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Abstract

Advances in high-throughput sequencing technologies have resulted in an exponential growth of publicly accessible
biological datasets. In the ‘big data’ driven ‘post-genomic’ context, much work is being done to explore human
protein–protein interactions (PPIs) for a systems level based analysis to uncover useful signals and gain more insights to
advance current knowledge and answer specific biological and health questions. These PPIs are experimentally or
computationally predicted, stored in different online databases and some of PPI resources are updated regularly. As with
many biological datasets, such regular updates continuously render older PPI datasets potentially outdated. Moreover, while
many of these interactions are shared between these online resources, each resource includes its own identified PPIs and
none of these databases exhaustively contains all existing human PPI maps. In this context, it is essential to enable the
integration of or combining interaction datasets from different resources, to generate a PPI map with increased coverage
and confidence. To allow researchers to produce an integrated human PPI datasets in real-time, we introduce the integrated
human protein–protein interaction network generator (IHP-PING) tool. IHP-PING is a flexible python package which
generates a human PPI network from freely available online resources. This tool extracts and integrates heterogeneous PPI
datasets to generate a unified PPI network, which is stored locally for further applications.
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Introduction
Advances in high-throughput sequencing technologies coupled
with analytical innovations are yielding novel computational
tools. This has enabled access to entire genomic contents of
individuals and research methodologies have shifted accord-
ingly. Millions of genetic variants have been uncovered and
documented in the public domain, some of which are associated
with diseases or affect response to therapeutics. Effects of these
variants revealed that some disease outcomes, in particular
complex diseases, such as cancer and tuberculosis, or a response
to therapeutics are influenced by multiple genes. Considering
that many genes may contribute to disease, it is understandable
that modern attempts to associate phenotypes with genetic
variations do so on a genomic scale [1], using the interactome,
i.e. the complete set of physical protein–protein interactions
(PPIs) within a cell [2–4]. This context has been described as
the post-genomic era and involves the exploration of available
sources of information at the systems level [5]. This provides
new opportunities for genomic analysis to correlate phenotypes
to interactions between candidate or target genes [5]. This func-
tional information can be inferred using PPI networks [6, 7],
highlighting how genes/proteins interact and influence each
other in the same sub-network (motifs or module), in which
case, reconstructing the complete interactome map is essential.
This is in stark contrast to the older geno-centric view [8], which
sought to describe simple links connecting individual genes to
particular phenotypes [9].

Currently, one approach for exploring the interactome is
through the generation and analysis of PPI networks [10–13].
These networks display proteins and the interactions between
protein pairs in the form of mathematical graphs, which consist
of edges and nodes [1, 14]. PPI networks are currently being used
for several biological applications, including protein function
prediction; candidate gene or target prediction [6] and prioritiza-
tion; post genome-wide association analyses [15]; prediction of
disease phenotype trends and identification of disease-related
genetic patterns or properties [1]. Interactions between protein
pairs can be predicted experimentally by high-throughput yeast
two-hybrid screens and/or mass spectrometry [16]. Alternatively,
interactions can be inferred from literature [17, 18], or predicted
based on sequence data [19]. These PPI datasets are curated
and stored in several online resources [7], including STRING
[20], IntAct [21], MINT [22], BioGRID [23], DIP [24], HPRD [25] and
MPPI-MIPS [26]. Some of these resources update their datasets
regularly using manual curation guidelines from the interna-
tional molecular exchange (IMEx) initiative [27], e.g. IntAct, MINT,
DIP or automated curation schemes, e.g. STRING. Thus, new
versions are often released, rendering older networks potentially
outdated and existing human PPI networks are still incomplete
[28, 29]. Furthermore, while many of these existing PPIs are
shared [30] between these resources, none of them covers all
reported PPIs [28, 31]. This suggests that the generation of an
aggregate network that combines interaction datasets from dif-
ferent sources, increasing the network coverage and confidence
[14, 28, 31, 32], in real-time would aid researchers in producing
outputs that are continually based on current information.

