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ABSTRACT

One of the core classical problems in computational biology is that of constructing the most
parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of
evolutionarily related organisms. We reexamine the classical maximum parsimony (MP)
optimization problem for the general (asymmetric) scoring matrix case, where rooted
phylogenies are implied, and analyze the worst case bounds of three approaches to MP: The
approach of Cavalli-Sforza and Edwards, the approach of Hendy and Penny, and a new
agglomerative, ‘‘bottom-up’’ approach we present in this article. We show that the second
and third approaches are faster than the first one by a factor of Y(

ffiffiffi
n
p

) and H(n), respec-
tively, where n is the number of species.

Key words: maximum parsimony, large parsimony, phylogeny, phylogenetic reconstruction,

asymmetric scoring matrix, dendograms.

1. INTRODUCTION

Phylogenetics is the study of evolutionary relationships among groups of organisms (e.g., species,

populations), which are discovered through molecular sequencing data and morphological data matrices.

A phylogeny (also called a dendogram) is a graphlike structure whose topology describes the inferred

evolutionary history among a set of biological entities, such as species or DNA sequences.

Phylogenies are classically modeled as either rooted or unrooted labeled binary trees, where the input entities

are assigned to the leaf vertices. An unrooted phylogeny is an acyclic connected labeled graph in which every

vertex has a degree of either three or one. Each vertex of degree one has a distinct label. A rooted phylogeny, on

the other hand, is similar to an unrooted phylogeny, except that it has one internal vertex of degree two, which is

designated as the root. In a rooted phylogeny the edges are directed from the root toward the leaves.

The decision of whether to model phylogenies as rooted versus unrooted trees depends either on the

availability of a molecular clock, or on the nucleotide or amino acid substitution scoring matrix re-

presenting the evolutionary mutation events. Modeling phylogenies as unrooted trees requires the as-

sumption of symmetric scoring matrices. However, when the symmetry restriction on scoring matrices is

removed, the tree rooting becomes meaningful. A simple literature review of current biological research

shows that the symmetric scoring matrices, though computationally convenient, do not yield a biologically

reliable model (Rodriguez et al., 1990; Takahata and Kimura, 1981; Gojobori et al., 1982; Tajima and Nei,

1984). Various recent biological publications apply asymmetric scoring matrices to the alignment of

genomic sequences, and many articles can nowadays be found on the construction of asymmetric scoring
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matrices consisting of nucleotides (Tamura, 1992; Tamura and Nei, 1993; Blouin et al., 1998) and amino

acids (Müller et al., 2001; Bastien et al., 2005). Thus, in this work we do not assume symmetric scoring

matrices and therefore construct rooted phylogenies.

Methods for phylogeny reconstruction can be classified into distance-based versus character-based

methods. Given a set of input sequences, a distance-based method, such as UPGMA and neighbor joining

(NJ), first computes pairwise distances according to some measure (Felsenstein and Felenstein, 2004).

Then, the actual data is discarded and the fixed distances are used in the derivation of trees. In contrast, in

character-based methods (such as maximum parsimony and maximum likelihood) the inference depends

upon models describing the evolutionary changes of characters (e.g., nucleotides or amino acids) that led

from an original sequence in some common ancestor to the evolution of the observed input sequences. The

great advantage of character-based algorithms for phylogenetic reconstruction is that, given a good multiple

alignment of input sequences, they can exploit the potential phylogenetic inferences with great sensitivity.

Their weakness, however, is in their computational intensity. In this article we focus on the classical

maximum parsimony character-based phylogenetic approach.

1.1. Phylogentic reconstruction based on parsimony maximization

Parsimony maximization (i.e., preferring the simpler of two otherwise equally adequate theorizations) is

one of the classical approaches to computationally reconstruct a phylogeny for a given set of biologically

related sequences. When applied to computational phylogenetics, the parsimony maximization approach

seeks the phylogenetic tree that supposes the least amount of evolutionary change explaining the observed

data (Cavalli-Sforza and Edwards, 1967). There are two classical problems inferred from phylogenetic

parsimony maximization: small parsimony (SP) and maximum parsimony (MP), as explained below.

