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Abstract

Prediction of driver genes (tumor suppressors and oncogenes) is an essential step in understanding cancer development and discovering
potential novel treatments. We recently proposed Moonlight as a bioinformatics framework to predict driver genes and analyze them in
a system-biology-oriented manner based on -omics integration. Moonlight uses gene expression as a primary data source and combines
it with patterns related to cancer hallmarks and regulatory networks to identify oncogenic mediators. Once the oncogenic mediators
are identified, it is important to include extra levels of evidence, called mechanistic indicators, to identify driver genes and to link
the observed gene expression changes to the underlying alteration that promotes them. Such a mechanistic indicator could be for
example a mutation in the regulatory regions for the candidate gene. Here, we developed new functionalities and released Moonlight2
to provide the user with a mutation-based mechanistic indicator as a second layer of evidence. These functionalities analyze mutations
in a cancer cohort to classify them into driver and passenger mutations. Those oncogenic mediators with at least one driver mutation
are retained as the final set of driver genes. We applied Moonlight2 to the basal-like breast cancer subtype, lung adenocarcinoma and
thyroid carcinoma using data from The Cancer Genome Atlas. For example, in basal-like breast cancer, we found four oncogenes (COPZ2,
SF3B4, KRTCAP2 and POLR2J) and nine tumor suppressor genes (KIR2DL4, KIF26B, ARL15, ARHGAP25, EMCN, GMFG, TPK1, NR5A2 and TEK)
containing a driver mutation in their promoter region, possibly explaining their deregulation. Moonlight2R is available at https://github.
com/ELELAB/Moonlight2R.
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INTRODUCTION
Cancer is a well-known and widespread disease and can, in many
cases, lead to premature death. In 2020, it is estimated that
19 million people were diagnosed with cancer and almost 10
million people died because of cancer [1]. Today, in many (espe-
cially, developed) countries, it is the leading cause of premature
deaths.

At the molecular level, different hallmarks of cancer have been
identified [2–4]. They are related to the deregulation of certain
cellular functions, including increased cell proliferation, evasion

of cell death, invasion or escape of immune response. Cancer
driver genes, which play important roles in connection to cancer
hallmarks, are altered due to the accumulation of genomic alter-
ations. They are known as tumor-promoting (oncogenes, OGs) or
tumor suppressor genes (TSGs) [5]. Mutations that activate OGs or
inactivate TSGs drive tumor progression. Cancer driver genes can
vary in cancer (sub)types, making them elusive to discover and
annotate in a specific way. Even tumors with the same tissue of
origin can be associated with different driver genes, complicating
tumor stratification, accurate diagnosis and targeted treatments
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[6]. In addition, a new group of genes has emerged in the last
decade, known as ‘dual role’ driver genes or ‘double agents’. For
example, Shen et al. [7] found that out of 12 cancer types, breast
cancer had the second highest occurrence of dual role genes
such as ARHGEF12, CBFA2T3, CDKN1B, DDB2 and FOXA1. Dual role
driver genes can exhibit both oncogenic and tumor suppressor
patterns depending on the cellular context [7–9].

Advances in cancer genomics and sequencing provided a mul-
titude of data on profiling cancer samples, including data on
gene expression, mutations, methylation, etc. To cite an example,
The Cancer Genome Atlas (TCGA) accounts for more than 20,000
adult tumors [10, 11]. Moreover, the Genomic Data Commons has
been developed as a portal for deposition and access to different
cancer -omics data [12]. These data provide a precious source
for the investigation and prediction of driver genes and their
classifications.

As stated above, efforts in the discovery of driver genes are
important not only for a fundamental understanding of cancer
mechanisms. They have applicative interest since they can be
investigated as drug targets [13, 14] or they can be used as
biomarkers to distinguish subtypes [15], which can increase the
precision of prognosis [16]. Moreover, the knowledge of their dual
role can help identify the most suitable treatment for a patient.

Many tools have been proposed to identify driver genes [17] but
not all of them focus on the classification in TSGs or OGs [17].
In 2020, we contributed to this challenge by developing Moon-
light, and its accompanying Bioconductor package, MoonlightR
[9] which takes the biological context, the gene function and its
regulatory network into account. Moonlight is not solely based on
changes in gene expression because this might be a poor indicator
for driver genes [18]. The Moonlight framework requires at least
an additional layer of evidence to link the changes in expres-
sion and regulation to what has been defined as a ‘mechanistic
indicator’ [9]. Mechanistic indicators should help to understand
the underlying reasons for a driver pattern (named oncogenic
mediator) identified by MoonlightR. The evidence used can for
example be chromatin accessibility, copy number variations, DNA
methylation, and mutations [9]. The integration of these data
allows for covering both genetic and epigenetic alterations that
explain the changes in gene expression. However, in the original
version of MoonlightR the step of definition of mechanistic indi-
cators is left to the user and no specific protocols are provided.
To tackle this challenge, streamline the process and provide a
proper workflow for the identification of mechanistic indicators
we devised Moonlight2R. In details, we provided a solution to the
identification of mechanistic indicators based on mutation data,
along with its implementation in a set of functions to streamline
and automate the analysis. The functions are released within
a new version of the package, Moonlight2R (https://github.com/
ELELAB/Moonlight2R).