Existing PPI generally list pairs of proteins, usually accom-
panied by references to the literature that documents these
interactions with confidence scores. There are some differences
between the data stored within these resources in terms
of the protein identifier (ID) system used as well as the
structure of the dataset files. So, the IMEx consortium [27]
was set to harmonize curation efforts in standardizing public
interaction datasets through common computational query

interfaces (PSICQUIC) [33, 34] using Human proteome organ-
isation proteomics standards-initiative molecular interaction
(HUPO PSI-MI) to produce a non-redundant set of PPIs following
the minimum information about a molecular interaction
experiment (MIMIx) guidelines [35]. Each resource contains the
interaction data that can be extracted to perform analyses of
human PPI networks. Integrating datasets from existing PPI
resources to produce a unified PPI network is still challenging
due to the lack of tools which easily generate a unified
human PPI network on demand and in real-time for use in
the generation and testing of hypotheses. Existing attempts
to overcome this challenge have focused on pre-designing
databases only accessible via web platforms [36, 37]. These
web platforms offer some advantages, e.g. ease of access and
being more user-friendly than terminal application interfaces.
However, depending on server hosts, a web service may become
unavailable at any time. Furthermore, users are required to trust
the database developer updates. Here, we introduce an inte-
grated human protein–protein interaction network generator,
IHP-PING, a user-friendly and accessible tool, easing integration
of PPI datasets from multiple sources into a unified PPI network
on-the-fly, which is stored locally for further user applications.

Implementation of the IHP-PING Package
IHP-PING is a portable and expandable package implemented in
Python version ≥2.7 [38] and tested on a Linux operating system.
It runs using a single command-line terminal on any computer
or any operating system running Python and satisfying the
IHP-PING requirements (see Supplementary File, Appendix A1:
Section 2.1 and Section 2.2). It is freely available and accessible at
http://web.cbio.uct.ac.za/ITGOM/post-analysis-tools/ihp-ping-
dev/ and https://github.com/gkm-software-dev/post-analysis-
tools under the GNU General Public License (GPL:https://www.
gnu.org/licenses/gpl-3.0.en.html).

Overview of different online PPI databases

There exist several online databases (see http://www.pathgui
de.org/) storing different PPI datasets. We classify these
databases into three main categories depending on types of
PPIs stored: experimentally inferred and/or computationally
predicted. These categories are: source experimentally inferred,
type computationally predicted and integrated metadatabase.
The source experimentally inferred category consists of
primary databases capturing experimentally verified PPIs from
literatures, including published high-throughput experiments.
Some illustrations of source experimentally inferred databases
are IntAct, MINT, DIP and BioGRID. The type computationally
predicted databases are those storing only computationally
derived PPIs. Type computationally predicted databases include
human PIPs [39] and Prediction of Interactome (POINT) [40]. The
integrated metadatabase category is composed of databases that
merge PPIs from source experimentally inferred or computa-
tionally predicted PPIs. Generally, databases from this category
retrieve experimentally PPIs from IntAct, MINT, DIP, BioGRID,
MIPS-MPPI and HPRD (see Table 1 for description). Currently,
there exist several metadatabases, e.g. Protein InteraCtion
KnowLedgebase (PICKLE 2.0) [36], Molecular Interaction Search
Tool (MIST) [37], High-quality INTeractomes (HINT) [41], the
Human Integrated Protein–Protein Interaction Reference (HIPPIE)
[42], Integrated Interactions Database (IID) [43], Agile Protein
Interactomes DataServer (APID) [44], Protein Interaction Network
Analysis (PINA) platform [45], the Integrated Interactome System

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa277#supplementary-data
http://web.cbio.uct.ac.za/ITGOM/post-analysis-tools/ihp-ping-dev/
http://web.cbio.uct.ac.za/ITGOM/post-analysis-tools/ihp-ping-dev/
https://github.com/gkm-software-dev/post-analysis-tools
https://github.com/gkm-software-dev/post-analysis-tools
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
http://www.pathguide.org/
http://www.pathguide.org/
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(IIS) [46], the Unified Human Interactome database (UniHI) [47]
and STRING, which also includes computationally predicted
PPIs. STRING is the largest integrated metadatabase containing
computationally predicted PPIs using all known computational
models, namely conserved genomic context (neighbourhood,
gene fusion events, phylogenetic profile or gene co-occurrence
across multiple genomes and sequence homology), interolog,
gene co-expression and text mining models. Considering the
large number of existing online PPI database, it would be
impossible to explore each of them individually, so we refer
the interested user to the interoperable link (http://www.pa
thguide.org/) [48] containing links to most of these online
databases, enabling users to retrieve information needed about
each database.

