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Abstract
Dynamic molecular interactions play a central role in regulating the functioning of cells and organisms.The availabil-
ity of experimentally determined large-scale cellular networks, along with other high-throughput experimental
data sets that provide snapshots of biological systems at different times and conditions, is increasingly helpful in
elucidating interaction dynamics. Here we review the beginnings of a new subfield within computational biology,
one focused on the global inference and analysis of the dynamic interactome. This burgeoning research area, which
entails a shift from static to dynamic network analysis, promises to be a major step forward in our ability to
model and reason about cellular function and behavior.
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INTRODUCTION
Over the past decade, high-throughput experimental

and computational methods have been developed to

infer and predict the structure of gene and protein

networks. As a result, large-scale cellular networks

have been obtained for a wide range of organisms

across the evolutionary spectrum [1–12]. Computa-

tional analyses of these networks have great potential

in aiding our understanding of gene function, bio-

logical pathways and cellular organization. While

significant progress has been made in computational

analysis of proteome-scale cellular networks [13, 14],

the dynamics inherent within these networks are

often overlooked in computational network analysis.

However, proper cellular functioning requires the

precise coordination of a large number of events,

and identifying the temporal and contextual signals

underlying proposed interactions is a crucial part of

understanding cellular function. Network dynamics

can describe, for example, how cells respond to

environmental cues or how an interaction network

changes during development or differentiation.

We hold the view that modeling and analyzing

interaction and network dynamics should be at the

forefront of current research efforts in computational

interactomics.

The first question, perhaps, is to define what we

mean by interaction or network ‘dynamics’. In a

simplified view, an interaction may occur or not

depending upon spatial, temporal and/or contextual

variation. Though temporal variation of interactions

can be assessed on an evolutionary time scale, in this

review we focus primarily on short-term interaction

variation within a specific organism. Interactions may

be constitutive or obligate, or may instead occur only in

specific situations. Among these dynamically varying

interactions (sometimes referred to as transient inter-

actions), the variation may be either reactive
(i.e. caused by exogenous factors, such as a response

to some environmental stimulus) or programmed (i.e.

due to endogenous signals, such as cell-cycle

dynamics or developmental processes). Contextual

variation overlaps heavily with temporal variation,

but focuses more specifically on characterizing
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reactive variation and the conditions that cause it.

Studying context may also encompass examining

sequence or genetic variation within a population

of contemporaries and exploring how that variation

affects network interactions, topology and function.

Of course, biologists have studied dynamics in

biological systems for many years. Traditionally,

efforts have focused on individual genes or proteins

as well as specific interactions in limited contexts.

At a somewhat larger scale, metabolic networks,

which inherently include temporal information and

rely on the availability of specific metabolites as con-

text, have also been mapped across numerous organ-

isms [15]. However, within the last few years, we

have been given an unprecedented opportunity to

investigate molecular networks from a global per-

spective, using diverse high-throughput experimen-

tal data to inform our understanding of molecular

interactions on a genomic scale. Our goal in this

review is to focus specifically on research that links

these global analyses to the dynamics and context of

biological systems. We will highlight bioinformatics

approaches that utilize genomic-scale experimental

data sets for analyzing network dynamics rather

than more established methods for quantitative mod-

eling and simulation of dynamical systems [16–18] or

their more recent extensions and implementations

[19–26].

If dynamics play such a central role in biological

systems, why have genome-scale computational

analyses of interaction and network dynamics

remained elusive? One central reason is that the

most widely-applied large-scale technologies to

determine protein interactions, such as yeast

two-hybrid [27] and TAP-MS [28] to detect pro-

tein–protein interactions or in vitro proteome micro-

arrays to detect phosphorylation interactions [12], do

not provide spatial, temporal or contextual informa-

tion about detected interactions. ChIP-chip [29] or

ChIP-seq [30] approaches for uncovering regulatory

interactions have been used to uncover reactive con-

textual variation [10] but have only recently started

to be used to uncover temporal variation over a

dynamic time course [31, 32]. Thus, even if all pos-

sible interactions in an organism could be deter-

mined using these technologies, for any given

protein, it would generally not be known when

and where each of its interactions occurs.

Computational approaches provide one means for

inferring and analyzing changes in interaction and

network dynamics. Broadly speaking, dynamically

changing interactions can be thought of as a means

for transmitting ‘information’ through cellular net-

works, and much of the work we discuss here

attempts to characterize this ‘flow’ of information,

often without an explicit understanding of the full

dynamic nature of individual interactions. Specific

research goals toward computationally elucidating

interaction and network dynamics are diverse. To

date, these have included discovering dynamic path-

way information from network data, inferring net-

work structure utilizing dynamic data, discerning

large-scale changes in network topology and func-

tion, and understanding network responses to engi-

neered perturbations (such as knock-outs and

knock-downs) or to evolutionary perturbations

(such as sequence variation between individuals).

