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ABSTRACT

Natural hazards (NHs) associated with climate change have been increasing in frequency and intensity. These

acute events impact humans both directly and through their effects on social and environmental determinants

of health. Rather than relying on a fully reactive incident response disposition, it is crucial to ramp up prepared-

ness initiatives for worsening case scenarios. In this perspective, we review the landscape of NH effects for

human health and explore the potential of health informatics to address associated challenges, specifically

from a preparedness angle. We outline important components in a health informatics agenda for hazard prepar-

edness involving hazard-disease associations, social determinants of health, and hazard forecasting models,

and call for novel methods to integrate them toward projecting healthcare needs in the wake of a hazard. We

describe potential gaps and barriers in implementing these components and propose some high-level ideas to

address them.
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INTRODUCTION

Natural hazards (NHs) pose a seasonal destructive threat to popula-

tions globally.1,2 Climate change has strong linkages to the increasing

frequency and intensity of NHs.3 Since the 1960s, the annual average

deaths from NHs dropped drastically,1 heightening focus on those liv-

ing with comorbidities and mental trauma, difficulties thriving, and

ultimately unready for another disaster. Marginalized and vulnerable

populations, seen as having unmet social needs and intersectional

experience with inequities, bear a disproportionate burden recovering

from NHs.4 Yet capture and coverage of patient-level social determi-
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nants of health (SDoH) have lagged.5–8 With the increasing frequency

of NHs disrupting communities, health informatics innovations are

needed to support planning and adapting to NHs.

Climate changes in local environments can be separated into two

general groups of phenomena: (1) changes that create conditions for

more frequent and intense acute NHs and (2) gradual “slow-burn”

changes that destabilize weather and land pattern (eg, glacial melt,

sea-level rise, chronic aerosol exposures). While health effects of

floods and coastal surges have been well-documented,9–11 climate

change and compounded disasters may reveal previously under-

reported effects. Forecasted heatwaves contribute to wildfire risks

and long-term consequences of drought, food shortages, and worker

safety risks.12–14 Poor mental health status spikes dramatically with

disasters, adding mental trauma and suicide risks even among those

indirectly affected.13 The Coronavirus Disease 2019 (COVID-19)

pandemic reminded the world that prolonged occupational stress

leads to burn-out and capacity shortage.15 Despite known effects of

NHs (Table 1), health systems need a holistic data-driven approach

to recognize pattern changes from climate change and impacts on

SDoH and research information needs to empower policy and pre-

paredness actions.

Observational systems deployed in the ocean and land and satel-

lite remote sensing systems inform early warning systems and evacu-

ation to safety.16,17 Such systems generate high volumes of high-

resolution data, requiring analytic tools like artificial intelligence

(AI) to extract research insights. Yet, communities experiencing the

intersection of multiple health inequities and social needs often bear

a disproportionate burden recovering from disasters.18 Further

improvements are needed to capture knowledge about SDoH and

design strategies for resilience for those most vulnerable.7,19

In this perspective article, we focus on acute NHs (Table 1) that

exacerbate the deterioration of SDoHs and present what biomedi-

cal/health informatics should support to integrate research capacities

into preparedness.

TOWARD AN INFORMATICS AGENDA: GAPS,
BARRIERS, AND RECOMMENDATIONS

From a preparedness perspective, the central need in the wake of an

NH is the ability to send early warning messages and appropriately

allocate first-response resources (eg, provider support, medications,

debris removal). NHs are stochastic and forecasting healthcare uti-

lization is highly complex owing to local environments and com-

munity structures. Traditional forecasting systems are agnostic of

the local burden of disease and social needs in the communities. We

posit that any such comprehensive forecasting system must comprise

the following components:

C1. Localized syndromic surveillance models for NHs.

C2. Regular updates to SdoH and associated geographical distribu-

tions of vulnerable/underserved populations.

C3. High-resolution spatiotemporal models to predict NHs in the

future.

C4. Methods to integrate syndromic surveillance models, demo-

graphic distributions, and NH prediction models.