Heterogeneous PPI dataset sources of the unified
human PPI network

IHP-PING retrieves PPI datasets from eight different online
resources shown in Figure 1 with complete descriptions in
Table 1. It is worth noting that there exist several online PPI
databases as indicated in the previous subsection, however, the
sample selected by IHP-PING is representative as it exhaustively
considers source experimentally inferred PPI databases, used
by most of integrated metadatabases, and STRING, the largest
integrated metadatabase implementing different models for
retrieving computationally predicted PPIs. In addition, we have
also included protein sequence information, which consists of
protein sequences and InterPro domains [49] retrieved from the
UniProt database [50] and used to predict further interactions
with scores computed using an information theory-based
scheme described in [19]. Each PPI is integrated with its score
from its source or estimated for sources with no PPI scores,
depending on the source. These interaction scores provide
an indication about the confidence of predicted interactions.
This is important due to relatively high noise related to high-
throughput data or experiments from which interactions are
inferred. So, the PPI network produced may contain incorrectly
classified interactions, i.e. may fail to detect interactions (false
negatives) or wrongly identify some other interactions (false
positives), which is technology-dependent. The likelihood of
incorrectly classifying an interaction may be minimized com-
putationally by (1) using a data integration model, combining
information from multiple interacting data sources into one
unified network, and (2) applying a strict interaction reliability
or confidence score cut-off. These techniques are expected to
significantly reduce the false negative and positive rate of the
network produced, leading to a PPI network of high confidence
interactions with an increased coverage [14, 28, 31, 32]. With the
advances in computational models and big data analytics, these
computational methods enable the prediction of relatively high
accurate PPIs and the subsequent validation of experimental
results [51].

PPI confidence score estimation

PPI datasets are retrieved sequentially, stored in memory with
each interaction being extracted from the downloaded files,
cleaning the memory space for each source, once PPI extraction
process is done. IHP-PING stores these interactions in the output
file alongside a score for each interaction, which is calculated
differently depending on the dataset from which the interaction
was obtained. In the case of MINT and STRING, there is an

interaction score within the dataset which is extracted by IHP-
PING and entered into the output directly. The HPRD dataset
does not contain interaction scores but, for each interaction,
it lists the publications and evidence sources that support the
interaction, which are then used to estimate the reliability or
confidence score. Given proteins p and q, this score is calculated
as follows:

spq(n) = 1 − 1
n

where n is the total number of confidence sources and publi-
cations. It is worth noting that, if a PPI has been identified by
one source, a random score of 0.5 is assigned. This means that if
an interaction is confirmed only by one source, this interaction
may be true or false, in which case, a reliability score is simply
the probability of this interaction being true. From the formula,
it is clear that this confidence score increases as the number of
sources increases, as expected.

BioGRID, DIP, IntAct and MPPI-MIPS datasets do not contain
interaction scores and thus a default reliability scores at the
middle range (medium confidence): 0.7 for DIP and 0.6 for others
is assigned by IHP-PING, which the authors set based on the
confidence level or the trustworthiness of the dataset under
consideration provided relatively high noise related to high-
throughput data or experiments which has shown to produce
both high false positive and false negative PPIs [51]. The slight
difference of the DIP dataset score was decided considering
the internal curation strategy as DIP also considers the use
of computational or automated curation approaches on top
of the manual curation (https://dip.mbi.ucla.edu/dip/page?id=a
bout). Users should be aware that the estimation of these scores
is based on a relative perception and only reflects the IHP-PING
developers’ subjective beliefs. So, in case a user feels that the
reasoning fundamentally misjudged or underestimated these
scores, he can easily adjust them from the output file as it clearly
separates different PPI sources and related scores per column
(see the IHP-PING parameter inputs and result outputs section
below).

The interactions predicted from protein sequences receive a
score according to sequence similarity and shared protein sig-
natures computed using an information theory-based scheme
described in [19], calculating the cumulative standard normal
distribution function, φ(x), as:

φ(x) = 1
2

+ 1
2

erf
(

x√
2

)

with erf(z) = 1√
π

∫ z
−z exp

(
− t2

)
dt the Gauss error function imple-

mented in the Python math library. This speeds up sequence-
predicted interaction score computation and avoids the use of
any other specific Python libraries.

