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PHD —an automatic mail server for protein
secondary structure prediction
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Abstract

By the middle of 1993, > 30 000 protein sequences had been
listed. For 1000 of these, the three-dimensional (tertiary)
structure has been experimentally solved. Another 7000 can be
modelled by homology. For the remaining 21 000 sequences,

secondary structure prediction provides a rough estimate of
structural features. Predictions in three states range between
35% (random) and 88% (homology modelling) overall accuracy.

Using information about evolutionary conservation as contained
in multiple sequence alignments, the secondary structure of 4700
protein sequences was predicted by the automatic e-mail server
PHD. For proteins with at least one known homologue, the
method has an expected overall three-state accuracy of 71.4%

for proteins with at least one known homologue (evaluated on
126 unique protein chains).

Introduction

The number of known protein sequences (30 000 SWISSPROT
release 25.0; Bairoch and Boeckmann, 1992) is growing much
faster than that of known protein structures (1000 PDB;
Bernstein et al., 1977). About 300 of the known structures are
unique in terms of detectable sequence homology (Hobohm
eral., 1992; U.Hobohm, personal communication). This
situation makes theoretical predictions of structural features of
proteins increasingly necessary.

Suppose one has a sequence of unknown structure (SOS) and
wants to know as much as possible about the structure. How
can theory help? If there is a protein with a similar sequence
to SOS in the data bank of known structures, model building
by homology allows the prediction of the structure of SOS with
reasonable accuracy (Greer, 1980, 1981, 1990, 1991; Blundell
et al., 1987; Taylor and Orengo, 1989; Overington et al., 1990;
Summers and Karplus, 1990; Vriend and Sander, 1991; Holm
and Sander, 1992b; Levitt, 1992; Taylor, 1992). If not, i.e.
if the SOS belongs to the majority of the 75% of known
sequences which do not have homologues among the known
three-dimensional structures (Schneider and Sander, 1993),
there is still a chance to model the fold. If the SOS is very short,
molecular dynamics could perhaps help to fold it up (Karplus
and Petsko, 1990; Jernigan, 1992; Abagyan and Totrov, 1993;
Dill, 1993). If the SOS is too long, there still is a chance of
finding the three-dimensional structure: one can try to thread
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the SOS into a known structure, i.e. to find a protein of known
structure which has no significant sequence similarity to SOS
but is likely to have the same fold (Eisenberg and McLachlan,
1986; Baumann et al., 1989; Overington et al., 1990, 1992;
Sippl, 1990; Crippen, 1991; Finkelstein and Reva, 1991; Liithy
et al., 1991, 1992; Goldstein et al., 1992; Holm and Sander,
1992a; Sippl and Weitckus, 1992; Ouzounis ez al., 1993; Stulz
et al., 1993). If this attempt also fails, prediction in three
dimensions is no longer possible. One now has to revert to one
dimension, i.e. to a prediction of one-dimensional strings
of secondary structure assignment. More than 20 years of
continuous effort to predict the secondary structure has led to
the result that the performance is still far from 100% accurate;
but 100% is not necessary. An important goal is that most
secondary structure segments are predicted correctly. And for
this there are promising methods.

How accurate is secondary structure prediction?