Problem 1: Small parsimony (SP) The small parsimony problem is to compute, for a proposed phy-

logeny, a reconstruction of events leading to the input data with as few changes as possible over the whole

tree (Fig. 1). The input to this problem is a multiple alignment of n input sequences of length m each, and a

topology in the form of a rooted phylogenetic tree over n leaves, where each leaf is associated with a

distinct sequence from the input set. Based on this input, the objective is to compute a labeling of the

internal vertices of the input phylogeny that optimizes some predefined scoring scheme.

The most basic algorithms for solving SP are Fitch’s algorithm (Fitch, 1971) and Sankoff’s algorithm

(Sankoff, 1975). In its simplest variant (solved by Fitch’s algorithm and exemplified in Fig. 1c and d), the

scoring scheme is Hamming distance, and the optimal labeling is one that minimizes the number of

mutations. It is standard to assume position-independence between the states (columns of characters in the

multiple alignment). Thus, the total SP score for an input multiple sequence alignment is computed as the

sum of the SP scores of each state assignment.

Problem 2: Maximum parsimony (MP) The maximum parsimony (MP) problem is to seek, among all

possible phylogenies over a given set of leaves, the phylogeny that yields the best SP score. Similarly to SP,

the input to this problem is a multiple alignment of n input sequences of length m each. However, here the

a b c d

FIG. 1. An example of an instance with Hamming distance–based parsimony score. The input to the problem consists

of five species and a multiple alignment of their corresponding sequences (a) and a given phylogeny (b). Note that the

phylogeny specification consists of both the tree topology and the assignments of species to its leaves. In this example,

n = 5 and m = 7; (c) and (d) show two examples of internal vertices assignments corresponding to the second state

(column) of the exemplified SP instance [highlighted in (a) via a gray rectangle]. A binary substitution scoring matrix is

assumed in this scoring scheme, where two identical characters are given a score of 0, and two distinct characters a

score of 1. Assignment (c) provides the minimal number of mutations, 1, whereas assignment (d) yields two character

mutations.
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topology is not given. The MP problem is NP-hard (Day and Sankoff, 1986; Foulds and Graham, 1982). A

straightforward approach for solving MP is to enumerate all possible phylogenies over the set of leaves and

then employ an SP algorithm on each phylogeny. This approach was used by Cavalli-Sforza and Edwards

(1967), who showed that the number of phylogenies over n leaves is (2n - 3)!! = 1 · 3 · 5 · � � � · (2n - 3).
Several constrained variants of MP were studied over the years (Felsenstein and Felenstein, 2004). The most

famous among them is the perfect phylogeny problem, which is also NP-hard (Bodlaender et al., 1992) and

for which FPT algorithms were proposed (Agarwala and Fernández-Baca, 1994; McMorris et al., 1993).

Measuring SP and MP complexity in terms of basic operations. SP and MP algorithms work by com-

puting some information for every internal vertex of the input phylogeny. This information, as well as the

complexity of its computation, depend on the scoring scheme employed by the parsimony algorithm. Thus,

in what follows, we will use the term basic operation to denote the work invested in the computation of the

information of a single vertex of a considered phylogeny for a specific scoring scheme. For example, in the

Fitch SP algorithm (Fitch, 1971), which computes a minimal Hamming distance SP score, an O(m)-time

basic operation is applied, while in the Sankoff algorithm (Sankoff, 1975), which optimizes an SP score of

minimal weighted edit distance, an O(mR2)-time basic operation is applied, where R denotes the size of the

alphabet spelling the input sequences.

Our Contribution In this work, we examine the complexity of MP in terms of the total number of basic

operations executed throughout the run of the algorithm. Using this measure, we analyze the worst case

complexity of three approaches to MP. The first, basic approach, is the one proposed by Cavalli-Sforza and

Edwards (1967), which performs (n - 1) $ (2n - 3)!! basic operations. The second approach is based on the

Hendy and Penny (1982) MP search space, which interleaves the SP computations within the tree-space

development flow. This search space was originally proposed for the purpose of a branch-and-bound MP

search, and its theoretical worst-case bound was not previously properly bounded. Our first result is

Theorem 2.2 in section 2, in which we analyze the basic operations complexity of the Hendy and Penny

approach and show that it is faster than the Cavalli-Sforza and Edwards approach by a factor of Y(
ffiffiffi
n
p