DESIGN AND IMPLEMENTATION
Overview of Moonlight
For the sake of clarity, we will here give a brief overview of Moon-
light as originally conceived (Figure 1). The tool is designed to pre-
dict driver genes based on differentially expressed genes (DEGs)
and additional layers of mechanistic indicators described in the
original publication [9]. The first step in the Moonlight pipeline is
a functional enrichment analysis (FEA) which determines if any
of Moonlight’s 101 cancer-related biological processes are over-
represented among the DEGs. The next step is a gene regulatory
network analysis (GRN) which considers the network of genes that

the DEGs are a part of through mutual information. Following
GRN, the Moonlight pipeline diverges into two modes: a machine-
learning approach and an expert-based approach. The next step is
an upstream regulatory analysis (URA) which will in both modes
calculate the effect of the DEGs on either user-specified biological
processes (the expert-based approach) or in all of Moonlight’s 101
biological processes (the machine learning approach). The final
step is a pattern recognition analysis (PRA) which identifies the
oncogenic mediators and divides them into putative OGs and
putative TSGs. In the expert-based approach, this is done using
patterns of the effect of DEGs on two biological processes with
opposite effects on cancer. In the machine learning approach, the
prediction of oncogenic mediators is carried out using a random
forest classifier.

Design of the driver mutation analysis
In this paper, we present a new functionality to the Moonlight
pipeline which allows for a mechanistic explanation of the pre-
dicted oncogenic mediators from Moonlight’s primary layer. The
new function is called driver mutation analysis (DMA) and must
be used subsequently to the PRA step in the Moonlight pipeline.
The function can distinguish between relevant and irrelevant
mutations and help filter and prioritize the mutations found in
a cohort of patients with the same cancer (sub)type. The function
produces a summary of the oncogenic mediators and the assessed
mutations, thereby strengthening the evidence for the Moonlight
prediction of driver genes. The assessment by the function is
visualized in Figure 1 and has several internal steps. It removes all
mutations from the Mutation Annotation Format (MAF) file that
do not belong to any of the DEGs, and the remaining mutations
are then classified as either drivers or passengers with CScape-
somatic [19], then additional annotations are added on both
mutation and gene levels. The details are provided in the next
sections.

The function needs three inputs: the DEGs, the predicted onco-
genic mediators, and a MAF file. The DMA function outputs the
following: (i) a list of oncogenic mediators with at least one driver
mutation, now predicted as driver genes, (ii) a table containing
all annotations including CScape-somatic scores found to every
DEG on both gene and mutational level, (iii) a summary of the
mutations found in the oncogenic mediators, and finally (iv) a
table containing the CScape-somatic file as if it was run outside
of the DMA function.

CScape-somatic is a driver mutation predictor based on
gradient-boosted decision trees. CScape-somatic defines a driver
as a disease enabler that includes gain-of-function, loss-of-
function, or both simultaneously [19]. CScape-somatic classifies
somatic Single Nucleotide Polymorphisms (SNPs) on autosomes
and scores each mutation with a number between zero and one,
where one represents a highly likely driver mutation and zero
represents a passenger mutation. We selected CScape-somatic for
multiple reasons. First, it has the advantage of scoring mutations
in both coding and non-coding regions of the genome. The
possibility to cover driver variants in non-coding regions is central
to DMA because the current Moonlight2 framework is still relying
on gene expression data and thus the mutations in the non-
coding regions are the most interesting to unveil as mechanistic
indicators. Second, CScape-somatic provides data on mutations
at a low computational cost since the machine-learning model
has already scored the entire human genome and we do not need
to include training/testing into our pipeline. In addition, CScape-
somatic discriminates between germline neutral variants and
somatic passenger mutations, which is not common to many
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Figure 1. The Moonlight pipeline. The first step in Moonlight is a FEA which determines if any of Moonlight’s 101 cancer-related biological processes
are enriched among an input set of differentially expressed genes (DEGs). This is done through Fisher’s exact tests and Moonlight Process Z-scores. The
Moonlight Process Z-scores indicate if the activity of the process is increased or decreased based on literature reportings and gene expression levels. The
next step, a gene regulatory network analysis (GRN), creates gene networks for each DEG by calculating the mutual information between all pairs of DEGs.
Following GRN, the Moonlight pipeline diverges into an expert-based and a machine learning approach. The next step, an upstream regulatory analysis
(URA), then evaluates the effect of each DEG on the biological processes through Moonlight Gene Z-scores. If the expert-based approach is selected, the
Moonlight Gene Z-scores will only be calculated for chosen biological processes. If the machine learning approach is selected, the Moonlight Gene Z-
scores will be calculated for all of Moonlight’s 101 biological processes. In the expert-based approach, pattern recognition analysis (PRA) then identifies
the oncogenic mediators which fit an oncogene or tumor suppressor pattern based on the Moonlight Gene Z-scores. The two chosen biological processes
must have opposite effects on cancer (growing/blocking), e.g. proliferation of cells and apoptosis. In the machine learning approach, the prediction of
oncogenic mediators is done using a random forest classifier. Following Moonlight’s primary layer, a secondary mutational layer is applied through the
DMA step which identifies driver mutations. First, the mutations are divided into passengers and drivers by CScape-somatic. Then, regulatory elements
from ENCODE are added. The consequence of the type of mutation is annotated to either the protein’s structure, the level of transcription or level of
translation. Finally, the data is cross-referenced with the Moonlight driver genes.

available tools. We also considered the fact that the model has
been trained on cancer samples and not any other disease, and
as such should be more cancer-specific, which is an advantage
according to a recent benchmark study [20]. The main limitations
to consider are that it does not cover the X and Y chromosomes
and that it annotates SNPs only.