We have organized our review with respect to this

seemingly broad set of research goals. Ultimately,

however, all of the research described here is

intended to improve our understanding of biological

and physiological processes at the molecular level by

attempting to characterize and analyze the dynamic

interactome.

PATHWAY INFERENCE FROM
PROTEIN INTERACTION
NETWORKS
By itself, a complete cellular interaction map gives no

information about the ordering of proteins with

respect to their regulatory or physical relationships.

One way of inferring dynamics from static network

data is to use prior biological knowledge to help

order the interactions. With sufficient information,

one can construct a pattern representing some

important biological structure and then search for

instances of that pattern in static networks.

Signaling pathways provide excellent opportunities

for such approaches.

Signaling pathways transfer information detected

at the cell surface to regulatory factors in the nucleus

in order to orchestrate a cellular response. Steffen

et al. [33] introduced a computational approach for

discovering signaling pathways from protein–protein

interaction data. Their approach is based on enumer-

ating relatively short linear paths starting at mem-

brane proteins and ending with DNA-binding

proteins. These pathways are then evaluated with

respect to gene expression data, with the expectation

that proteins in the same pathway should be

expressed in the same conditions and at
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approximately the same time. Interaction reliabilities

can also be incorporated in this approach, along with

improved algorithms for path enumeration [34].

While it is convenient to think of one signaling path-

way at a time, numerous signals are detected essen-

tially simultaneously by various sensory proteins at

the cell surface. Supper etal. [35] suggest an approach

for inferring signaling pathways based on an arbitrary

number of sensor and regulatory proteins, and use

Steiner tree formulations that favor bow tie architec-

tures [36] corresponding to intermediate ‘integrator’

core proteins.

Signaling and regulatory pathways, as well as

other complex network patterns, may also be

described with respect to the properties of their con-

stituent proteins—for example, kinases, transcription

factors or descriptions of constituent interaction

domains. Banks et al. [37] introduced network schemas
to describe such patterns and developed fast algo-

rithms for searching for their matches in interac-

tomes. A network schema consists of descriptions

of proteins (e.g. their molecular functions or putative

domains) along with the desired topology and types

of interactions (e.g. physical, phosphorylation or reg-

ulatory). Network schemas can thus describe the

linear patterns underlying signaling pathways sug-

gested in Steffen et al. as well as more complex

pathways. In addition to searching for matches to

particular network schemas, it is also possible to

infer which network schemas are frequent and

over-represented in networks [38] and to thereby

uncover general recurring patterns underlying a

range of biological processes.

While the above-mentioned approaches consider

signaling pathways in terms of orderings of individual

molecules, Zotenko et al. [39] proposed an approach

that focuses on ordering overlapping groups of mol-

ecules, putatively corresponding to transient com-

plexes or functional groups. They approximate

signaling networks by chordal graphs [40] in which

functional groups, corresponding to dense subgraphs

in the original network, are represented as cliques.

Then they use clique tree representations of chordal

graphs [41] to elucidate (partial) orderings within

these functional groups.

Comparative interactomics is an alternative

approach for discovering pathways within cellular

networks. The core idea is that if a pathway is

known in one organism, searching for homologs of

its component proteins, along with conserved pat-

terns of interactions, is a powerful technique for

pathway detection [42]. Much research in recent

years has focused on such pathway querying as

well as the more general task of uncovering con-

served pathways and modules via network alignment

[42–47].

PATHWAY INFERENCE BY
INTEGRATING DYNAMIC DATA
WITH PROTEIN INTERACTION
NETWORKS
Protein–protein physical and regulatory interaction

networks provide a ‘scaffold’ by which to interpret

other types of dynamic data and thereby obtain hints

about signaling and regulatory pathways. Since

proteins along a biological pathway tend to be

co-expressed, one approach for identifying pathways

is to identify active subnetworks, connected regions in

physical interaction networks that exhibit significant

expression changes over some set of conditions [48].

These attempts to characterize contextual variation in

networks have been further extended and improved

[49–51]. Such context-specific subnetworks do not

have temporal orderings between proteins; combin-

ing these subnetworks with the pathway-ordering

approaches (such as those reviewed above) may be

a promising approach for refining the flow of infor-

mation through the network.