PPI combined score, harmonizing and integrating
different PPI datasets

After calculating the reliability or confidence score for each func-
tional association protein pair, the combined confidence score
spq for interacting proteins p and q, integrating confidence scores
in a unified PPI network needs to be computed. Of note, this
reliability or confidence score of an interaction between proteins
p and q measures our confidence level in this interaction, which
is the probability or likelihood that this interaction occurred.
So, let us assume that r different sources were used to retrieve
this interaction and let Epq be an event that interaction between

http://www.pathguide.org/
http://www.pathguide.org/
https://dip.mbi.ucla.edu/dip/page?id=about
https://dip.mbi.ucla.edu/dip/page?id=about
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Figure 1. Overall workflow of the IHP-PING tool. The scheme goes through three main steps from user input to a generated human PPI network: Input is parsed via a

simple single command-line terminal, then the selected human PPI datasets are retrieved and network generated in tsv, csv or csv2 format.

proteins p and q could not be retrieved from any of these r
sources, that is:

Epq = r∩
d=1

Ed
pq

where Ed
pq is the event that this interaction could not be retrieved

from the source d. As these sources are assumed to be inde-
pendent, the probability, P

(
Epq

)
, of the event Epq is then given

by

P

(
Epq

)
= P

(
r∩

d=1
Ed

pq

)
= ∏r

d=1P

(
Ed

pq

)

= ∏r
d=1

(
1 − P

(
Ed

pq

))

with Ed
pq the contrary event of Ed

pq, i.e. the event that the inter-
action between p and q is retrieved from the source d and thus

P

(
Ed

pq

)
= sd

pq with sd
pq the confidence or reliability score of an

interaction between p and q retrieved from the source d. Thus,
the combined confidence score spq for interacting proteins p and
q, which is the probability of the event, Epq, indicating that the
interaction between p and q is retrieved from at least one of the
sources, contrary to Epq, is given by

spq = P
(
Epq

) = 1 − P

(
Epq

)
= 1 − ∏r

d=1

(
1 − P

(
Ed

pq

))
= 1 − ∏r

d=1

(
1 − sd

pq

)

Therefore, the combined confidence score spq for interacting
proteins p and q is given by the following formula [1, 10]:

spq = 1 −
∏r

d=1

(
1 − sd

pq

)

noting that r is the total number of PPI data sources and sd
pq is

the confidence score of an interaction between p and q retrieved
from the PPI data source d. Thus, for minimizing the likelihood
of false positive interactions, a reliability cut-off can be applied,
which may lead to a highly reliable PPI network. Note that
IHP-PING includes computationally predicted interactions (e.g.
from protein shared domains and sequences) with interaction
reliability scores computed on-the-fly, i.e. when PPIs are being
inferred, in contrast to the STRING scheme, which also integrates
computationally predicted PPIs by pre-computing PPI reliability
scores.

Naturally, there are some issues when integrating interac-
tions from multiple sources as datasets often use different ID
systems. For example, STRING [20] uses a unique ID system
while DIP [24] includes its own protein ID alongside the corre-
sponding UniProt protein ID [50]. Different protein identifiers
are mapped to reviewed proteins only from Swiss-Prot under
the non-redundant UniProt identifier system for harmonization
before integration. Once all IDs have been mapped success-
fully, the interactions from each database are integrated into a
single data frame. The final output of IHP-PING is a local file
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Figure 2. The IHP-PING output structure. The first two columns are the two interacting proteins, following columns are interaction source confidence or reliability

scores and the last column is the interaction combined score. Space between columns can be tabs, commas or semicolons depending on whether the user chooses tsv,

csv or csv2.

stored in the desired directory which contains all PPI information
extracted from the datasets, namely the two protein IDs and the
score from each source with a combined score in the last column
for each interaction. Under the IHP-PING package, the interacting
proteins in the output file may be in UniProt or gene name ID
systems, depending on the user choice (see Supplementary File,
Appendix A1: Section 2.4). This file may then be used to perform
downstream PPI network analysis.