In our DMA workflow, we set the threshold to define a
driver mutation for the CScape-somatic score to 0.5 (Table 1) as
suggested in the original publication [19]. This means that all
mutations with a score >0.5 are denoted as driver mutations,
and all mutations with a score ≤0.5 are denoted as passenger
mutations. A threshold of 0.89 denotes driver mutations with high
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Table 1. Thresholds of CScape-somatic scores annotating a mutation as a driver or passenger including the confidence of the
mutation as a driver mutation

CScape-somatic score of mutation Annotation of mutation by CScape-somatic Confidence of mutation by CScape-somatic

≥0.89 (coding) Driver High confidence
≥0.7 (non-coding) Driver High confidence
>0.5 Driver Low confidence
≤0.5 Passenger Neutral

confidence, and so driver mutations with a score between 0.5 and
0.89 are labeled with low confidence. Thus, the driver genes are
selected as those oncogenic mediators containing at least one
mutation with a CScape-somatic score > 0.5. The CScape-somatic
scores of all mutations in all DEGs together with thresholds and
corresponding confidence labels are retained in the output of
DMA. In this way, the user can easily filter mutations and genes
based on various criteria of interest (see Supplementary Text S1
for more details).

Predicting the level of consequence of mutations
in DMA
The purpose of adding a mechanistic layer into Moonlight is to
validate and explain the oncogenic patterns based on differential
expression. For the mutations, it means that although a mutation
might be a driver, it is not necessarily influencing the up- or
downregulation of genes. We addressed this issue by categorizing
mutations based on their position (e.g. 5’flank, 5’UTR, missense)
and their type (e.g. SNP, insertion, deletion) into three categories
which we call level of consequence: (i) mutations which can
influence the level (rate or amount) of transcription, (ii) mutations
which can influence the level of translation, and finally, (iii)
mutations which can influence a protein’s structure or function
(see more details in Supplementary Table S1 and Supplemen-
tary Text S2). The binary values in the level of consequence tables
denote a presumed effect (1) or no presumed effect (0) of the
given mutation type on either the transcription, translation, or
protein structure/function level. NA values represent cases where
the mutation type (e.g. missense, in frame deletion, silent) and
variant type (e.g. SNP, INS, DEL) are not in accordance with each
other. For example, as a missense mutation per definition is a
SNP, the combination between this mutation type, i.e. a missense
mutation, and variant types INS and DEL cannot occur. Conse-
quently, such effects are not evaluated in the tables, resulting
in NA. For instance, a mutation at the 5’flank of a gene can be
inside a promoter. If the promoter is mutated, its correspond-
ing transcription factor might have a stronger or weaker bind-
ing with it, thereby causing a change in the expression level
of the corresponding gene, resulting in a presumed effect (1)
of a 5′ flank mutation on the transcription level. On the other
hand, a mutation at the translational start site (TSS) will not
affect the transcription of the candidate gene but will influ-
ence the translation of the gene. This is represented as a 1
for a TSS mutation in the translational level of consequence
table, but as a 0 in the transcriptional level of consequence
table.

Besides annotating the predicted level of consequence of muta-
tions, experimentally found promoter regions from the ENCODE
consortium [21, 22] are integrated in the DMA function. We down-
loaded the dataset from ENCODE (https://www.encodeproject.
org/) with the following ENCODE identifier: ENCSR294YNI. If a
mutation falls within a promoter region, we have added a column
with the promoter start and end position to the output table

containing a complete overview of all annotations belonging to
the DEGs.

Comparing driver genes with the Network of
Cancer Genes
Finally, we incorporated data from the Network of Cancer Genes
(NCG) [23] into DMA. From this, it is possible to cross-reference the
oncogenic mediator annotation from Moonlight2 with findings
from other cancer studies. In NCG, two categories of cancer genes
are included. The first one contains known cancer genes with
associated experimental support. When a gene has been reported
by either Vogelstein et al. 2013 [5], Saito et al. 2020 [24] and the
Cancer Gene Census [25], the driver type (OG or TSG) found
by the respective study is stated. The second category contains
candidate cancer genes which have somatic alterations that are
predicted to have cancer driver roles but without any experimen-
tal validation. The PubMed PMID identifier and the associated
cancer types for each gene are also listed.

PubMed literature search of driver genes and
mutations
To explore the available information in literature on our set of
predicted driver genes and mutations, we implemented a new
function called Gene Literature Search (GLS) using the easy-
PubMed R package [26]. This function takes a user-supplied gene
list and a string that constitutes part of a PubMed search query.
The gene list can for instance be the predicted driver genes or
other genes of interest. The string is expected to use general
keywords such as ‘driver’, ‘cancer’ etc. that can work with each
gene of the list. Standard PubMed syntax can be used in the query
string. For each gene in the input list, a final PubMed query string
is constructed by concatenating the user-supplied query string
and the gene name; this is then used to query PubMed and retrieve
information on identified publications, up to a user-specified
number. GLS generates a table containing PubMed PMID identifier,
doi, title, abstract, year of publication, keywords, and total number
of PubMed publications for each of the genes supplied in the input.
This allows for a quick and easy overview of the current state-of-
the-art of genes of interest.