Expression data can also be utilized to infer cau-

sality as well as information flow within cellular

networks. A particularly illuminating source of

dynamic data comes from knock-out experiments,

where a gene is perturbed or removed from a genetic

background and the expression levels of all other

genes are measured. Yeang etal. [52] develop a prob-

abilistic approach for explaining observed gene

expression changes due to a knock-out by inferring

molecular cascades of ‘flow’ through the interaction

network. These molecular cascades correspond to

paths beginning from the knock-out gene (‘cause’)

and ending at the gene whose expression has chan-

ged (‘effect’). Additionally, interactions along the

path are inferred to be either activating or repressing,

and together must be consistent with the sign of

the knock-out effect. The basic approach was later

refined and experimentally validated in yeast [53].

Furthermore, it is possible to change the formulation

of the problem so that it favors explaining many

cause–effect pairs by few pathways [54].

RNA interference (RNAi) screens are a powerful

technique for obtaining perturbation data in higher
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organisms. Here, a known gene from a pathway of

interest is chosen as a reporter gene, other genes in

the genome are systematically knocked-down using

RNAi, and the effect on the reporter is measured.

Flow-based methods through protein interaction

networks have been utilized to connect and order

genes that affect the reporter [55]. Alternatively,

genes that affect the reporter gene, or some other

experimentally measurable phenotype of interest,

can be used as ‘seeds’ within known protein interac-

tion networks to uncover subnetworks related to the

biological process of interest [56]. Methodologically,

this approach is similar to the active subnetwork

approaches outlined above. As RNA-based loss of

function screens are increasingly being applied with

automated image analysis to detect effects on specific

processes or phenotypes [57, 58], these types of net-

work analyses are likely to be relevant to study a

broad range of interesting biological questions.

Future challenges for all these types of approaches

include incorporating additional types of data into

these models (e.g. known annotations of individual

proteins or other types of interaction data).

INFERRING NETWORK
STRUCTURE FROMDYNAMIC
DATA
The earliest attempts to incorporate dynamic data

into models of gene or protein interaction networks

were aimed primarily at inferring the network struc-

ture itself. (See [48, 59–63] for a general introduction

to this area.) Most of these early network inference

papers do not model dynamics. However, many used

dynamic data, most commonly expression data from

genome-wide microarrays, to infer static network

structure. Such work includes efforts at reconstruct-

ing regulatory networks using mutual-information

measures [64, 65] or Bayesian/graphical modeling

methods [61, 66, 67]. Though reverse-engineering

efforts have more frequently focused on inferring

regulatory networks, Bayesian networks have been

used to infer human T-cell signaling networks from

single-cell measurements of phosphorylation in

response to perturbations [68]. Parameterized bio-

chemical modeling of responses, as measured by

microarrays, to RNA interference and over-

expression screens have also been utilized to infer

signaling pathways in Drosophila [69].

Friedman et al. [70] and Murphy and Mian [71]

were among the first to suggest using Dynamic

Bayesian Networks (DBNs) for modeling regulatory

networks because such models can capture

time-dependent structures (such as feedback loops)

impossible to express with traditional probabilistic

networks. Ong [72] and Kim [73] also explored

DBN approaches. However, the aim was typically

to infer a static network structure from dynamic

data, rather than using the dynamic model to assess

the context of specific interactions.

Coexpression data can also be used to construct

networks relating genes by the similarity of their

expression patterns under different conditions

[74, 75]. Coexpression networks have been applied

to finding functional modules in expression data

[75, 76]. While typically intended to reveal protein

function, such networks are directly related to the

context of the samples used in their construction.

Thus, this information can be exploited explicitly

to reveal context-specific patterns in expression

data. Choi et al. [77] constructed two distinct coex-

pression networks using data sets representing differ-

ent conditions (tumors and normal control samples)

and identified context-specific differences by com-

paring the resulting ‘static’ networks. Kostka and

Spang [78] proposed an approach for finding sets of

genes whose coexpression patterns differed in differ-

ent contexts. Fang et al. [79] have extended this

idea to identify ‘subspace’ patterns of differential

coexpression (subsets of samples and genes where

the genes are coexpressed in most samples from

one class but not coexpressed in most samples from

the other class). Recent work has also used dynamic

modeling to identify transient coexpression relation-

ships capturing static but temporally related snapshots

of the dynamic network [80, 81].