).
Both Hendy and Penny’s work as well as the follow-up exact branch and bound extensions (Felsenstein

and Felenstein, 2004) still kept the same traditional order of search space development, based on the

Cavalli-Sforza and Edwards tree enumeration order. In order to further improve MP efficiency, we propose

to turn the state development order of the classical MP search tree ‘‘upside down,’’ that is, from the

classical top down incremental tree extension by a single edge per each new state, to a bottom-up

agglomerative approach that merges two previous subtrees per each state. This idea is based on the

observation that the ‘‘top down’’ approach to MP search goes ‘‘against the grain’’ of the update operations

applied by the Hendy and Penny SP subroutines per each new search space node.

Due to this, the savings by the Hendy and Penny approach in avoiding overlapping redundant SP

computations across subtrees shared by distinct phylogenies at level n is weakened by the work applied for

the sake of search-space information maintenance. Such maintenance requires, per each new node in the

search space, the traversal and updates of all vertices along the path from the newly added leaf up to the

root of the phylogeny represented by the new node (Fig. 2).

FIG. 2. An example of the search space tree T CSE
4 . Only some of the nodes of the search space tree are shown.

Highlighted in gray within the phylogenies in each node of the search tree are the vertices updated by basic operations

when applying Hendy and Penny’s MP approach on T CSE
4 .
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In order to avoid this inefficiency, we suggest a ‘‘bottom up’’ directed MP search, based on subtree

merging, which flows along with the natural ‘‘bottom up’’ direction of small parsimony. By design,

traversing the search space according to our proposed search tree requires performing exactly one basic

operation per node of the search tree (the basic operation is applied on the new root of the two merged

trees in the agglomerative step). Thus, the complexity of our new MP algorithm is equal to the size of our

proposed search space tree. We show that this size is approximately e $ (2n – 3)!!, where e is the base of

the natural logarithm. Thus, our new approach yields a basic operations complexity that is smaller by a

factor of Y(
ffiffiffi
n
p

) than the complexity of the Hendy and Penny approach (Theorem 3 in section 4). We note

that the bound obtained by our proposed algorithm is on the same order of the number of topologies

considered by MP, and therefore any approach to exact MP that must enumerate all topologies will not

improve our result.

We note that the original work of Hendy and Penny assumed a symmetric scoring matrix. Under the

assumption of symmetric scoring matrices, it can be shown that rooted MP can be solved via the simpler

unrooted MP. However, such is not the case in practice, when the restriction to symmetrical scoring

matrices is removed (Rodriguez et al., 1990; Takahata and Kimura, 1981; Gojobori et al., 1982; Tajima and

Nei, 1984), and the tree rooting becomes meaningful. The algorithms we propose and analyze in this article

generalize the previous most efficient exact solutions to this problem and do not assume the use of

symmetrical scoring matrices.

The rest of the article proceeds as follows. First, in section 2 we analyze the basic operations complexity

of the algorithm of Cavalli-Sforza and Edwards and the algorithm of Hendy and Penny. In section 3 we

describe our new approach to search space construction, and in section 4 we analyze the basic operations

complexity of our search space. Finally, we give our concluding remarks in section 5.

2. ANALYSIS OF PREVIOUS APPROACHES

Throughout the article, a phylogeny is a rooted binary labeled tree. Each leaf in the tree has a distinct

label from f1‚ . . . ‚ ng, where n is the number of leaves. We also define a forest to be a collection of rooted

binary labeled trees. Each leaf in the forest has a distinct label from f1‚ . . . ‚ ng, where n is the number of

leaves in all the trees.

We will later define another type of trees called search space trees. In order to make the text more clear,

we will use different terminology for the two types of trees; we will use vertex for phylogenies and node for

search space trees.

2.1. The algorithm of Cavalli-Sforza and Edwards

The algorithm of Cavalli-Sforza and Edwards (1967) enumerates all phylogenies with n leaves, and then

solves the small parsimony problem on each tree. Cavalli-Sforza and Edwards showed that the number of

phylogenies with n leaves is (2n - 3)!!. Moreover, each phylogeny has exactly n - 1 internal vertices. The

following complexity bound is obtained.