IHP-PING parameter inputs and result outputs

In order to use IHP-PING, the user invokes a specific module
through Python alongside command arguments (see Supple-
mentary File for details, Appendix A1: Section 2.5 and Section
2.6 for details). The main argument to be provided is the list of
datasets (see Table 1) to be incorporated into the final unified
network, with other parameters changing the operation of the
program according to user preferences, such as the format of the
output file, which can be tab, comma or column separated value
(tsv, csv or csv2 format) as described in Figure 2. Each requested
database is downloaded from specified Uniform Resource Loca-
tions (URLs) and there are different types of resources which
may be integrated by IHP-PING, including PPI databases and PPIs
predicted from protein sequences and domain signatures.

PPI datasets are retrieved sequentially, stored in memory
with each interaction being extracted from the downloaded
files, cleaning the memory space for each source, once the
PPI extraction process is done. IHP-PING stores these interac-
tions in the output file alongside a score for each interaction,
which is calculated differently depending on the dataset from
which the interaction was obtained, as described in previous
sections. Upon running the IHP-PING package, the output file
named after the requested databases and containing all PPIs
retrieved is created within the folder of the package by default,
if no specific folder which should contain the output file has
been provided. This output file format depends on the user
specifications, as indicated above, with tsv being the default
format.

Building a unified human PPI network

A unified human PPI network has been built within the IHP-PING
package without any parameter for the protein UniProt identifier
(ID) system within a tsv output file format (see Supplementary,
Appendix A1: Section 2.5 for details File for details). This network
is generated in three steps highlighted in Figure 1, synchronizing
different protein IDs to reviewed proteins from Swiss-Prot under
the non-redundant UniProt ID system for harmonization before

integration. Each PPI is integrated with its score from its source or
estimated for sources with no PPI scores, as described previously.
IHP-PING retrieved PPIs from all the sources and generated an
output file in a tabular (tsv) format with 11 columns with each
row representing a unique PPI (see Figure 2). The first two fields
contain the IDs of the two proteins involved in the interaction,
with columns 3 through 10 showing the scores for the interaction
from each source. The last value in the row contains the com-
bined score of the interaction. The total number of interactions
obtained from each source is shown in Figure 3, distributed in
low, medium and high confidence levels, with score less than 0.3,
ranging between 0.3 and 0.7, and greater than 0.7, respectively, in
Figure 4. These thresholds are shown in Figure 5 and have been
analytically and statistically inferred and are lower and upper
tail inflection points of the kernel density distribution of an
interaction score sample. In fact, Figures 3 and 4 are contextual
and time specific as most of PPI databases are regularly updated,
i.e. these figures evolve with any new release from IHP-PING PPI
data sources.

The human PPI network generated in this instance contained
8017 087 interactions connecting 19 957 proteins out of 20 366
reviewed human proteins. The number of interacting proteins
being less than that in the reviewed human proteome suggests
that these PPI datasets are still incomplete despite the high
number of PPIs predicted by computational approaches from
STRING and protein sequence data (see Figure 3), likely at the
cost of more noise. Predicted PPIs contain a total of 5276 025
interactions with low confidence, 2045 319 with medium con-
fidence and 695 743 with high confidence level. In analysis
of these interactions, 51 466 interactions with low confidence
(interaction score less than 0.3) were predicted by at least two
different datasets. Distributions of PPIs shared between different
types of PPIs, experimentally inferred (BioGRID, IntAct, MINT, DIP,
HPRD and MPPI-MIPS) and computationally inferred (STRING
and those predicted from protein sequence datasets), are shown
in the Venn diagrams in Figure 6. These Venn diagram results
suggest that there is a relatively large number of PPIs shared
between experimentally and computationally inferred PPIs, for
example, PPIs from MINT are shared by all IHP-PING dataset
sources. As pointed out previously, biases may exist in the PPI
network generated due to relatively high noise related to high-
throughput data or experiments from which interactions are
inferred. In the absence of gold standard PPIs, the data inte-
gration model and the application of a strict interaction relia-
bility or confidence score cut-off are computationally explored
to reduce the impact of these biases, leading to a PPI net-
work of high confidence interactions with an increased coverage
[14, 28, 31, 32].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa277#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa277#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa277#supplementary-data
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Figure 3. Distribution of interactions obtained from different resources contributing to a unified human PPI network—All interactions per source.

Figure 4. Distribution of interactions obtained from different resources contributing to a unified human PPI network—All interactions per source in high-low-medium

confidence level interaction frequencies.