By exploiting the modular nature of cellular func-

tion, it is possible to infer context-specific regulators

from expression data. Groups of genes that are coex-

pressed in a subset of a conditions are first identified

by biclustering approaches [82, 83], and then their

condition-specific regulators can be inferred by

either relating the expression levels of the genes

comprising the module to those of its regulators

[84, 85] or by integrating computational or experi-

mental information about regulatory interactions

[86]. De Bivort et al. take a coarser-grain view of

regulatory networks by considering regulatory rela-

tionships between the modules themselves and relat-

ing expression levels. For one module to expression

levels of another module after a time delay [87].

Integration of additional data types has improved

the power of network inference methods [88].
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Integration of static network and dynamic experi-

mental data was essential for the work of

Bromberg et al. [89]. Using a mouse network

assembled from multiple sources, they predicted a

role for the breast cancer protein BRCA1 in neuro-

nal differentiation and suggested a new signaling

pathway. Furthermore, by combining this data

with transcription factor activation experiments,

they have been able to propose a Boolean logic-type

description of the neurite outgrowth network.

Similarly, Baugh et al. [90] integrated temporal and

spatial variation to identify a developmental regula-

tory network in a Caenorhabditis elegans model.

The integration of expression data and ChIP-chip

data is one particularly promising approach for elu-

cidating dynamic control in regulatory networks.

Recently Seok et al. used Network Component

Analysis (NCA) [91] to build a series of time-varying

transcriptional networks for lipopolysaccharide

response in humans [92]. NCA is a computational

approach that can be used to predict dynamic tran-

scription factor activity over time. It utilizes (partial)

knowledge of a regulatory network as well as gene

expression data, and its goal is to infer both the con-

centrations of active transcription factors as well as

their promoter affinities. The dynamic networks

built by Seok et al. captured changes in transcription

factor activities and gene expression levels, as well as

in signaling and regulatory interactions. Ye et al. [93]

further extended NCA by developing a computa-

tional approach to model the impact of single

nucleotide polymorphisms (SNPs) on the concentra-

tions of transcription factors and their promoter

affinities. This analysis helps explain how genetic

variations linked to gene expression via eQTL ana-

lysis (described later in this review) might perturb the

regulatory network.

An interesting approach for integrating expression

and ChIP-chip data was taken by Ernst et al. [94].

They exploited time-course expression experiments

to build a detailed dynamic regulatory map for yeast

stress response by incorporating a hidden Markov

model to identify dynamic ‘bifurcation points’

where expression of a subset of genes diverges

from that of others. Recent work by Ucar et al.
[95] further integrates context-specific ChIP-chip

and expression data with context-invariant sequence

and nucleosome occupancy data to predict which

binding relationships are functional and to character-

ize the functional roles played by individual tran-

scription factors.

UNCOVERING ORGANIZATIONAL
PRINCIPLESUNDERLYING
NETWORKDYNAMICS
Combining static regulatory or protein–protein

interactions with dynamic data can lead to a better

understanding of protein or gene function and can

reveal global changes in network topology that hint

at higher level cellular organizational principles and

functions. The goals of such work often involve

finding key regulators of transcription or of dynamic

cellular responses in specific conditions. For example,

by integrating transcriptional regulatory networks

with gene expression data from different conditions,

Luscombe et al. offer a functional characterization

of yeast hub proteins as either ‘transient’ or consti-

tutively active (‘permanent’) [96]. Among the tran-

sient hubs, they further distinguish between those

responding to programmed changes (such as sporula-

tion or the cell cycle), which tend to involve slower,

multi-level response cascades, and those regulating

reactive changes to environmental stimuli (such as

DNA damage or stress response), which cause rapid

activation of many targets.

A different approach to dynamic modeling of

transcriptional networks is taken by Chechik et al.
[97]. Their work focuses on identifying network

motifs [98, 99], over-represented substructures

(such as feed-forward loops) within the regulatory

network that are thought to work together to per-

form specific functions. The basic approach is not

unlike that of some of the pathway-discovery meth-

ods described above. Possible ‘timing activity motifs’

(a motif structure and a ‘wiring pattern’ indicating

the order of expression onset of the associated ele-

ments) are enumerated, and motifs over-represented

in a large collection of gene expression time series

data sets are identified. Inferred response times are

derived from the ‘impulse model’, an idealized

model representing a common pattern of gene

expression state changes [100]. Analysis of the result-

ing motifs results in identifying bifurcation points as

well as feed-forward and ‘backward activation’ pat-

terns thought to quickly regulate cellular response to

changing environmental conditions.

Studies of network motifs can also be informative

about the dynamics of signal propagation [101].