A random prediction of secondary structure in three states
(helix, strand, rest—here termed loop) yields an overall
per-residue accuracy of 35% (Rost et al., 1993). [Note: for two
state predictions such as helix/non-helix the random value is
~55% (Rost and Sander, 1993b)]. This value provides a lower
limit for the evaluation of predictions. Early methods such as
those of Chou and Fasman (1974), Robson et al. (Garnier et al.,
1978; Robson and Pain, 1971) and Lim (1974) scored 14—19%
above the random level (Kabsch and Sander, 1983b). In the
1980s the accuracy increased to ~60—-66% (Ptitsyn and
Finkelstein, 1983; Levin er al., 1986; Gibrat et al., 1987; Biou
et al., 1988; Gascuel and Golmard, 1988; Levin and Garnier,
1988; Salzberg and Cost, 1992; Zhang et al., 1992), i.e.
24-30% above the random level (Figure 1). Using profiles
from multiple sequence alignments a system of neural networks
(dubbed PHD) was the first method to achieve a performance
accuracy >70% when cross-validated on > 100 unique proteins
(Rost and Sander, 1993a), i.e. >34% above the random level
(Figure 1). What is a reasonable goal for accuracy in secondary
structure prediction? An upper limit for a very accurate
prediction is given by the accuracy to be expected if a three-
dimensional homologue to the SOS were known, i.e. if its
three-dimensional structure can be modelled by homology with
reasonable accuracy. A comparison of 140 protein pairs of
known structure shows that these have ~88% of their residues
in identical secondary structure states: helix, strand or loop (Rost
et al., 1994).
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But how good is the prediction for the test case SOS? Of message is that the network prediction allows the identification
course, the answer can only be estimated from the statistics over of regions that are predicted with higher reliability. About 36%
tests with proteins of known three-dimensional structure. For  of all residues are predicted at an expected accuracy of 88%,
the 126 proteins used in the cross-validation test of PHD the  i.e. comparable to what can be expected if homology modelling
standard deviation of the latest version was 9.5%, i.e. the were possible for SOS (Figure 2).
prediction of SOS is likely to be 71.4 =+ 9.5% accurate.

Secon structure predictions are successful in capturing the

cliché:ac;yntained in the data bank. So, the more unusual the How does PHD work?

SOS protein is compared to known structures, the less likely The methods used to generate the automatic prediction of
is a good prediction. Two recent examples of prediction failure secondary structure by the PHD method are a profile
are the phosphatidylinositol 3-OH kinase P58__human (Kohda alignment (algorithm: MaxHom/HSSP), which processes a
et al., 1993; Koyama et al., 1993) and the anti-freeze protein  profile of amino acid composition, and a system of neura]
type Il anpc__macam (Sénnichsen et al., 1993): both recently networks that uses this profile for the prediction (PHD). The
solved structures and both predicted at low accuracy of ~40%. methods will be only briefly sketched here as they are described
Thus, there is a small but non-vanishing chance that the  in more detail elsewhere (Schneider and Sander, 1991; Rost
prediction for SOS is grossly wrong. A more encouraging  and Sander, 1993a).

S 100 N N A A A Y 100
88-100%: & . L
modelling § < i e — 90
byhomology& g < .
< g 80 o — - - - L ______ — 80
L - - -
£ § 0o — - ____ ____
| I T
35-88% 3 2o — - __________
prediction lEI g
methods S £ s 7
g 3 7]
- [
A |8 E ]
é - I R
if = 1
A\ 8] § .-
0-35% random / g = ]
prediction é 2 .
w 10
] \|E ]
é = 0
* ' od
= & 2 =
2 [ * g 'E_& 'g; ag
=~ * = ~ oo o
E2. 22 FTE2g88z ¥5
g.a-.gaogz.:.,.,,: 5T 5§
Sssfgsdesdssy B35 %
method qsagaggga‘ﬁsg ST T
2 £ .8 9 g E © ®§ g | = o
] EEE & 85 =z & % 3 ] s &8
885352382538 Ef £
number of proteins used forevaluation 62 62 62 62 33 62 6272 75107 107 120 5 82 126 126

Fig. 1. Normalized overal] three-state accuracy of secondary structure predictions. The values for the overall three-state (helix, strand, loop) accuracy of prediction
methods are normalized such that a random prediction scores at 0%, and modelling by homology yields 100% [i.e. Opior = Qfrethod — grandomy /phormology __
OF4om)], Included are methods for which cross-validation has been performed without allowing pairwise sequence identity >25% between the proteins used
for evaluation. The methods are labelled according to the citation in the literature list. Those labelled with a star (*) were tested on a database of 62 proteins
used by Kabsch and Sander (1983b). A double star (**) indicates results for the database of 126 proteins used in Rost and Sander (1993a). ‘Reference net’ describes
the performance of a standard neural network (Qian and Sejnowksi, 1988; Holley and Karplus, 1989) tested on 126 unique protein chains. ‘PHD" labels the
performance of the method used in the server. ‘ETH Zurich’ gives the result of the expert predictions by Benner er al. on five proteins (Benner and Gerloff,
1990, 1993; Benner er al., 1993; Gerloff et al., 1993). Levin er al. (1993) published a higher value cf Q3 = 69.6% for alignments of C* traces. As this figure
compares methods that predict secondary structure from the information available on the sequence level only, we used here the value of QO3 = 64.9% the authors
report for using multiple sequence alignments. For both the protein set predicted by ‘ETH Zurich’ and ‘Levin et al., 1993’ the PHD method scores above the
average reported here (urpublished data). The methods marked with a triple hash (‘# # #°) use multiple sequence alignments as input to the predicti
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HSSP—an alignment of multiple sequences by profiles