Visualizing results of the DMA function
Additionally, we have added two plotting functions to Moonlight
to visualize the results of the DMA function: plotDMA() which
creates heatmaps of the driver classifications of mutations for the
oncogenic mediators (Figure 2) and plotMoonlight() which visual-
izes the effect of genes on the biological processes calculated in
the URA step (Figure 3).

RESULTS
Case study: discovering driver genes in basal-like
breast cancer with Moonlight
To demonstrate the new functionalities in Moonlight2R, we con-
ducted a case study on basal-like breast cancer using data from

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
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Figure 2. Classification of mutations in the 278 driver genes predicted in basal-like breast cancer by Moonlight. The 278 driver genes contain at least
one driver mutation. Genes are in the columns while the mutation type classified by CScape-somatic is in the rows. The values in the heatmap indicate
the number of driver, passenger, and unclassified mutations. The heatmap is divided into predicted oncogenes (OGs) and predicted tumor suppressor
genes (TSGs). The total number of mutations and log2FC values of the driver genes are included in the heatmap. This plot was created with the plotDMA
function where the input data was filtered to contain only the driver genes.

Figure 3. The top 50 oncogenic mediators with the highest total number of mutations in basal-like breast cancer. The columns are genes and the rows
are the Moonlight Gene Z-scores for the two biological processes selected in the expert-based approach: apoptosis and proliferation of cells. The genes
are divided into predicted oncogenes (OGs) and predicted tumor suppressor genes (TSGs). Number of driver mutations, log2FC values, and total number
of mutations of the oncogenic mediators are included in the heatmap. This plot was created with the plotMoonlight function.

TCGA. Gene expression, mutational and clinical data from the
TCGA-BRCA project were retrieved via TCGAbiolinks [27, 28] and
further curated to include only the subtype basal-like using the
classification provided by the PanCancerAltas_subtype() function
of TCGAbiolinks [29]. We performed a differential expression anal-
ysis (DEA) between the basal-like subtype and normal samples
to generate the input to Moonlight2. We implemented the steps
in the Moonlight2 framework as outlined above (Supplemen-
tary Text S3). Finally, we used the resulting tables from the DMA
to select genes and mutations of interest which we investigated
in the literature and other databases such as COSMIC [30] and
TRRUST [31]. We predicted the driver genes in the context of the
two biological processes apoptosis and proliferation of cells as
these are well-known cancer hallmarks as done in previous pub-
lications with Moonlight [9, 32]. We also performed enrichment
analyses of the driver genes with the R package EnrichR [33, 34]
using the databases GO Molecular Function 2021, GO Biological
Process 2021, and KEGG 2021 Human (Supplementary Text S3).

Applying the Moonlight pipeline on basal-like
breast cancer
From the DEA, we identified 9300 DEGs between basal-like breast
cancer and normal samples which we then input to Moonlight2’s
primary layer. This resulted in the prediction of 852 oncogenic
mediators divided into 260 putative OGs and 592 putative TSGs.
We then applied Moonlight2’s secondary mutational layer, imple-
mented in the DMA function presented here, to allow one poten-
tial mechanistic explanation of the predicted DEGs. This resulted
in the classification of 4125 driver mutations, 4543 passenger
mutations, and 1557 unclassified mutations. On the gene level,
we found that 278 oncogenic mediators contained at least one
driver mutation, resulting in our final set of driver genes. Of these
278 driver genes, 87 and 191 were predicted as OGs and TSGs,
respectively (Table 2 and Supplementary Tables S2 and S3).

We visualized the classification of the mutations of the 278
driver genes in a heatmap with the function plotDMA() (Figure 2).
From Figure 2, we can notice that if an oncogenic mediator has

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
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Table 2. Number of mutations and genes in basal-like breast cancer; the upper part of the table contains the number of genes in
different categories while the lower part contains the number of mutations; these categories are DEGs, oncogenic mediators, driver
genes, and driver genes with transcriptional mutation(s); the numbers in brackets contain the mutations for OGs and TSGs,
respectively; note that the numbers are identical for driver mutations for oncogenic mediators and driver genes as this is the basis on
which driver genes are chosen

DEGs Oncogenic
mediators

Driver genes Driver genes with
transcriptional mutation(s)

Genes

OGs - 260 87 32
TSGs - 592 191 61
Total 9300 852 278 93
Genes without mutations [OG/TSG] 4539 364 [114/250] - -
Mutations [OG/TSG]

Driver mutations 4125 394 [119/275] 394 [119/275] 154 [51/103]
Passenger mutations 4543 537 [157/380] 262 [84/178] 76 [23/53]
Unclassified mutations 1557 151 [55/96] 59 [19/40] 23 [5/18]
Total 10,225 1082 715 253

Abbreviations: DEGs, differentially expressed genes; OGs, oncogenes; TSGs, tumor suppressor genes.

Figure 4. Oncogenes and tumor suppressors with a driver mutation in an experimentally validated promoter region in basal-like breast cancer. Four
oncogenes (OGs) and nine tumor suppressor (TSGs) have a driver mutation located within an experimentally validated promoter region from ENCODE.
The columns are genes and the rows are the Moonlight Gene Z-scores for the two biological processes selected in the expert-based approach: apoptosis
and proliferation of cells. The genes are divided into predicted OGs and predicted TSGs. Number of driver mutations, log2FC values, and total number
of mutations of the driver genes are included in the heatmap.

a driver mutation, in about half of the cases, it will also have
a passenger mutation. Moreover, we observe that most drivers
only carry one driver mutation. We find one OG (FAT3) and one
TSG (SYNE1) which have around 20 total associated mutations
whereas the rest of the predicted driver genes have 10 or less total
mutations.