Before we elaborate on these components, we note that vulnerability

can be defined differently depending on the context of the hazard of

concern.42–45 For the purposes of this perspective, we rely on defini-

tions of vulnerable and underserved populations by CDC and CMS

to highlight groups most broadly at-risk to NHs (Figure 1). We

acknowledge that marginalized communities often experience multi-

ple health inequities—such as discrimination and barriers to basic

resources—and historical underrepresentation within biomedical

research. Highlighting notable gaps in research and data infrastruc-

ture, we propose high-level ideas to address barriers as a long-term

call-to-action for the informatics community.

C1. Localized syndromic surveillance models for NHs
Healthcare resource allocation directly depends on the types of con-

ditions that will see a major uptick. Therefore, it is imperative to

build models that capture distributions of conditions in the wake of

an NH by type. Retrospective case studies and survey-based esti-

mates document salient trends from specific NHs by type (Table 1).

As NHs reach greater intensity and duration, it is not apparent how

historical syndromic patterns observed during prior events may

under-extrapolate disease burden into new geographic settings for

future projections. Expert intuitions may not capture all second-

order effects of burden (eg, drug overdose deaths reached a record

high in the United States during the COVID-19 pandemic48 despite

having no direct relationship to COVID-19).

A comprehensive database of various NHs and associated distri-

butions of conditions across time post-NH, ranging from a week to

several months, is needed. Recent data sets provide the spatial-

temporal information about NH-affected zones.1,49 What remains

missing is health outcomes data combined with individual- and

community-level SDoH. As of now, the US National Centers for

Environmental Information tracks deaths and injuries from NHs

and the National Syndromic Surveillance Program (NSSP) collects

chief complaint data from nearly 6000 healthcare facilities and

emergency departments.50 However, NSSP only constitutes 1/7th of

US outpatient clinics;51 a collaboration between local healthcare

facilities and state health information exchange may provide a fuller

snapshot, although the roughly 10% of Americans without interac-

tions with healthcare systems may be under-represented. Augment-

ing traditional surveillance data with social media platform may

mitigate this representation issue.52,53 Social media usage and pref-

erences vary between demographics, so it is crucial to consider the

platforms’ diversity and representativeness. For example, in the

United States, 46% of Hispanic Americans and only 16% of white

Americans use WhatsApp54; Facebook, Twitter, and Instagram are

amenable to crisis informatics research55 and connectivity cold-spot

detection56 across demographics. This syndromic distribution data-

base should be retrospectively collected for previous NHs and mined

in real time to build a rich up-to-date resource for new NHs.

C2. Regular updates to SDoH and associated

geographical distributions of vulnerable/underserved

populations
Information collected from C1 may not be sufficient to extrapolate

disease patterns beyond the location and population characteristics

at the time. As such, it is important to gather appropriate snapshots

of population characteristics. Different metrics have been adapted to

use static representations of spatial risks,4,57 compute composite

indices,58 and identify vulnerable population areas. This supports a

known emergency response use case: identifying geographic areas

with high concentrations of vulnerable/underserved people for tri-

age.42,59 Unfortunately, census-based population estimates gathered

every 10 years become less accurate as time progresses.60,61 Thus,

there needs to be a focus on regular capture of changes in measures

of SdoH in a population.
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Regular, explicit updates of SDoH attributes are becoming more

practical, and integration of SDoH data into clinical records is pro-

gressing.62–64 SDOH data from a population should ideally be cap-

tured at a rate sufficient to prepare for predictable NH periods, such

as seasonal risks which might occur annually. Leveraging EMRs and

HL7-FHIR infrastructure, public health surveillance can track SDoH

variations across visits and healthcare facilities, which can then be

aggregated for community-level measures. However, EMR-based

coding of SDoH needs data quality and process improvement.65,66

Tools (eg, for clinical note processing) and vocabulary are needed to

screen for discrimination by gender identity, employment and occu-

pation status, and education opportunities. With appropriate incen-

tives in-place,67 the data collection strategy would inform healthcare

stakeholders with fresh snapshots of the patient population vulner-

abilities, driving policy changes to promote disaster resilience.