The MaxHom/HSSP algorithm builds up the alignment in
essentially two steps. In sweep 1, the sequences are aligned
consecutively to the guide sequence (SOS) by a standard
dynamic programming method (Smith and Waterman, 1981).
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Fig. 2. Expected prediction accuracy for residues with a reliability index above
a given cut-off. Plotted are averages of the three-state accuracy and the cumulative
percentage of residues predicted over all those residues with reliability index
(Rel) zn,n = 0, . . .,9. This index is simply defined by: Rel = INTEGER
(10 * (outy,, — out,,,)], where Out,,, is the output of the output unit with
highest value, and out,,,, that of the unit with the next highest value. The factor
10 normalizes Rel to integer values from 0 to 9. Rel = 9 corresponds to a
reliable prediction. For example, ~22% of all residues have Rel = 8 and of
these, 92% are correctly predicted by PHD.

VMS machine

* incoming mail received on a VAX computer
* pre-processing of the request:
assign unique job identifier
extract user network address from mail
header and actual sequence to "job_id" file
¢ send job to queue and confirm request to user
* copy "job_id" file to UNIX file system (rcp)
and look or wait for an idle UNIX machine
* give control to UNIX machine by starting a
remote procedure call (rpc) on UNIX machine
* wait for job completion

* send result file to user or send "trouble"-
mail to server operator in case of a problem.

~

After each sequence has been added to the alignment an
alignment profile is compiled. This is used to align the next
sequence. In sweep 2, after all sequences with significant
homology have been picked from SWISSPROT, the profile is
recompiled, and the dynamic programming algorithm starts
once again to align consecutively the sequences, this time using
the conservation profile as derived after completion of sweep 1.

PHD—a system of profile reading neural networks to predict
secondary structure

The profile and the conservation weight are used as input to
a first level two-layered feed-forward network (‘sequence-to-
structure net’). This is done by shifting a window of 13 residues
successively through the sequence, i.e. the nth window starts .
at position n and ends at n + 13 of the sequence. The output
of the network consists of three values between 0 and 1, which
give the probability that the residue in the centre of a particular
window is in a helix, strand or loop. The first level sequence-
to-structure net outputs the prediction for the central residue
in a window. Thus, there is no direct correlation between the
secondary structure of adjacent residues. This shortcoming is
corrected by feeding the output of the first level sequence-to- -
structure net into a second level structure-to-structure network.
The architecture of the second level network is the same as for
the first level network. The third level is the computation of
an arithmetic average over the outputs of several independently
trained two-level nets (jury decision). The networks used for
the third level (jury) are trained on the same training set, the

UNIX machines

* check "job_id" file for consistency
correct file format?
is it 2 DNA sequence?
is it a BINHEX file 7 ..........

® run FASTA against the latest release of
the SwissProt database

¢ extract identifiers of homologous
sequences from FASTA run

e run multiple sequence alignment program
(MaxHom) against list of SwissProt
identifiers and write HSSP output file

* run PHD prediction program on HSSP file

® append output files, copy result to VAX
file system and exit

Fig. 3. Procedures performed by the PHD server. The Vax/VMS machine manages the incoming and outgoing mail, and sends the jobs to a cluster of four

Unix machines. Here, the CPU-intensive processes are executed.
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Joe Sequencer, Department of Advanced Protein Research,
National University, Timbuktu

joe@amino.churn.edu

# src homology-3 domain (SH3)

KELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVEVNDRQ
GFVPAAYVKKLD

Fig. 4. Format of file to be sent to ‘PredictProtein@EMBL-Heidelberg. DE’.
Any format different from the one shown will result in an error message being
sent back to the reader. The hash is necessary to recognize automatically that
the sequence will start in the following line. If the server works fine, we do
not look at the incoming prediction requests. Thus, messages to PredictProtein
will remain unanswered. Instead, address queries or notes to Predict-
Help@EMBL-Heidelberg. DE.

differerices stem mainly from a different order of examples
during the training procedure (Rost and Sander, 1993a).