Exploration of oncogenic mediators and driver
genes in terms of driver and passenger
mutations
First, we explored the oncogenic mediators with a high number of
mutations. In Figure 3, the top 50 oncogenic mediators with the
highest number of total mutations are visualized in a heatmap,
created with plotMoonlight(). It is clear that not all highly mutated
oncogenic mediators contain few or any driver mutations e.g.
SAMD9, FAT3 and SYNE1. This clearly showcases the need to
assess the mutations individually because the total number of
mutations does not necessarily reflect driver status of the gene.

CScape-somatic has defined driver mutations as ‘disease-
enablers’ [19], however, not all of them are placed such that

they can directly interfere with the gene expression level. We
therefore decided to focus on mutations with a transcriptional
level of consequence. We found 93 driver genes containing in total
154 driver mutations which potentially affect the transcriptional
level (Table 2). Of these transcriptional driver mutations, mutated
promoter regions are of special interest because mutations in
these sites can alter transcription factor binding and thereby
change the transcription level (Figure 4 and Table 3). Of the 93
predicted basal-like driver genes that had a driver mutation with
a potential transcriptional level of consequence, we found that
four OGs and nine TSGs had one driver mutation located within
an experimentally validated promoter region from ENCODE [21,
22]. Of the driver mutations in these 13 genes (Table 3), COPZ2’s
mutation scored the highest, suggesting high confidence of this
driver mutation. These specific mutations are candidates for
further structural studies and experimental investigation.

On the flip side of the regulatory mechanisms lie the tran-
scription factors (TFs) which bind to promoter regions and reg-
ulate transcription levels. Thus, we next sought to investigate the
presence of any TFs in the 278 predicted basal-like driver genes
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Table 3. Summary of driver mutations in basal-like breast cancer which are located in an experimentally validated promoter region
from ENCODE; these mutations can therefore potentially alter the transcription level of the genes; the table includes which
chromosome the mutation is placed on, Moonlight2 prediction of driver type (TSG/OG), SNP position in the chromosome according to
grch38, mutation type, CScape-somatic score of mutation, and log2FC value of gene; all mutations were predicted as non-coding
driver mutations by CScape-somatic

Chromosome Gene Driver type
predicted by
Moonlight2

SNP Position Classification of
mutations

CScape-somatic
score

Log2FC

chr1 KIF26B TSG 245,155,300 5’UTR 0.746 3.03
chr1 SF3B4 OG 149,927,847 5’UTR 0.682 1.12
chr1 NR5A2 TSG 200,027,802 5’UTR 0.594 -2.10
chr1 KRTCAP2 OG 155,173,311 5’UTR 0.683 1.27
chr2 ARHGAP25 TSG 68,735,192 5’UTR 0.589 -0.536
chr4 EMCN TSG 100,517,922 5’UTR 0.532 -2.67
chr5 ARL15 TSG 54,310,486 5’UTR 0.528 -1.11
chr17 COPZ2 OG 48,037,182 Intron 0.837 -1.58
chr7 POLR2J OG 102,478,861 5’UTR 0.815 0.770
chr7 TPK1 TSG 144,835,605 5’UTR 0.524 -0.712
chr9 TEK TSG 27,109,485 5’UTR 0.697 -2.66
chr19 KIR2DL4 TSG 54,803,614 5’Flank 0.542 2.98
chr19 GMFG TSG 39,335,532 Splice_Site 0.599 -0.642

Abbreviations: OG, oncogenes; TSG, tumor suppressor gene; log2FC, log2 fold change; chr, chromosome; SNP, single nucleotide polymorphisms; UTR,
untranslated region.

Table 4. Basal-like driver genes predicted by Moonlight2 that are annotated as TFs in the TRRUST database with a known mode of
action; four and nine predicted OGs and TSGs are annotated as TFs in TRRUST, respectively; the log2FC value, number of driver
mutations including type of driver mutations and which genes the TF has been found to regulate are shown; for the targets, the letters
in parenthesis indicate mode of regulation: A = activation and R = repression

Gene Moonlight2-
predicted basal-like
driver gene type

log2FC Number of
driver
mutations

Target including mode of regulation by TF

APC OG -0.752 1 AKT1 (R), AMHR2 (R), DNMT1 (R), MYC (R), NOS2 (A), ODC1 (R), PTGS2 (R), SGK1
(R)

EPAS1 TSG -2.26 3 CA9 (A), CCR7 (A), COL10A1 (A), FLT1 (A), MMP14 (A), MSC (A), SERPINE1 (A),
VEGFA (A)

ERG TSG -2.29 1 ADAMTS1 (A), CXCL8 (R), CXCR4 (A), ENG (A), EPB41L3 (R), EPB41L4B (A), ERG (A),
FGF2 (R), ICAM1 (R), ILK (R), PIM1 (A), SPP1 (A), TDRD1 (A,R), VIM (A), VWF (A),
WNT11 (A)

FOXM1 OG 4.96 2 AR (A), BTG2 (A), CCNB1 (A), CDC25B (A), CDC6 (A), CDKN2A (R), FGB (R), MYC
(A), SFTPB (A)