Theorem 1 (Cavalli-Sforza and Edwards, 1967). The basic operations complexity of the algorithm of

Cavalli-Sforza and Edwards is (n - 1) $ (2n - 3)!!.

The enumeration of all phylogenies can be modeled by a search space tree. The search space tree T CSE
n

consists of n levels (Fig. 2). The nodes of level i - 1 correspond to all phylogenies with i leaves. For a

node v of the search space tree, denote by Fv the phylogeny that corresponds to v. A node v of level i - 1

has 2i - 1 children defined as follows: For each edge e in Fv, there is a child ve of v whose corresponding

phylogeny Fve is obtained from Fv by splitting the edge e into two edges connected in a new vertex x,

whose additional child is a new leaf with label i + 1. The node v has an additional child v0 whose

corresponding phylogeny Fv0 is obtained from Fv by adding a new root vertex x. The children of x are the

root of Fv and a new leaf (with label i + 1). From the definition of the search space tree, it is clear that

level i of the tree contains (2i - 3)!! nodes, and in particular, there are (2n - 3)!! leaves in the tree. Thus,

the number of phylogenies with n leaves is (2n - 3)!!. The enumeration of the phylogenies with n leaves is

achieved by performing a traversal of the search space tree, and building the phylogeny Fv when reaching

each node v.
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2.2. The algorithm of Hendy and Penny

Hendy and Penny (1982) interleaved the small parsimony operations within search space tree traversal.

Their algorithm traverses the tree T CSE
n , and when reaching a node v, it solves the small parsimony problem

for the phylogeny Fv. However, the small parsimony algorithm does not need to compute the required

information for all internal vertices of Fv since the information computed for the phylogeny of v’s parent

can be used. More precisely, let u be the parent of v, and let x be the newly added leaf in Fv. If y is an

internal vertex of Fv that is not an ancestor of x, then the information for the vertex y in Fv is identical to the

information for the vertex y in Fu. Since the latter was already computed, in order to solve the small

parsimony problem on Fv, only vertex information for the ancestors of x needs to be computed. For a vertex

v in T CSE
n , let NumAnc(v) denote the number of ancestors of x in Fv, where x is the newly added leaf in Fv.

Therefore, the basic operations complexity of the algorithm of Hendy and Penny is
P

v2T CSE
n

NumAnc(v)

(the summation is performed over nodes from all levels of the search tree). We next give a formula for the

summation above.

Definition 1. Let Hi be the sum of NumAnc(v) for all nodes v in level i + 1 of T CSE
n .

By definition,
P

v2T CSE
n

NumAnc(v) =
Pn - 1

i = 1 Hi.

Lemma 1. Hi = (2i)!! - (2i - 1)!!.

Proof. Let v be a node at level i + 1 in T CSE
n , and let x be the newly added leaf in Fv. Let F0 be the forest

obtained from Fv by removing x and its ancestors, and removing all the edges incident on these vertices.

Note that every tree in F0 is a subtree of a distinct ancestor of x in Fv, and every ancestor of x corresponds to

exactly one tree in F0. Therefore, NumAnc(v) is equal to the number of trees in F0 (see Fig. 3 for an

example). The latter number is called the cover number for f1‚ . . . ‚ ig in Fv in Ochiumi et al. (2011). It is

shown in Ochiumi et al. (2011) that the sum of the cover number for f1‚ . . . ‚ ig in all phylogenies with i + 1

leaves is (2i)!! - (2i - 1)!!. -

Theorem 2. The basic operations complexity of the algorithm of Hendy and Penny is Y(
ffiffiffi
n
p

(2n - 3)!!).

Proof. By Lemma 1, the complexity is
Pn - 1

i = 1 ((2i)!! - (2i - 1)!!). We have

lim
n!1

Pn - 1
i = 1 ((2i)!! - (2i - 1)!!)ffiffiffi

n
p

(2n - 3)!!

= lim
n!1

Pn - 2

i = 1

((2i)!! - (2i - 1)!!)ffiffiffi
n
p

(2n - 3)!!
+

(2n - 2)!! - (2n - 3)!!ffiffiffi
n
p

(2n - 3)!!

0
BB@

1
CCA

=(1)
lim

n!1

(2n - 2)!! - (2n - 3)!!ffiffiffi
n
p

(2n - 3)!!
= lim

n!1

(2n - 2)!!ffiffiffi
n
p

(2n - 3)!!