PHD server—procedures between receiving and returning a
mail

Communication between the VMS machine managing the
incoming and outgoing mails, and Unix workstations used for
the calculations is shown in Figure 3. The sequences are
extracted from the mail, and the request is sent to a batch queue.
From this queue, the jobs are sent to four Sun workstations
(SPARC2 and 10). On the Unix side, the sequence is first
checked for consistency. Then, the latest release of the
SWISSPROT data bank of known sequences (Bairoch and
Boeckmann, 1992) is searched for homologues. Currently, the
system cuts off all sequences that have <30% sequence identity.
This cut-off has been chosen as it is proven to yield true positives
with high reliability. The majority of pairs in the ‘twilight zone’
between 25 and 30% sequence identity also have the same
structure, but there also exist false positives in that region which
would have to be filtered out by hand (Schneider and Sander,
1991). From the alignment the profile is computed and fed
into the prediction program. Finally the result is copied (remote
copy) to the VAX, and from there sent via electronic mail
to the user.

How to obtain a PHD prediction

The sequence has to be written into a file according to the format
shown in Figure 4. This file must be sent as electronic mail
via internet to ‘PredictProtein@EMBL—Heidelberg.DE’. For
instructions one can send the word ‘help’ in the subject line
to this address. Further questions, suggestions or notes should
be addressed to ‘Predict-hel]p@EMBL-Heidelberg. DE’. A new
option is that multiple sequence file formats (MSF; Devereux
et al., 1984) can be read, which means that the user can send
his or her personal alignment for prediction. The alignment will
then be used to compute a sequence profile in HSSP format
to be used for the prediction.