ILF3 OG 0.569 2 ACRV1 (A), BIRC5 (A), HLA-DRA (R), IL2 (A), PLAU (A)
KLF11 OG -0.722 2 INS (A)
MITF TSG -1.40 1 ACP5 (A), BCL2A1 (R), BEST1 (A), CTSK (A), DCT (A), FOS (A), GPNMB (A), HIF1A

(A), KIT (A), OCA2 (A), PPARGC1A (A), SERPINF1 (A), TRAP (A), TRPM1 (A), TYR (A),
TYRP1 (A)

NR5A2 TSG -2.10 2 ABCG5 (A), ABCG8 (A), CETP (A), CYP11B1 (A), HSD3B2 (A), NR5A2 (A), STAR (A)
PGR TSG -5.18 1 BCL2 (A), CYP19A1 (R), DUSP1 (A), E2F1 (A), ERBB2 (R), ESR1 (A), FOXP3 (R), HLTF

(A), IL10 (R), KLK4 (A), PTGS2 (R), RELA (R)
PRDM1 TSG 0.562 1 CIITA (R), GCSAM (R), LMO2 (R), MYC (R)
TAL1 TSG -2.39 1 ALDH1A2 (A), CD34 (R), ERG (A), MYB (A), MYCN (A), NFKB1 (R)
TCF4 TSG -1.23 1 ABCB1 (A), CCND1 (A), CLEC4C (A), CNTNAP2 (A), HECA (R), MITF (R), MYC (A),

NOTUM (A), NRXN1 (A), PLD1 (A), PTEN (R), VEGFA (A), VIM (A)
ZEB2 TSG -1.47 2 CDH1 (R), CXADR (R), ITGA5 (A), MEOX2 (R), POU5F1 (A), VIM (A)

Abbreviations: TFs, transcription factors; OGs, oncogenes; TSGs, tumor suppressor genes; log2FC, log2 fold change; A, activation; R, repression.

using the TRRUST database [31]. We found four and nine OGs and
TSGs, respectively, which are TFs with a known mode of regula-
tion (Table 4). Transcription factors can be of particular interest
because they, like mutated promoters, can alter the transcription
level. Though in this case it can be necessary to investigate all
levels of consequences. For instance, if a mutation is placed in
the coding region, the TF could have altered binding ability to the
promoter, thereby changing the target’s expression level. The TF
could also have its own transcription lowered, indirectly causing

lowered transcription of the target. Such patterns might show up
through further investigation of TF-target interactions.

Similarities and differences between TSGs and
OGs
In the literature, it has been reported that OGs and TSGs generally
promote and limit cell growth, respectively [35, 36]. We sought
to investigate possible differences between the two predicted
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Figure 5. Enrichment analysis of 87 and 191 predicted oncogenes and tumor suppressors, respectively, in basal-like breast cancer. The top 15 most
significantly enriched terms (adjusted P-value <0.05) within the GO Molecular Function 2021, GO Biological Process 2021 and KEGG 2021 human
databases among the (A) 87 predicted oncogenes (OGs) and (B) 191 predicted tumor suppressor genes (TSGs). The enriched terms are sorted on the
adjusted P-value. The gene ratio refers to the ratio between the number of predicted TSGs or OGs intersecting with genes annotated in the given process
and the total number of genes annotated in the given process. The sizes of the points represent the number of TSGs or OGs participating in the given
process.

Figure 6. Comparison between Moonlight’s predicted driver genes in basal-like breast cancer and genes in the Network of Cancer Genes database. The
first six intersections represent genes in common between two groups and the next five intersections represent genes that are specific to one group.
The horizontal bar to the right represents the total number of genes in the five sets.

classes of driver genes through an enrichment analysis on the 191
predicted TSGs and 87 predicted OGs (Figure 5).

The enrichment analysis reveals expected oncogenic roles of
the OGs. The top enriched terms among the OGs are related to
DNA replication, spindle checkpoints, and cell cycle. Since the
OGs are upregulated in basal-like breast cancer compared to
normal tissue, the activity of the enriched biological processes
related to DNA replication and cell cycle is increased, potentially
driving cancer progression. In contrast, the enriched terms
among the TSGs are for the most part associated with immune

response and regulation, with both positive and negative impacts,
indicating immunological roles of the predicted TSGs. The
enriched terms among the OGs and TSGs are related to the cancer
hallmarks. For example, processes related to DNA replication and
cell cycle are manifested in the Sustaining proliferative signaling
hallmark. Similarly, the immunological processes can play a
role in the Avoiding immune destruction and Tumor-promoting
inflammation hallmarks [2–4]. Collectively, these results indicate
that Moonlight2, thanks to the integration of the core functions
and the DMA step, is capable of finding two distinct classes of
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driver genes which both have strong associations to cancer related
pathways. Moreover, no enriched terms were shared between
the TSGs and OGs when comparing the significantly enriched
terms (adjusted P-value <0.05), indicating that the two driver
gene classes are highly distinct in terms of functional roles.

Besides investigating the functional profile of the predicted
OGs and TSGs, we explored the difference between these two
driver gene classes in terms of driver mutation types (Supplemen-
tary Figure S1). We noticed no distinct difference in the types of
driver mutations between the OGs and TSGs, suggesting that it
is not possible to classify the driver gene type based on driver
mutation type alone.