= lim
n!1

(2n)!!ffiffiffi
n
p

(2n - 1)!!
=(2)

lim
n!1

(2n)!ffiffiffi
n
p

((2n - 1)!!)2

=(3)
lim

n!1

(2n)!ffiffiffi
n
p

( (2n)!
2n�n!)

2
= lim

n!1

(2nn!)2ffiffiffi
n
p

(2n)!
=(4)

lim
n!1

2pn( 2n
e

)2nffiffiffi
n
p ffiffiffiffiffiffiffiffi

4pn
p

( 2n
e

)2n
=
ffiffiffi
p
p

:

FIG. 3. An example for the proof of Lemma 1. The leaf x has three ancestors,

which is equal to the number of trees in the forest obtained by removing x and its

ancestors.
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Equality (1) is true since

Xn - 2

i = 1

((2i)!! - (2i - 1)!!) = (2n - 4)!! - 1!! +
Xn - 2

i = 2

(2i - 2)!! - (2i - 1)!!

 !
p(2n - 4)!!:

Therefore, the limit of the summation above divided by
ffiffiffi
n
p

(2n - 3)!! is 0. Equality (2) follows from the

equality (2n)! = (2n)!!(2n - 1)!!. Equality (3) follows from the equalities (2n)!! = 2n$n! and (2n)! =
(2n)!!(2n - 1)!!. Finally, Equality (4) follows from Stirling’s formula. -

3. A NEW, MORE EFFICIENT SEARCH SPACE TREE

In this section we present a new, ‘‘bottom up’’ search space enumerating MP. In order to define our new

search space tree, we first build a directed acyclic graph Gn. We will later transform Gn into a tree T n by

removing some of the edges.

We define a merge operation on a forest F to be an operation that generates a new forest F0 by adding a

new vertex to the forest and hanging two trees of F on this vertex. In the graph Gn, every node v

corresponds to a forest with n leaves. The graph contains a single node at level 0 whose corresponding

forest consists of n singletons. The nodes of level i in the graph correspond to all the forests that can be

obtained from the forests that correspond to the nodes of level i - 1 by single merge operations. There is an

edge (u, v) in the graph if and only if Fv is obtained from Fu by a merge operation.

Note that a node in Gn can have several incoming edges. We next transform n into a tree T n by selecting

exactly one edge from the edges entering a node and removing all other edges.

For a tree T in a forest define the label of T to be

label(T) = minflabel(v) : v is a leaf in Tg:

The label of a forest F is

label(F) = minflabel(T) : T is a non-singleton tree in Fg:

For a node u in the graph Gn, let Tu denote the tree in Fu for which label(Tu) = label(Fu). Using the

definitions above we can define the search space tree T n (Fig. 4).

Definition 2. The search space tree T n is a tree whose nodes are the nodes of Gn. A node v is the parent

of a node u in T n if Fv is obtained from Fu by deleting the root of Tu.

The definition above gives an implicit characterization for the children of a node. We now show explicit

characterization.

FIG. 4. An example of the search space tree T 4. Only some of the nodes of the tree are shown. The dashed line is an

edge of G4 that is not an edge of T 4. Highlighted in gray within the phylogenies in each node of the search tree are the

vertices updated by basic operations when applying our MP approach on T 4.
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Lemma 2. A node u is a child of a node v in T n if and only if Fu is obtained from Fv by merging two

trees T1 and T2 from Fv with label(T1) < label(T2) and either

1. T1 = Tv (and in particular, T1 is not a singleton), or

2. T1 is a singleton and label(T1) < label(Tv).

Proof. (0) Let u be a child of v in T n. By definition, deleting the root of Tu gives the forest Fv. In

other words, if we denote by T1 and T2 the two trees formed from Tu by removing its root, then Fu is

obtained from Fv by merging T1 and T2. Without loss of generality, assume label(T1) < label(T2). By

definition, label(Tu) = min(label(T1), label(T2)) = label(T1). The tree Tu is the non-singleton tree of Fu with

minimum label. It follows that in Fu, the leaves with labels 1‚ . . . ‚ label (T1) - 1 are each inside a singleton.