In the context of regulatory networks, network

motifs provide important clues to how signals

might be propagated and regulated [102].

Recently, Ma’ayan etal. [103] showed, in the context

of hippocampal CA1 neurons, that similar motifs are
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also formed as information flows through a signaling

network. Interestingly, they observed that ligands

causing rapid, transient changes are typically charac-

terized by different motifs than ligands facilitating

permanent changes.

The relationship between a position of a gene in

a network and its biological properties has been also

explored in the context of transcriptional networks.

An interesting property of transcriptional networks is

their semi-hierarchical structure [104–107]. There-

fore, one might ask whether the position of a gene

in such structured networks is related to its biological

properties. To answer this question, Jothi et al.
divided the genes in the yeast regulatory network

into three levels: ‘top’, ‘core’ and ‘bottom’ [107].

They demonstrated that genes within a network

level have similar transcriptional half-lives, abun-

dances and noise levels, but that these properties

differ between levels. Elucidating such relationships

between network structure and biological properties

might provide new insights toward understanding

cell dynamics.

Analogous to Luscombe et al.’s characterization

of transcriptional regulatory networks [96], work

by de Lichtenberg et al. integrates dynamic data and

static protein–protein interaction networks for the

purpose of characterizing protein complexes as

either transient or constitutively expressed [108].

They find that most complexes consist of both

types of proteins, and they suggest that the periodi-

cally expressed components control complex activity

via a just-in-time assembly mechanism. In contrast,

Komurov and White look at related data for

condition-dependent and condition-independent

(constitutive) expression patterns. They conclude

that functional modules (not necessarily complexes)

are predominantly comprised either of constitutive

or of dynamic proteins, but rarely of both [109].

Differences in the data sources and the types of

modules considered are likely to explain the different

conclusions of these two papers.

Han et al. characterized hubs in the yeast protein–

protein interaction network into two groups called

‘party’ and ‘date’ hubs [110]. The expression patterns

of party hubs’ interaction partners have a high aver-

age correlation with the expression pattern of the

hub itself, suggesting that all of the interactions

may take place simultaneously or under similar con-

ditions. Date hubs, which have a lower average

expression correlation with their neighbors, are

thought to interact with different partners under

different conditions. The authors suggest that the

date hubs are more likely to be global regulators

linking lower-level functional modules comprised

of party hubs and their neighbors. Importantly,

there are significantly more date hubs in the binary

network, whereas party hubs are prevalent in the

co-complex networks [111]. There is also some

debate about how strongly the party-date analysis

depends on the exact expression data sets used

[112, 113], suggesting that using additional informa-

tion to identify static or dynamic hubs may be

desirable.

Schmidt and McMahon emphasize that network-

related concepts, such as the property of being a hub

protein, must be placed in a functional and temporal

context [114]. In their study, which focuses on

the Clathrin-mediated endocytosis (CME) pathway,

they demonstrate that hub connectivity changes over

different stages of vesicle formation and suggest that

the AP2 hub can only function as a hub when many

AP2 molecules form a ‘hub assembly zone’.

Arguably, hubs play important roles in network

modularity and dynamics [101, 114].

RELATINGTHE EFFECTOF
GENE KNOCKOUTSTO
NETWORKTOPOLOGY
Are static, topological properties of a network related

to the dynamic behavior of the cell in response to

perturbations? Jeong et al. observed that high-degree

nodes in a protein interaction network tend to cor-

respond to proteins essential for the survival of yeast

cells in optimum conditions [115]. This is tested by

knocking down the corresponding genes and testing

the viability of resulting mutant. Subsequently, the

relationship between protein essentiality and global

and local topological features of the protein interac-

tion network has been broadly investigated by many

authors [116–122]. To answer the question of why

such hubs are essential, Jeong and colleagues [115]

suggested that over-representation of essential pro-

teins among high-degree nodes can be attributed to

the central role hubs play in mediating interactions

among numerous, less connected proteins. In con-

trast, He and Zhang proposed that the majority of

proteins are essential due to their involvement in one

or more essential protein–protein interactions that

are distributed uniformly at random among the net-

work edges [120].
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If either of the above two views was confirmed,

essential hubs would have played a very special

role in network dynamics. However, a recent study

of Zotenko et al. [122] rejected both of these

explanations. Instead, they proposed that the major-

ity of hubs are essential due to their involvement in

Essential Complex Biological Modules (ECOBIMs),

a group of densely connected proteins with shared

biological function that are enriched in essential pro-

teins. This and related studies [123–126] suggest that

phenotypic traits such as essentiality have a modular

nature. In particular, Zotenko et al. showed that, for

most data sets and a number of centrality measures,

after correcting for correlation between degree and

essentiality, essentiality typically correlates with local
but not global centrality measures. Subsequent studies

of predicted protein complexes not only confirmed

the relationship between essentiality and participa-

tion in complexes but also pointed to the relation-

ship between the size of the complex and the

essentiality of its members [127]. Interestingly, no

relation between essentiality and the number of

complexes that include a given gene has been

found [126]. However, organizational properties

may be related to individual transcript dynamics.