Comparison of predicted basal-like driver genes
with other findings and annotations
With the aim of investigating the novelty and consistency of
Moonlight2’s driver gene annotations, we compared Moonlight2’s
predictions with the NCG database (Figure 6). Most driver genes
(i.e. 62 OGs and 123 TSGs) determined by Moonlight2 were not
reported in the NCG database. The comparison between genes
predicted as either OG or TSG with Moonlight2 and in NCG is
listed in Supplementary Table S4. The small overlap between
Moonlight2’s predicted driver genes and NCG genes may also be
attributed to NCG being a collection of genes across multiple
cancer types and not only breast cancer. It could also be due to
the lack of functional studies on some of the candidate genes
with regards to their oncogenic or tumor-suppressor potential.
Nevertheless, our predicted candidates would still need further
investigation to support their driver signature and constitute an
interesting dataset for the research community working with
breast cancer subtypes.

One of the strengths of Moonlight is its classification of driver
genes into TSGs and OGs which allows for the prediction of dual
role genes–genes that are predicted as TSGs in one biological
context but as OGs in another context [7, 9]. We found 12 possible
dual role driver genes which Moonlight2 has predicted as a TSG
or an OG in the context of basal-like breast cancer, whereas NCG
may have reported the gene functioning with the opposite driver
gene type in possibly another cancer type. However, we found that
none of the potential dual role genes had a reported cancer type
by NCG. Thus, we could not establish the biological context of the
dual role genes.

Finally, we compared Moonlight’s basal-like driver genes with
breast cancer genes reported in NCG to explore validity and con-
sistency of our results. NCG contains 147 driver genes associated
with breast cancer which are all marked as candidates. Compar-
ing these 147 breast cancer genes with our 278 predicted driver
genes revealed an overlap of three driver genes (SYNE1, CTSS, and
STAB1) which are all predicted to be TSGs by Moonlight. Above,
we also described SYNE1 as the Moonlight2 predicted driver gene
with the most driver mutations (Figure 3). Additionally, the two
other genes (CTSS and STAB1) have both been documented to be
recurrently mutated across breast cancer cohorts [37–39]. Follow-
ing the investigation of breast cancer related driver genes, we
more specifically examined triple-negative breast cancer genes
from NCG. A total of 13 (CDKN2B, DNMT3B, EPHB1, IGF1R, MCL1,
NOTCH3, PIK3CD, AURKA, DIS3, TBK1, SHQ1, RPTOR, and EPHA6)
of the 147 breast cancer candidates in NCG are specifically asso-
ciated with triple-negative breast cancer. These genes were also
not identified by Moonlight2 as oncogenic mediators except for
AURKA. Additionally, we only found five out of the 13 genes to be
differentially expressed between basal-like and normal samples
used in our study, namely DNMT3B, EPHB1, IGF1R, AURKA, and

EPHA6, meaning the other eight genes were not input to Moon-
light, and consequently, we could not evaluate their driver gene
potential. The fact that Moonlight2 with DMA did not predict any
of these five genes as driver genes suggests that other mecha-
nisms not dependent on changes in expression or mutations in
non-coding regulatory elements could be at play, or features that
are common only to a subset of patients and not identified in the
TCGA dataset. To further investigate this direction, we retrieved
the literature cited by NCG for the five genes and evaluated the
expected driver alteration associated with them. DNMT3B, EPHB1,
EPHA6 as for AURKA were annotated in NCG from the same study
[40] but the results seem to mostly rely on predictions of sparse
missense mutations or splice site and not clear experimental
validation of the tumorigenic potential of these variants. More-
over, one study discovered EPHA6 as a driver pan-cancer using
the tool OncodriveFML [41] and another study reported EPHA6
as a significantly mutated gene in ampullary carcinomas [42].
Furthermore, EPHB1 was found as a driver in thyroid carcinoma by
OncodriveFML [41] and mutations in EPHB1 were also found to be
involved in chronic lymphocytic leukemia [43]. Finally, Weisman
et al. 2016 reported an in-frame indel in IGF1R which was pre-
dicted as likely pathogenic, deleterious by PROVEAN, and disease-
causing by MutationTaster [40]. Additionally, IGF1R was found as
a novel driver in breast cancer [44] and glioblastoma [45].

Few other tools besides Moonlight classifies driver genes as
TSGs and OGs. We compared Moonlight basal-like predicted driver
genes with another driver gene prediction tool, GUST [46]. We
selected GUST due to the availability of precomputed publicly
available results on breast cancer (https://liliulab.shinyapps.io/
gust/). These predictions from GUST were however not basal-
like specific. Compared to our results, we found a very small
overlap of predicted driver genes. Only two genes (IFFO1 and
HERC5) were predicted as driver genes with both Moonlight2 and
GUST (Supplementary Table S5). These two genes are not reported
in NCG.

Case studies: discovering driver genes in lung
adenocarcinoma and thyroid carcinoma with
Moonlight
To further showcase the applicability of Moonlight2 to cancer
types of different mutation burdens, we applied Moonlight2 on
lung adenocarcinoma (LUAD) and thyroid carcinoma (THCA).
LUAD and THCA have previously been reported to have high and
low tumor mutation burdens, respectively [47–49]. These case
studies were conducted similarly to the basal-like breast cancer
case study, except considering their cancer types in the whole and
using paired samples only (Supplementary Text S3).