Since Fu is obtained from Fv by a single merge operation, these leaves are also in singletons in Fv. If T1 is

non-singleton then it is the non-singleton tree in Fv with minimum label($) value. Thus, T1 = Tv, namely

case 1 of the lemma occurs. If T1 is a singleton then, since the leaves with labels 1‚ . . . ‚ label (T1) are in

singletons in Fv, we obtain that label(Tv) > label(T1) and case 2 of the lemma occurs.

(*) Suppose Fu is obtained by merging two trees T1 and T2 from Fv, and let T 0 denote the tree obtained

by this merge. In both cases of the lemma we have that the leaves with labels 1‚ . . . ‚ label (T1) - 1 are each

inside a singleton in Fv, and therefore these leaves are also in singletons in Fu. Therefore, T 0 is the non-

singleton tree in Fu with minimum label, namely T 0 = Tu. Thus, v is the parent of u in T n. -

4. COMPLEXITY OF THE NEW SEARCH SPACE

We have proposed a new search method for MP. We now wish to bound the basic operations complexity

of our approach. By design, traversing the search space according to our search tree requires performing

exactly one basic operation per node; for a node v, the basic operation is applied on the new root of the two

merged trees in Fv. Thus, the basic operations complexity is equal to the size of T n. We will next show that

the size of T n is approximately e $ (2n - 3)!!

Definition 3. Let An
i denote the number of nodes in level i of T n, and let Ln

i‚ k denote the number of

nodes v in level i for which label(Fv) = k.

Example 1. An
0 = 1‚ An

1 = n
2

� �
, and An

n - 1 = (2n - 3)!!.
Note that for a node v in level i of T n, the forest Fv contains n - i trees.

Observation 1 If v is a node in level i then label(Fv) £ n - i.

Proof. The forest Fv is obtained from the forest of n singletons by a sequence of i merge operations. At

least one merge operation must involve a tree containing a leaf with label at most n - i. Thus, the label of

the resulting tree is at most n - i. This tree can participate in other merge operations, which either decrease

or do not change the label of the tree. At the end of the merge operations the label of the tree is at most n - i

and thus label (Fv) £ n - i. -

Observation 2 An
i =
Pn - i

k = 1 Ln
i‚ k.

Lemma 3. Ln
i + 1‚ k = (n - i - k)

Pn - i
l = k Ln

i‚ l.

Proof. First, we count the number of children with label k for a node in level i with label l (we will

soon show that this number does not depend on the topology of the corresponding forest). Let v be some

node in level i with label l. Note that the forests corresponding to the children of v have labels at most l. For

a child u of v for which label(Fu) = k, the forest Fu is obtained by merging two trees T1 and T2 from Fv such

that label(T1) = k and label(T2) > k (note that T1 = Tv if k = l, and otherwise T1 is a singleton). It follows that

the number of children of v with label k is the number of trees T in Fv with label(T) > k. Since k £ l and the

leaves with labels 1‚ . . . ‚ l - 1 are in singletons, it follows that there are exactly k trees with label at most k.

The total number of trees in Fv is n - i and therefore Fv contains n - i - k trees with label greater than k.

Thus, the number of children of v with label k is n - i - k (not depending on the topology nor on l).
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From the above we can deduce a recursive formula for Ln
i + 1‚ k. A node in level i + 1 with label k is the

child of a node in level i with label l ‡ k The lemma follows. -

Lemma 4. Ln
i‚ k = (2i - 1)!! n - k + i - 1

2i - 1

� �
.

Proof. We prove the lemma using induction on i. For the base of the induction we need to show that

Ln
1‚ k = n - k for all k = 1‚ . . . ‚ n - 1. Fix some k. The forest corresponding to a node in level 1 with label k is

obtained from the forest of n singletons by merging a singleton with label k with a singleton with label

larger than k. Therefore, Ln
1‚ k = n - k.