While Janga and Babu observed no correlation

between essentiality and protein half-life, they did

find a correlation between centrality and mRNA

half-life [128].

The findings of Zotenko et al. explain why only a

very weak centrality–lethality relationship [119, 122]

was observed in the network resulting from the yeast

two-hybrid screen of Ito et al. [129]. In addition,

a recently constructed, high-quality yeast two-hybrid

map showed highly significant clustering between

essential proteins [111] but no significant correlation

between essentiality and vertex degree. Indeed, one

should keep in mind that the yeast two-hybrid assay

reports binary interactions only (i.e. direct physical

contact as opposed to membership in the same com-

plex), so the size of a complex to which a given

protein belongs has relatively low impact on the

degree of the corresponding node. Furthermore,

large complexes are not always detected by the

yeast two-hybrid technique. If the observed relation-

ship between vertex degree and lethality was mostly

due to membership in large essential complexes, it is

not surprising that the relationship is much weaker in

a network comprised only of yeast two-hybrid data.

In contrast to the weak correlation between

essentiality and vertex degree, Yu et al. [121]

observed that in their large yeast two-hybrid protein

interaction network, vertex degree correlates with

pleiotropy, the number of phenotypes observed as

a consequence of a gene knock-out. Interestingly,

such a correlation between the degree and number

of phenotypes is not observed in networks con-

structed from co-purification experiments. These

results underscore the importance of considering

the experimental technique used to obtain an

interaction network when interpreting a network’s

dynamic properties. Further exploring the relation-

ship between topology and dynamic function,

Missiuro et al. [116] assess the total information

flow through each protein in a network and

demonstrate that this information flow score corre-

lates with both essentiality and pleiotropy.

RELATING DOUBLEMUTANT
PERTURBATIONSWITH THE
PHYSICAL INTERACTOME
Different types of experimental assays may reflect

different types of dynamic information. For example,

genetic perturbation phenotypes may be inherently

condition-specific (e.g. temperature-sensitive lethal

mutations), whereas yeast two-hybrid systems

create an artificial context to assess the possibility of

physical interactions between proteins that may

never even appear in proximity to each other

in vivo. Integrating multiple types of interaction data

may help overcome the contextual biases or omis-

sions of particular methods and provide more reliable

temporal and contextual information about molecu-

lar relationships.

Genetic (or epistatic) interactions occur when

the phenotypic impact of one gene is modified by

another gene or set of genes. In this review, we will

touch upon only symmetric binary interactions, such

as synthetic lethals, identified by observing that

the composite effect of the simultaneous mutation

of two genes has a different phenotypic effect than

expected from modeling the combined independent

effect of such mutations. Genetic interactions are one

means for revealing active information flow in cel-

lular networks. Central methods for uncovering

genetic interactions include screens for synthetic

lethality and specialized expression Quantitative

Trait Loci (eQTL) analysis aimed at identifying

genes regulated by several loci. However, one

should keep in mind that while synthetic lethal inter-

actions are always between genes, eQTL-based ana-

lysis uncovers interacting genetic loci which may
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include non-coding regions of the genome. In this

section, we survey recent results related to synthetic

lethal interactions, and we defer the discussion of

interactions between loci to the following section.

A synthetic lethal (or sick) relation between two

non-essential genes occurs when simultaneous

knockout of the two genes results in cell death (or

aggravating genetic impact on cell fitness). Genetic

interactions can provide valuable information about

protein function and the buffering properties of cel-

lular networks [130]. Considering a hybrid network

of genetic and physical interactions provides addi-

tional insights into protein function, modular orga-

nization of cellular processes and clues as to how

these two networks complement each other to

achieve the desired robustness to perturbation or

response to changing conditions [125, 131–137].