Among 15,457 DEGs between LUAD and normal samples,
Moonlight’s primary layer predicted 610 oncogenic mediators
(399 putative OGs and 211 putative TSGs). Applying Moonlight’s
secondary mutational layer resulted in a final prediction of 131
driver genes categorized into 91 OGs and 40 TSGs (Figure 7A and
Supplementary Tables S2 and S3). Similarly, for THCA, we found
885 oncogenic mediators (676 putative OGs and 209 putative
TSGs) from 12,015 DEGs. Moonlight’s secondary mutational layer
predicted 12 driver genes divided into nine OGs and three TSGs in
THCA (Figure 7B and Supplementary Tables S2 and S3). The THCA
driver genes all had one driver mutation in contrast to driver
genes discovered in LUAD and basal-like breast cancer where the
number of driver mutations in the driver genes ranged between
1–4 and 1–9, respectively. The lower number of driver genes and
mutations in THCA is consistent with its lower mutation burden
compared to LUAD and basal-like breast cancer.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://liliulab.shinyapps.io/gust/
https://liliulab.shinyapps.io/gust/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad274#supplementary-data
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Figure 7. Classification of mutations in predicted driver genes in lung adenocarcinoma and thyroid carcinoma by Moonlight. (A) Classification of
mutations in the 131 driver genes predicted in lung adenocarcinoma. (B) Classification of mutations in the 12 driver genes predicted in thyroid carcinoma.
In (A) and (B), genes are in the columns while the mutation type classified by CScape-somatic is in the rows. The values in the heatmap indicate the
number of driver, passenger, and unclassified mutations. The total number of mutations and log2FC values of the driver genes are shown in the heatmap.
(C) Driver genes (one oncogene and one tumor suppressor) in lung adenocarcinoma with a driver mutation in an experimentally validated promoter
region from ENCODE. The columns are genes and the rows are the Moonlight Gene Z-scores for the two biological processes selected in the expert-based
approach: apoptosis and proliferation of cells. The number of driver mutations, the number of total mutations and the log2FC values of the driver genes
are included.



A workflow to study mechanistic indicators | 11

Subsequently, we investigated more closely predicted driver
genes with driver mutation(s) affecting the transcriptional level
and located in the promoter regions. In THCA and LUAD, we found
zero and two driver genes, respectively, fulfilling these criteria. In
LUAD, these two genes are an OG, FANCA, and a TSG, MFAP5. The
CScape-somatic non-coding scores of these two driver mutations
were 0.77 and 0.58, respectively, suggesting high confidence of
the driver mutation located in the promoter region in FANCA
(Figure 7C). These driver genes highlight interesting candidates
for further studies.

To examine consistency and validity of Moonlight’s predicted
driver genes in LUAD and THCA, we compared these genes
with NCG (Supplementary Table S4) and GUST (Supplemen-
tary Table S5). Like the basal-like breast cancer case study, we here
found a low overlap between Moonlight’s predicted driver genes,
NCG, and GUST. Thus, to investigate novelty of the predicted driver
genes in LUAD and THCA and explore current state-of-the-art, we
performed literature searches of these genes using Moonlight’s
GLS function presented above (Supplementary Table S6). Given
the potential of FANCA in LUAD as an interesting candidate for
further studies, it is worth highlighting some of the literature
results of this gene. We found that four PubMed records match
the query ‘FANCA AND cancer AND driver’ [50–53]. For instance,
Ognibene et al. [50] found high expression of FANCA to be
associated with low survival in patients with neuroblastoma.
Genetic alterations including mutations in FANCA were also
frequently discovered in several cancer types including LUAD
[52]. Moreover, studies have reported a role of FANCA in the
molecular pathogenesis of LUAD and high expression of FANCA
was significantly associated with poor prognosis of patients with
LUAD [54–56].

FUTURE DIRECTIONS
In this study, we mainly focused on driver mutations located in the
promoter region as these mutations are the ones that most likely
can explain the observed patterns of deregulated expression.
Nevertheless, other types of mutations in both the coding and
non-coding regions of the driver genes are of interest. For instance,
missense mutations in genes involved with mRNA degradation
could also be essential targets for further studies. Additionally,
we envision an inclusion of additional -omics layers such as DNA
methylation, copy number variation, and chromatin accessibility
in future updates of Moonlight. Moreover, we envision comple-
menting the promoter annotations by including other regions
such as silencers and enhancers.

Key Points

• Discovery of cancer driver genes, tumor suppressors and
oncogenes, is essential for understanding cancer devel-
opment and ultimately for discovery of novel treatment
strategies

• We have presented new functionalities in our previ-
ously developed bioinformatics framework, Moonlight,
to produce Moonlight2 which aims at predicting tumor
suppressors and oncogenes

• The new functionalities in Moonlight called Driver Muta-
tion Analysis (DMA) and Gene Literature Search (GLS)
classify mutations in a cancer cohort into driver and

passenger mutations and perform literature searches of
candidate driver genes, respectively

• DMA provides one potential mechanistic explanation of
deregulated genes in a cancer cohort

• In basal-like breast cancer, we found four oncogenes and
nine tumor suppressors which contain a driver mutation
in the promoter region. In lung adenocarcinoma and
thyroid carcinoma, we found two (one oncogene and one
tumor suppressor) and zero driver genes with a driver
mutation in the promoter region, respectively
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