We now prove the induction step. Assume that the lemma holds for i0 < i. By the induction hypothesis

and Lemma 3,

Ln
i‚ k = (n - i - k + 1)

Xn - i + 1

l = k

Ln
i - 1‚ l = (n - i - k + 1)

Xn - i + 1

l = k

(2i - 3)!!
n - l + i - 2

2i - 3

� �

= (n - i - k + 1)(2i - 3)!!
Xn - i - k + 1

m = 0

2i - 3 + m

2i - 3

� �
:

Using the equality
Pn - k

m = 0
k + m

k

� �
= n + 1

k + 1

� �
we obtain

Ln
i‚ k = (n - i - k + 1)(2i - 3)!!

n + i - k - 1

2i - 2

� �
= (2i - 1)!!

n + i - k - 1

2i - 1

� �
:

-

Lemma 5. An
i = (2i - 1)!! n + i - 1

2i

� �
.

Proof. From Lemma 3 and Observation 2 we have Ln
i‚ 1 = (n - i)

Pn - i + 1
l = 1 Ln

i - 1‚ l = (n - i)An
i - 1. Therefore,

An
i = Ln

i + 1‚ 1

n - i - 1
. By Lemma 4, An

i = (2i + 1)!! n + i - 1
2i + 1ð Þ

n - i - 1
= (2i - 1)!! n + i - 1

2i

� �
. -

Let ln be the number of nodes in a search space tree T n. Then, ln =
Pn - 1

i = 0 An
i =
Pn - 1

i = 0 (2i - 1)!! n + i - 1
2i

� �
.

The series (ln) has already been studied, and the following result was obtained (Grosswald, 1978).

lim
n!1

ln

e(2n - 3)!!
= 1 (1)

We now compare the size of our search tree to the size of the search tree T CSE
n . Let gn be the number of

nodes in T CSE
n . Then, gn =

Pn
i = 1 (2i - 3)!!. It is easy to verify that

lim
n!1

gn

(2n - 3)!!
= 1 (2)

From Equations (1) and (2) we obtain that limn!1
ln

gn
= e.

Finally, since solving MP using our search tree requires performing exactly one basic operation per node

of the search tree, we obtain the following theorem.

Theorem 3. The basic operations complexity for solving MP using the new search space is

(1 + o(1))$e$(2n - 3)!!. Moreover, this complexity is Y(
ffiffiffi
n
p

) times smaller than the complexity of the al-

gorithm of Hendy and Penny.

Proof. The theorem follows from Theorem 2 and Equation (1). -

5. CONCLUSIONS

We studied the classical problem of exact maximum parsimony (when, in the worst case, all

phylogenies need to be enumerated), focusing on the worst case time complexity of various algorithms

for the problem.
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The first approach we analyzed, proposed by Cavalli-Sforza and Edwards (1967), yields a basic oper-

ations complexity of (n - 1) $ (2n - 3)!!. The second approach we analyzed was proposed by Hendy and

Penny (1982). Its theoretical worst-case complexity has not been previously analyzed. We showed that the

basic operations complexity of this approach is smaller by a factor of Y(
ffiffiffi
n
p

) than the complexity of the

Cavalli-Sforza and Edwards approach.

We also proposed a new, faster MP approach, whose basic operations complexity is smaller by a factor

of Y(
ffiffiffi
n
p

) than the complexity of the Hendy and Penny approach, and by a factor of H(n) than the

complexity of the Cavalli-Sforza and Edwards approach. We note that the bound obtained by our proposed

algorithm is on the same order of the number of topologies considered by MP, and therefore any approach

to exact MP that must enumerate all topologies will not improve our result.

Note that our analysis is done for asymmetrical scoring matrices. When the matrices are symmetrical, the

algorithm of Hendy and Penny also achieves a running time of H((2n - 3)!!) as the traversal to the root is no

longer necessary. We emphasize again that this is not the case in practice, and asymmetrical matrices are

often used today in various applications of phylogenetics.

Further note that, due to the complexity of MP, when the input data is big it is common in practice to

apply either heuristic search or exact optimization methods (such as, for example, branch and bound or

intelligent search), in combination with tree-scoring functions, in order to identify a reasonably good tree

that fits the data. However, the theoretical questions we ask in this article, even though focused on a linear

factor within the complexity of an NP-hard problem, are at the core of the analysis of phylogenetic search.

Thus we believe that our results could also be reflected, after further study of appropriate heuristics and

search optimizations, to the practical, sparsified search-space solutions applied by current state-of-the-art

character-based phylogenetic reconstruction tools.
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