#8 ALIGNMENTS 1 - 14
SeqNo PDBNo AA STRUCTURE BP1 BP2 ACC NOCC VAR
123456
1 ] X 0 0 184 S 24 KKK E
2 7 E - [ o 75 12 38 EEPETTT EDDR
3 8 L E “AB 27 S6A N1 12 43 LCQQILL YIIF
4 9 V E -AB 26 S5A O 12 29 VVVAFFF vwwww
S 10 L E ~AB 25 54a 49 12 38 LVKRVVI RVVV
6 11 A E -B 0 53 2 13 0 AAAAAAAARAAA
7 12 L - 0 0 S5 13 12 LLLLLLLRLLLL
8 13 Y s s- [+] 0 126 13 1 YYYYYYYYFYYF
9 4 D - 0 0 81 13 15 DDDDDDDDDPPD
10 15 Y B -F 20 0B 18 12 2 YYYFYYYFFYYY
11 16 ¢ - [ o 94 13 41  QTDAEEECKDDA
12 17 E +-- 0 0 61 13 27 EEAAMAAAGGGA
13 18 X - ] 0 149 13 46 KKQERRRRNIIV
14 19 s s> s- Q o 32 13 43 SSTNTTTDDHHN
15 20 P T3 s [} 0 137 13 37 PPGPGEERDPPD
16 21 R T3 S« [¢] ¢ 158 13 36 RRDDDDDSGDDR
17 22 E B« -c 47 oA 10 13 11 EEEEDDDEDDDD
18 23 v - ] [*] 2 13 11 VVLLLLLLLLLL
19 28 T . 4] [} 55 13 33 TSTTTSTSPSSQ
20 25 M B -F 10 oB 3 1 21 MMEFFFFLFFFV
21 26 X > - 0 ¢ 138 13 31 KKKNTRTKKKKL
22 27 K T3 8Se [} 0 137 13 19  KKEEKKKEKKKK
23 28 G T3 s 0 ] 46 14 0  GGGGGGGCGGGGS
24 29 b < - ] [ S3 14 16 ODDAEEEDDEEED
25 30 I E -A S OA 96 14 42 IVTVKRKIIKKKK
26 3 L E -A 4 oA o 14 28 LLIVFFFILMMLK
27 32 T E -AD 3 40A 30 14 45  TTITHQOHKKKKQD
28 33 L E +«+D 0 39A 10 15 18 LLLVVIIIIIVVVL
29 3¢ L E - 0 0 59 15 22 LLLHILLLLRLLLL
30 35 N E «+D 0 38 72 15 3¢ NNNQNNNNNDEERF
31 3 s - Y ] 44 15 36 SSSKKNSNKKEESS
32 37 7 + 0 0 127 14 40 TTNDSTTTKPHHT.
33 38 N s s- 0 [+] 77 12 34 NNNPNEEEGE....
34 39 K s S+ 0 0 164 14 48 KKKAPYGGQEGGG.
35 40 D s S« 0 o 77 14 18 DDDGDDDDGQEED.
36 41 w E -E 0 49a 76 15 1 WWWWWWWWWWIWWE
37 42 w E - E 0 48BA 139 15 1 WWWWWWWWWWWWWE
38 43 K E +DE 30 47A 63 15 40 KKKEEEDERNKKLG
39 4 VvV E -DE 28 46A © 15 33  VVVGGAAAGAAAAV
40 4 E E -DE 27 45A S§7 15 32 EEEEERRREEkKre
41 46 V E > -E 0 44r 16 15 41 VVVLLsssIDlsvv
42 47 N T3 s- 0 0 149 15 44 NNNNNstsYMTsTD
43 48 D T3 S 0 0 112 15 27 DDDGGGGGGAKKGD
44 49 R E < -~ E 0 41a 108 15 35 RRRKQHGKRKKRRL
45 S0 @ E +E 0 40A 102 15 43 QQORRRSTVREEEQ
46 51 G E -E 0 3% 2 15 8 GGGGGGGGGGEGGV
47 52 F E «cE 17 38A S6 15 24 FFFWVYYCWMFFYF
a8 S3 Vv E -E 0 372 0 15 17 VVVVFVIIFIIIVWV
43 54 P E > - E 0 36A 16 15 0 PPPPPPPPPPPPPP
S0 S5 A G > Se 0 o 15 15 32 AAAAASSSAVSSSP
S1 56 A G 3 S+ 0 0 76 15 34 AAANSNNNNPNNNA
52 ST Y G < Se 0 0 89 15 1 YYYYYYYYYYYYFY
s3 58 V E < -B € oA 11 15 10 VWIVVVVWVWWC
54 3 K E -B 5 OA 107 15 39 KKKQEAAAEEAAAE
S5 60 K E -B 4 OA 82 15 43 KKKDLPPPEKKKPG
56 61 L E B 3 OA 64 13 16 LLIIIVW Lvvv
57 62 D 0 0 193 12 29 DDD PDDD NNEA

Fig. 5. Returned sequence alignment in HSSP format. Example for the SH3
protein (src homology region 3). The format of the multiple alignment is the
same as the one used in the HSSP database of protein structure-sequence
alignments. For the current PDB-SWISSPROT version the HSSP files are
available via anonymous fip from ftp. EMBL-Heidelberg. DE (Schneider and
Sander, 1993). Abbreviations: SeqNo, numbering from first to last residue;
PDBNo, position numbers from the related PDB file (column empty if there
is no PDB file); AA, one-letter code for residue; STRUCTURE, secondary
structure assignment according to DSSP (if three-dimensional structure is
unknown this column gives a ‘U’ for unknown, not the predicted secondary
structure); BP1 and BP2, positions of bridge partners in 8-sheets; ACC, solvent
accessibility as calculated by the DSSP program (Kabsch and Sander, 1983a);
NOCC, number of sequences which are aligned at that position; VAR, residue
type variability at that position. Lower-case characters in the alignment indicate
deletions and dots mark insertions.

Soon after the sequence has been sent to the server, a message
is sent to the user, confirming that the job has been sent to the
queue. After the job has been processed, the user ought to
receive the mail containing the output of the multiple alignment
generated by the program MaxHom (Schneider and Sander,
1991) and written in the format of the HSSP files (Figure 5),
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PHD output for your protein:

Abbreviations:

secondary structure : H=helix, E=extended (sheet), blank or L=rest (loop)
AA: amino acid sequence
PHD: Profile network prediction HeiDelberg
Rel: Reliability index of prediction (0-9)
detail:
- PrH: ‘probability' for assigning helix
PrE: ‘'probability' for assigning strand
PrL: ‘probability' for assigning loop
note: the 'probabilites' are scaled to the interval 0-9,
prH=5 means, that the signal at the first output no|
is 0.5-0.6.
subset:
SUB: a subset of the prediction, for all residues with
an expected accuracy > 82% (see tables in header)
note: for this subset the following symbols are used:
L: is loop (for which above * * is used)
°.": means that no prediction is made for this residue,
as Rel < &

R R TR R TRy T S [ S

An lKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDNWKVEVNDRQGFVPAAYVKKLDI
Obs | EEEE E E E EEEEEE EEEEEE EEEEEEHHHEEEE
PHD | EEEEEEE EE EEEEEE EEE EEE EEEE

Rel l946888762246799763121574799971787321124368984221311133169

detail:

er-I000000001221000111011101000001001233332211000011134311100
prE-l037888774211100013453212788874101122455210003554212455420
prL-l862101123456788775434676100014787543111567886334543223478

subset: SUB |L.EEEEEE. . .LLLLLL....LL.EEEEE.LLL. ...... LLLL........... LLI

Fig. 6. Returned prediction of the PHD method. Example for the SH3 protein (src homology region 3). The PHD prediction is summarized in three lines: AA,
echo of the sequence of SH3; PHD, prediction in three states helix (H), strand (E) and loop (blank); and Rel, the reliability index from 0 to 9, indicating a
prediction site of highest reliability (definition as in Figure 2). Note: for comparison the DSSP (Kabsch and Sander, 1983a) assignment of the three-dimensional
structure for SH3 (Musacchio er al., 1992) is given (Obs). The second block of three lines dubbed ‘detail’ reports the probability of the assignment: the system
of neural networks has three output units for helix, strand and loop, which can adopt values between 0 and 1. In the usual prediction (row 3: PHD) the highest
of these units is chosen as the prediction. The detail gives the actual value for each unit (projected onto a grid from 0 to 9). This quantity supplies a probability
for the assignment of helix, strand and loop. The last row (subset: SUB) repeats, for a quick overview, the same assignment as given in the third row (PHD),
except that now only those assignments are given for which the prediction has an unexpected reliability index =5. For this subset the expected reliability is

>82% (Figure 5).

and of the prediction of secondary structure in three states
(Figure 6). Should >3 days elapse between the confirmation
and the arrival of the prediction, we ask the user to write a
note to Predict-Help@EMBL—Heidelberg.DE.

Recommendations after more than 4000 predictions

By September 15, 1993 > 5500 predictions have been requested,
and >4500 have been made (Figure 7). For ~ 1000 sequences
no homologues were found in the sequence database. The
number of requests varies considerably from one counry to
another and is obviously affected by the size of the country,
the level of activity in computational molecular biology, and
the availability of molecular biology network services (Figure
8). For future requests, the user should keep the following
points in mind.

Use homology prediction whenever possible

On occasion, the server alignment search turns up a homology
to a protein of known three-dimensional structure. This is
apparent from the presence of a four-letter PDB identifier (e.g.

5MBN for myoglobin) in the list of homologous proteins
returned. In these cases, the predicted secondary structure gives,
by definition, much less information than a three-dimensional
model built using standard homology modelling tools.

Patterns not used for training cannot be predicted

The training of the network system was done on particular
examples of native and dominantly globular proteins with 13
consecutive residues on the first level and 17 consecutive
residues on the second level. Thus, the predictions cannot be
expected to yield a comparable accuracy for:

® membrane proteins: average overall accuracy in three states
was as low as 56% for porin (3por), melittin (2mlt), and
the trans-membrane segments of the photo-reaction centre
(1prc);

fragments of <13 consecutive residues;

differences between wild-type and point mutants;
fragments containing a considerable percentage of unknown
amino acids.
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Fig. 7. Number of prediction requests from January to September 15, 1993. The difference between the requests and the number of predictions sent is partly
explained by the fact that for the first four months no prediction was returned if no homologue to the sequence sent had been found in the current release of
SWISSPROT. The decision to send predictions only if there was at least one homologue was motivated by the fact that only for this case has the network system

multiple alignment information is significantly worse than other prediction methods available (and is definitely much better than the Chou—Fasman method (Chou
and Fasman, 1974)}. Expected accuracy figures, however, are for cases in which homologues are available. The server has become rather complex. This caused
many difficulties, like the machine crash in the middle of March that led to a backlog of the requests.