In particular, it has been noted that pairwise inter-

actions between genes often reflect larger relations

between whole sets of genes. To capture such

dependencies, Kelley and Ideker [131] introduced

the between pathwaymodel (BPM). This model consists

of two sets of proteins that have many genetic inter-

actions between the two sets, but few within each set,

and conversely many physical interactions within

each set but few between them. Such a pattern of

synthetic–lethal interactions can be explained by a

model in which the proteins within each of the

two sets function as a pathway (or a protein com-

plex), working together to achieve some goal, and

where one set can functionally compensate for the

other. Recent work [138] incorporates dynamic

information from gene expression data to evaluate

the functional coherence and compensation of

putative BPMs, focusing attention on the strongest

candidates with evident compensatory roles. By inte-

grating temporal data with these topologically

derived models, their approach provides additional

functional information about the relevant gene sets

and the relationships between them.

INTERPERSONALGENETIC
VARIATIONAS PERTURBATIONS
OF CELLULAR SYSTEMS
Natural genetic variations within and between

species can also be viewed as genome-wide ‘pertur-

bations’. These perturbations can occur anywhere

in the genomic sequence, not necessarily just

within genes. Correlation of genotypic variations

with observed phenotypes can provide clues about

possible causal relationships between genetic

mutations and the corresponding phenotypic varia-

tions. Many recent association results utilize whole

genome gene expression data as the phenotype, and

thereby such eQTL analysis allows observing the

most direct consequences of genetic polymorphism,

namely its effects on gene expression. Since the pio-

neering work of Jansen and Nap [139], eQTL ana-

lysis has been applied to a large number of species

including yeast [140–143], mouse [143, 144] and

human [145–147]. With eQTL analysis, it is possible

to elucidate several properties of gene regulation

including putative causative relationships between

expression variation and genetic loci [148–151],

co-regulated gene modules [140, 150, 151–156]

and whole regulatory networks [157–161].

Integrative eQTL studies are widely used to identify

disease causing mutations [162].

It is important to keep in mind that the large

number of gene expression traits and genomic loci

poses challenges for both computational efficiency

and statistical power. Traditionally, an eQTL study

tests the linkage between all genes’ expression and all

loci, adding up to millions of individual statistical

tests. This leads to unique challenges related to mul-

tiple testing adjustment [163]. Recently, Yang et al.
proposed a graph-theoretical method for performing

an eQTL analysis [164] that is able to uncover asso-

ciations missed by traditional approaches. More work

is still needed in developing methods with the

statistical power to identify such context-dependent

relationships, particularly those that involve multiple

genes simultaneously.

To strengthen the signal and to explore additional

dependencies between genes and their expression,

several of the above-mentioned methods integrate

additional information, including protein–protein

interaction data, transcription factor-binding sites,

co-expression and sequence conservation [154,

155, 161, 165]. Some utilize variants of information

flow approaches to uncover pathways connecting

putative causal genes and their targets [149,151].

As mentioned above, simultaneous knockdowns

of pairs of non-essential genes allow discovery of

genetic interactions between genes. Similarly, gene

expression variation analyzed in the context of

natural genetic variation present in the population

is being increasingly used to discover interactions

between loci. Epistatic interactions are typically

revealed by testing whether the expression of a

gene is better explained by a model of genetic vari-

ation at one locus or at multiple loci. Epistatic
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interactions appear to be persistent among expression

trait loci. Brem et al. [141] estimated that 16% of

heritable transcripts in yeast exhibit epistasis. From

a statistical and computational perspective, discover-

ing epistatic interactions on a genome-wide scale is

even more challenging than discovering individual

eQTLs. Thus, despite significant progress [166], find-

ing epistatic interactions on a genome-wide scale

remains a major challenge. Currently, little is

known about the dynamics of such interactions.

While some work has been done toward identifying

gene–environment or gene–context interactions

involving individual genes [167], future work relat-

ing epistatic genetic relationships with response to

exogenous stimuli such as environmental stressors is

essential.

CONCLUSIONS
Since the dynamics of protein interactions play

a central role in regulating the functioning of

cells and organisms, and since high-throughput

experimental techniques are increasingly helpful in

elucidating interaction dynamics, we expect compu-

tational approaches for inferring and analyzing net-

work dynamics to be a cornerstone in future efforts

to understand biological systems. Here we have

briefly reviewed some recent computational attempts

to obtain a dynamic view of the interactome. Many

of these approaches have built upon existing static

molecular interaction data sets and integrated other

types of information to help infer interaction

dynamics, both to identify the paths by which

information flows through cellular networks and

to obtain a more global view of network organiza-

tional principles. These other sources have included

gene expression data, phenotypic responses to per-

turbations such as gene knock-outs and information

about eQTLs. In the near future, we anticipate that

incorporating additional data sources, resulting from

advances in mass spectrometry, next-generation

sequencing and other high-throughput experimental

methods, will help in further elucidating protein

interaction and network dynamics. Novel data may

include, for example, quantitative protein expression

levels, protein localization and modification data,

non-coding RNAs and detailed information about

epigenetic regulation and the transcriptome.