Here, we used a high confidence human PPI network,
extracted from the unified network generated, considering
only interactions with score >0.7 or predicted by two different

sources, to check general topological properties of the biological
networks, namely power-law and small-world properties. This
network consisted of 960 514 interactions linking 19 345 proteins.
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Figure 5. Highlighting lower and upper score thresholds for low-medium-high confidence levels.

Figure 6. Venn diagrams showing the general distributions of shared PPIs between experimentally derived PPIs from online databases following IMEx curation guidelines

(IntAct, MINT and DIP), as well as BioGRID, HPRD and MPPI-MIPS, and computationally predicted PPIs from STRING and Sequence.

The distribution of degree plotted is shown in Figure 7 and
distribution of shortest path lengths within the network in
Figure 8. The power exponent, γ , was estimated to 1.38942
with P-value <0.0001, implying that the network obtained fits

perfectly the power-law property [14, 52]. Furthermore, analysing
in terms of the distribution of path lengths within the network
shows that with average path length of 2.92607 ≈ 3. These results
indicate that the human PPI network conforms to the properties
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Figure 7. The unified human PPI network topological property. Power-law prop-

erty visualizing protein degree against connections frequency in the network.

Figure 8. The unified human PPI network topological property. Small-world prop-

erty—the distribution of shortest path lengths within the interaction network.

of biological networks [53, 54]. Finally, for illustration we used
igraph and tcltk R software libraries to plot Folylpolyglutamate
synthase, mitochondrial (Q05932) protein in human predicted
to be targeted by the Mycobacterium tuberculosis pathogen [1] and
the output is shown in Figure 9.

Discussion
Other existing integrated human PPI network builders

Existing integrated human PPI network builders have attempted
to generate new databases which integrate PPI information from
some or all existing online PPI sources highlighted in Table 1.
Such attempts include PINA, IIS, UniHI, PICKLE 2.0, HINT, HIPPIE,

Figure 9. Using igraph and tcltk R software libraries to plot the Folylpolygluta-

mate synthase, mitochondrial (Q05932) protein for illustration. Node or protein

size is now proportional to the its degree in the protein–protein interaction

network and each link is proportional to the number of its data sources provided

in Table 2, together with final or unified confidence scores.

APID and MIST. As for IHP-PING, these tools retrieve experi-
mentally inferred PPI datasets from commonly used databases,
including IntAct, MINT, BioGRID, DIP, HPRD and MPPI-MIPS. It
is worth noting that some of these databases keep up with
updating their datasets, which are manually curated following
IMEx guidelines as full members of the consortium [27], e.g.
IntAct, MINT, DIP. BioGRID, an observer member of the IMEx
consortium, also regularly updates its datasets, however, some
databases, such as HPRD [25] and MPPI-MIPS [55], have not
updated their datasets for almost 10 years now (see Table 1). This
should be taken into account when retrieving PPI datasets from
these sources.

The common thread linking most of these human PPI
builders to integrated PPI network generation and analysis is
firstly, the access via a web interface and, secondly, the existence
of prebuilt databases which are reportedly updated regularly.
Though these approaches have some advantages, they also
present some limitations to the users of these services. Web
platforms are considered to be easily accessible and more user-
friendly when compared to terminal interfaces or application
software that requires an initial installation. Web platforms
allow for users to access the platform or service at any device
with an internet connection. The limitations of a web platform
include the requirement of a stable and constant internet
connection and the resource is dependent on the server host.
At any time, the web resource may become unavailable to the
user through the actions of the web hosting service.

Issues related to existing builders and the IHP-PING
solution

With regards to pre-constructed databases, the benefit of their
use is that queries are fast as no dataset integration steps need
to be processed; the data are immediately available for use. The
cost to this increased speed is the loss of user customization as
the user is not able to specify which datasets they would like
to be included in the database, though UniHI [47] attempts to
mitigate this by informing users of the original resource from
which an interaction was extracted. By using pre-constructed
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databases, the user is also required to trust the curation process
of the database architects.

As an attempt to avoid pre-constructed databases, and the
issues resultant from PPI datasets being regularly updated, we
present the IHP-PING tool. IHP-PING is a software tool which
generates a human PPI network from freely available online
resources in real-time. This tool is user-friendly and accessible
to biologists so that it may be used without extensive training
in software applications. This tool downloads and integrates the
PPI data of multiple sources to generate a PPI network which is
stored locally for the user. While an internet is required for the
download of the datasets specified by the user, any downstream
analysis of the network produced can be run locally without an
internet connection.