The prediction depends on the quality of the multiple alignment

The accuracy of the prediction depends crucially on the
information contained in the multiple alignment. PHD is
significantly better than previously published methods only if
a reasonable multiple sequence alignment can be made. Not
only is the number of homologues important, but also the
diversity of the family. It is better, in most cases, to have
50 sequences with 30—90% sequence identity relative to the
guide sequence, than to have 100 sequences all in the range
of 70—90% identity.

The prediction of the network, as given by the symbols H,
E and L, can be rather sensitive to changes in the details of
an alignment. However, this sensitivity does not hold for regions
that are predicted with a high reliability index (Figures 2 and
6). Consequently, the prediction returned might be different
for a different release of SWISSPROT for a given version of
the trained networks. The probabilities for helix, strand and
loop as given in the output of the returned prediction change
only marginally for small deviations in the alignment profiles.

Cut-off in sequence similarity for the compilation of the multiple
alignment

There is a length-dependent cut-off for structural similarity as
a function of sequence similarity (Schneider and Sander, 1991).
However, the cut-off is not razor sharp. Instead, there is a
‘twilight zone’ of, say, 3 percentage points (in sequence identity)
above the cut-off line. The publicly available HSSP data bank
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Fig. 8. Number of prediction requests per country. The level of server requests
in a particular country reflects the number of molecular biology laboratories,
the level of activity in computational molecular biology, the availability of
network services or a combination of these and other factors.
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uses the safety margin of ‘cut-off + 5 percentage points’, i.e.
identical residues for alignments of length > 80. Experiences
with a set of 124 recently solved structures (B.Rost and
C.Sander, unpublished results) have shown that the prediction
accuracy is improved if the threshold is lowered to the threshold
for structural homology defined earlier (Schneider and Sander,
1991). However, this may on occasion include spurious align-
ments, i.e. alignments with structurally non-similar proteins.
Therefore, we currently use the safety margin of plus 5
percentage points for the server.

No consensus prediction

Although the network system uses the information contained
in a sequence family, each prediction is derived for the
secondary structure of the guide sequence. Strictly speaking,
therefore, the result is not a consensus prediction for a family.
A simple, practical way for every user to derive a consensus
prediction is to predict the secondary structure for each sequence
in a family, to bring the sequences in frame and then to sum
up the probabilities for each output unit helix, strand and loop
(given in the prediction output) at each alignment position over
all predictions (in the sum, a weight reflecting the rarity of the
sequence in the family should in principle be used). This is
different from merely counting the predicted symbols at each
position, an approach that would be inconsistent with our basic
method. The last step is to assign the consensus prediction at
each alignment position to the unit (helix, strand, loop) with
the maximal sum. In practice, however, the difference between
the prediction for the guide sequence and the consensus prediction
for the entire family is marginal, so in most cases the server
prediction can be safely taken as the family consensus prediction.

Uniqueness of the prediction

Since the service started, we have on three occasions changed the
architecture of the networks used. The method is in the process
of being improved further. Therefore, predictions sent at different
times may differ not only as a result of database updates, but
also as a result of updates in the method (see version number).

Conclusion

Over the last 20 years, some 100 methods for the prediction
of protein secondary structure have been published. Only some
of these methods are available to biologists who actually need
the prediction tools. The PHD server gives access to a method
that predicts secondary structure of globular proteins with
an expected accuracy of 71.4%, if at least one homologue
sequence can be aligned. The overall accuracy is some 5
percentage points better than any other method published (Zhang
et al., 1992). About 40% of all residues have an expected
accuracy comparable to that achieved by homology modelling,
L.e. modelling based on homology to a known three-dimensional
structure. In comparison, for GORII (Gibrat e? al., 1987) this

value is reached for ~ 15% of all residues and for an alternative
earlier neural network (Holley and Karplus, 1989) for ~ 10%
of all residues. All the potential user needs is an electronic
mail connection. This makes the service available also to
users working in smaller laboratories without access to
significant computer power. The speed of the prediction is
sufficient to keep up with the amount of data produced by
large-scale sequencing projects.
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