C3. High-resolution spatiotemporal models to predict

NHs in the future
C1 addresses the disease burden of NHs, but it lacks the capability

to predict healthcare utilization events. Modeling NH risk is central

to leveraging the other components to estimate future healthcare uti-

Table 1. Known impacts of climate change on natural hazards associated with health effects

Natural hazard Impact of climate change on natural

hazards

Health effects Vulnerable or underserved popula-

tions at risk

Heat and heat waves More frequent dangerous heat levels

with rising humidity are predicted in

many regions of the world, posing a

threat to human and agricultural

crop health.12

Urban areas are at higher risk of

experiencing heat waves due to

the “urban heat island” phenom-

enon.20,21

Acute effects:

Increased hospitalization,22–24 dehy-

dration,23 heat stroke,22–24 heat

stress,23,24 acute renal disease,22,23

respiratory disease,22,23 preterm

birth,24 mental health,24 pediatric

emergency trauma,22 poorer ambu-

lance response times22

Less is known about the long-term

health effects.

Vulnerable populations:

>65 years old (older women are at

even higher risk),22,24,25 very young

children,24 preexisting conditions

(eg, respiratory, cardiovascular, or

metabolic disease).20,22,24,25

Racial disparities and SDoH:

African American,25,26 nonnative

speakers,24 lower socioeconomic

status,23–26 military occupation,22

outdoor workers,23,24 manual

laborers23,24

Hurricanes and floods Hurricanes and flooding are expected

to increase in intensity and

number.16,27,28

Hurricanes intensity is influenced by

decreasing vertical wind shear and

increasing ocean temperatures,

which occurs with more greenhouse

gasses.27

Acute effects:

Injuries, infection, drowning,

increased risk of airborne and water

borne exposure of chemicals and

toxins through damage and flooding

to factories, agricultural areas and

animal facilities.29,30

Long-term effects: exacerbation of

preexisting chronic illnesses (eg, dia-

betes and renal failure),29 exposure

to mold,10 cardiovascular disease,29

respiratory disease,29 adverse preg-

nancy outcomes (eg, gestational

hypertension, renal disease, preterm

birth, stillbirths),29 mental illness

and substance abuse (eg, depression

and post-traumatic stress disor-

der).29

Vulnerable populations:

elderly,29 preexisting conditions.29

Racial disparities and SDoH:

lower socioeconomic status,9,10,29 lim-

ited access to health care,9,10 dis-

placement of individuals.28 The

United States is at risk of a 26.4%

increase in flooding by 2050, with

Black communities in the Southern

states at highest risk.28

Wildfires The population exposed to wildfire

smoke has increased dramatically in

the last 20 years.31 Parts of the

world are projected to see a rise in

area burned due to wildfire by

40%–100%.12,32

Acute effects:

Increased hospitalizations,31 cardio-

vascular diseases (eg, cardiac ische-

mia, myocardial infarction),31,33–36

metabolic diseases (eg, type II diabe-

tes),31 respiratory illnesses (eg,

asthma or chronic obstructive pul-

monary disease), adverse pregnancy

outcomes (eg, low birthweight, pre-

term birth),37,38 all-cause mortal-

ity.39

Long-term health effects of wildfires

include eye and respiratory tract irri-

tation, reduced lung function, bron-

chitis, exacerbation of asthma and

heart failure, and premature

death.40

Vulnerable populations: >65 old,31,41

children,31,41 those with preexisting

conditions (eg, cardiovascular or

respiratory disease),31,41 pregnant

women and their fetus.31,41

Racial disparities and SDoH: popula-

tion groups living in low-income

areas and outdoor workers.31,41

SDoH: social determinants of health.
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lization. Recent disaster datasets provide spatial information and

