

dependency on the distribution of the number of occurrences of patterns needs further study. We also

assumed that the fragments from NGS are of the same length. In reality, their length can vary and follow

some distribution. This is another topic for future studies.
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