Efficient Large Scale Integration Power/Ground Network Optimization Based on Grid Genetic Algorithm

Yun YANG
Atsushi KUROKAWA
Yasuaki INOUE
Wenqing ZHAO

Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences   Vol.E88-A    No.12    pp.3412-3420
Publication Date: 2005/12/01
Online ISSN: 
DOI: 10.1093/ietfec/e88-a.12.3412
Print ISSN: 0916-8508
Type of Manuscript: Special Section PAPER (Special Section on VLSI Design and CAD Algorithms)
Category: Power/Ground Network
Keyword: 
SLP algorithm,  GGA method,  P/G network optimization,  global optimum,  

Full Text: PDF(472.5KB)>>
Buy this Article



Summary: 
In this paper we propose a novel and efficient method for the optimization of the power/ground (P/G) network in VLSI circuit layouts with reliability constraints. Previous algorithms in the P/G network sizing used the sequence-of-linear-programming (SLP) algorithm to solve the nonlinear optimization problems. However the transformation from nonlinear network to linear subnetwork is not optimal enough. Our new method is inspired by the biological evolution and use the grid-genetic-algorithm (GGA) to solve the optimization problem. Experimental results show that new P/G network sizes are smaller than previous algorithms, as the fittest survival in the nature. Another significant advance is that GGA method can be applied for all P/G network problems because it can get the results directly no matter whether these problems are linear or not. Thus GGA can be adopted in the transient behavior of the P/G network sizing in the future, which recently faces on the obstacles in the solution of the complex nonlinear problems.


open access publishing via