damage assessments of past NHs.1,49 While this is useful for follow-

up inquiries for affected areas, it does not help with extending pre-

dictions to new areas. A full discussion of methods that forecast

NHs is out-of-the-scope for this article but a recent survey by Ward

et al2 highlights different approaches taken in this area. Recently, AI

methods have been proposed to predict storm duration, severe wind,

and severe hail in the near term.68 Deep neural networks have seen a

major resurgence in unstructured data analysis and the same appears

to hold true for weather forecasting.69 Jacques-Dumas et al70 use a

convolutional neural network with transfer learning to predict

extreme long-lasting heat waves with a 15-day lead time. Using the

famous U-net convolutional architecture for image segmentation,

Weyn et al71 generate 6-week subseasonal forecasts in 3 min, dem-

onstrating NH prediction with a 4-day forecast for hurricane Irma,

retrospectively. This work has been improved to model more varia-

bles and at 8 times higher resolution using the vision transformer

architecture as the backbone.72 Application of the latest AI advances

for NH prediction is still nascent and there is a serious call to create

new benchmarks to rigorously test methods in this area.73

C4. Methods to integrate syndromic surveillance

models, demographic distributions, and NH prediction

models
If we know the risk of a particular NH occurring in an area (C3),

based on the prior syndromic distribution for that NH (C1) and the

current vulnerable demographic snapshot of that area (C2), health-

care utilization in the wake of that NH can be projected, analogous

to the COVID-19 SEIR models.74 This involves developing novel

methods to integrate different models and distributions (C1–C3) to

map to utilization across disaster management phases. We posit that

extra resource needs can be directly tied to uptick in diseases and

hence we set out to model the distribution of diseases in a particular

location at a given time of the year. Future distributions of diseases

estimated from the combination of C1, C2, and C3 will enable local

facilities to associate upticks in diseases with potential extra resour-

ces needed. Estimating model uncertainty arising out of the three

component estimates will be challenging. In complex systems involv-

ing multiple interacting variables each carrying noise, uncertainty

snowballs and lead to unreliable projections (eg, overshooting uti-

lization leads to resource wastage). These aspects of uncertainty and

complexity are the two main pillars identified from a consensus

study of digital technologies and environmental sciences.75 In terms

of specific methods, computer vision, causal inference, uncertainty

quantification, transfer learning, and time series analysis have been

put forward by AI scientists76 to handle climate change in general;

these methods are pertinent in the context of joint modeling needed

to integrate C1–C3.

CONCLUDING REMARKS

In this perspective, we reviewed climate change-induced NHs and

associated disease burden. Subsequently, we identified gaps and bar-

riers in appropriate resource allocation in the wake of such NHs and

presented essential components central to an informatics strategy in

mitigating adverse human health impacts. We conclude with some

important considerations surrounding cost burden, interoperability,

and privacy.

We note that federal and state health agencies may have to incur

a major cost burden to materialize a resource planning system that

Figure 1. At-risk populations in a natural hazard are populations at greater risk of negative health outcomes due to disparities in social determinants of health

and/or physical health compared to the majority who are facing the same natural disaster.44 Adapted from: PUBLIC HEALTH WORKBOOK—To Define, Locate,

and Reach Special, Vulnerable, and At-risk Populations in an Emergency46 and “Serving Vulnerable and Underserved Populations.” U.S. Centers for Medicare &

Medicaid Services, Department of Health and Human Services.47
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aligns with our agenda. There is a value conflict between health sys-

tem profit margins, adequate staffing, and organizational investment

into disaster risk reduction for climate change response. However,

the significant financial burden of handling climate and sensitive

health outcomes during future climate crises may dwarf the upfront

costs.77 Since climate crises disproportionately affect marginalized

and vulnerable populations, there is merit in gauging the economic

tradeoff of addressing the health harms in relation to the costs of

inaction disproportionately felt by marginalized groups.78

This perspective has an implicit focus on the USA. However, the

ongoing COVID-19 pandemic has demonstrated that international

data sharing and collaboration are essential for rapid advances. As

pointed out by a recent G7 health ministers’ communique,2 striving

toward standards for data sharing is essential while complying with

international patient privacy regulations. Federated machine learn-

ing79 approaches ought to be considered to minimize concerns of

data sharing and privacy breaches. Within the United States, at best

the area deprivation index describes vulnerability as fine as the cen-

sus block-group scale.80 Inadvertent private health information dis-

closures can occur if SDoH data are captured at the block-group

scale. Although AI methods are bound to play a crucial operational

role, unscrupulous use of AI algorithmic decision-making may exac-

erbate disparities.81,82 Deliberate considerations of the use of partic-

ular AI methods83 should be a top priority to avoid detrimental

outcomes in mitigating the effects of climate change on human

health.
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