Looking further ahead, it is possible that incorporat-

ing future genome-scale data about dynamic

responses to changes in DNA structure (e.g. super-

coiling and its regulatory effects [168–170]) will

require further expanding our dynamic models of

regulatory control [171].

Experimental technologies for uncovering protein

interaction dynamics are also being developed and

are being applied to increasingly large systems.

With respect to detecting protein–protein interac-

tions, promising techniques include florescence res-

onance energy transfer (FRET) [172], which has

been used, for example, to map protein interaction

in the Escherichia coli chemotaxis pathway and deter-

mine stimulation induced changes [173]; florescent

tagging of proteins, followed by rapid isolations and

mass spectrometry identification of interactions,

which has been used to uncover the dynamics of

an alphavirus protein’s host protein interactions

[174]; and a protein-fragment complementation

assay that has allowed detection of yeast protein

interactions within their proper cellular contexts

[175]. For regulatory interactions, ChIP-seq technol-

ogy is likely to be increasingly applied to uncover

contextual and temporal variation. As existing tech-

nical difficulties with these and other technologies

are overcome and larger dynamic networks are elu-

cidated, computational approaches will increasingly

switch focus from attempts to infer network

dynamics to the analysis of experimentally deter-

mined dynamic networks. We expect that the emer-

ging field of dynamic network analysis, which

includes algorithmic approaches for modeling and

analysis, mostly in the context of social and informa-

tion networks, will be a good source of analytical

methods relevant to dynamic biological networks

as well [176–181].

As increasingly diverse high-throughput experi-

mental data sets are gathered, it is likely that novel

computational models, or new applications of exist-

ing models, will be needed to incorporate the data

into predictive quantitative models of the dynamic

interactome. While many probabilistic network

models have already been applied to incorporate dis-

parate data sets in a single framework, new methods

that can intelligently relate different types of interac-

tion data with different sorts of temporal and

contextual biases may be helpful. For example,

hypergraph models might be used for explicit

representations of different types of interaction

data. Important questions arising from efforts

to merge disparate data types include how to prop-

agate different types of dynamic information among

an integrated data set, how to represent explicit bias

and how to identify and resolve discrepancies.
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An important consideration generally overlooked

in the work reviewed here is that temporal variations

affecting network dynamics can range over several

orders of magnitude. This wide range not only

raises questions about increasing and expanding the

temporal resolution of experimental methods but

also demands the development of appropriate

multi-timescale computational methods. Another

simplification made by many of the approaches that

we have reviewed is that they typically model bio-

logical networks with a single node for each protein;

in reality, each node represents a population of

proteins that may be in different phosphorylation,

activation or interaction states. Dynamical systems

approaches for analysis and simulation [17, 18]

provide a framework for handling these complex-

ities, and integrating these approaches with more

high-throughput graph-theoretic methods may be

particularly fruitful.

To conclude, we believe that the shift from static

to dynamic network analysis is essential for further

understanding of molecular systems. Furthermore,

we postulate that ignoring dynamic information in

future computational network analysis research could

turn out to be perilous. Indeed, while the analysis of

static protein interaction networks has led to many

hypotheses concerning cellular organization, path-

ways and function, some of these may be challenged

by analyses incorporating network dynamics. Thus,

we encourage computational biologists who are

studying molecular interactions and networks to

develop methods that incorporate information

about the dynamic nature of cellular systems. After

nearly a decade of work focusing on static interac-

tomes, we think it’s about time.

Key Points

� Temporally, spatially and contextually dependent molecular
interactions play a key role in regulating the functioning of cells
and organisms. Incorporating and analyzing these dynamics are
the nextmajor challenges for computational interactomics.

� While most large-scale technologies to determine protein
interactions do not provide spatial, temporal or contextual
information about detected interactions, dynamic views of the
interactome can be obtained by integrating static molecular
interaction data sets with other types of dynamic data, such as
gene expression data, phenotypic responses to perturbations
such as gene knock-outs or knock-downs, and information
about expression QuantitativeTrait Loci (eQTLs).

� It is essential that computational biologists studying molecular
networks increasingly shift their focus to develop methods that
incorporate information about the dynamic nature of cellular
systems.
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