Firstly, while IHP-PING requires a stable internet connection
at runtime, it is not implemented as a web platform. Web-based
tools do have certain advantages such as ease of access but, in
the case of large-scale protein interaction networks, a network
stored locally can be analysed on local hardware, reducing the
user’s reliance on server hardware of the platform and allowing
the user to make use of any available cluster resources. The
network produced by IHP-PING is stored locally and can inte-
grate different datasets into the output network according to
the user’s preference. Secondly, the modular structure of the
code allows for the extension of IHP-PING to support additional
datasets. Beyond supporting new PPI databases as they become
hosted online, any novel method that predicts protein interac-
tions could theoretically be incorporated into the software tool
presented here given that a protein pair with an interaction score
can be obtained. In the opposite fashion, datasets that become
deprecated can be easily excluded by the user from the network.

IHP-PING perspective, evolution and improvements

Looking at the network output shown in Figure 3, it is clear
that the majority of interactions extracted by IHP-PING from PPI
datasets come from STRING and are predicted from sequence
data. This is due to the additional computational approaches
used to predict some of PPIs, which is not the case for other
datasets. We believe that the number of interactions that
are curated from literature will increase over time as more
experiments are performed and published. IHP-PING is uniquely
equipped to retrieve the most recent data from its supported
resources, thus once a supported PPI database is updated,
subsequent runs of IHP-PING will generate a new network
based on the updated information. Therefore, the number of
interactions obtained by the software is likely to increase over
time.

Finally, advances in high-throughput technology have
enabled the generation of tissue-specific gene expression
information and the inclusion of this information may improve
the coverage of the network produced and reduce false negative
PPIs. In its current form, IHP-PING does not directly include gene
expression information, even though STRING supports gene
expression information and retrieving PPIs from STRING implies
that this information is implicitly included. There is a need for
IHP-PING to support explicitly gene expression information as
it is the case for sequence data—this is an area of potential
future expansion. In addition, there is a need for a visualization
technique, like the Cytoscape software [56] or igraph and tcltk
R software libraries, to support drawing of a graph or network
from edge and node data, and which is compatible with the IHP-
PING output, supporting the flexibility of the software. This is
also an area of future work, where we will assess the dynamic

python-networkx and python-matplotlib libraries to implement
a graphical user interface (GUI) to support a systematic network
visualization.

Conclusion
Considering the rapid expansion of the bioinformatics field with
highly dynamic datasets, tools used to manipulate these data
should be flexible and extensible to adequately manage the
regular updates. IHP-PING, a Python adaptable and easy-to-use
application, presents such a tool for generating integrated PPI
networks, with clear benefits when compared to similar solu-
tions. IHP-PING enables the generation of an aggregate human
PPI network in real-time that is continually based on current
information. These PPIs are experimentally and computationally
inferred and scored based on the nature of the datasets and
technology used to derive these datasets. Unlike the existing web
platform based application, in which case a stable and constant
internet connection is required, IHP-PING requires the internet
connection only for downloading the datasets specified by the
user to generate a PPI network which is stored locally for the user.
Any downstream analysis of the network produced can be run
locally without an internet connection. Moreover, the IHP-PING
package may be easily adapted to support new PPI databases as
they become hosted online as well as any novel method that
predicts protein interactions and estimates source interaction
scores. Additionally, datasets that become deprecated are auto-
matically removed from the network, producing a unified PPI
network that is up to date.

Key Points
• Harmonizing and integrating human protein–protein

interactions (PPIs) experimentally and computation-
ally inferred from multiple heterogeneous sources
into a unified human PPI network.

• Providing an easy-to-use, portable and flexible Python
package, IHP-PING, which enables the generation of
human PPI network in real-time with available online
datasets.

• Enabling estimating confidence scores to produce a
unified human PPI network with high confidence and
coverage, and producing a network output that is
continually based on current information.

• Enabling the user to choose the output format and
protein identifier system to ease the use of the
PPI network generated in some potential further
applications.

Supplementary data

Supplementary data are available online at Briefings in
Bioinformatics.
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