
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
5
2
7
3

|

d
o
w
n
l
o
a
d
e
d
:

1
4
.
1
1
.
2
0
2
4

A Complete Axiomatization of the Three-
valued Completion of Logic Programs

ROBERT F. STARK, Institut fur Informatik und angewandte
Mathematik, Universitdt Bern, Ldngassstrasse 51, CH-3012 Bern,
Switzerland

Abstract
We prove the completeness of extended SLDNF-resolution for the new class of e-
programs with respect to the three-valued completion of a logic program. Not only the
class of allowed programs but also the class of definite programs are contained in the class
of e-programs. To understand better the three-valued completion of a logic program we
introduce a formal system for three-valued logic in which one can derive exactly the
three-valued consequences of the completion of a logic program. The system is proof
theoretically interesting, since it is a fragment of Gentzen's sequent calculus LK.

Keywords: Logic programming; three-valued logic; negation as failure; SLDNF-resolution;
sequent calculus.

1. Introduction

Negation as failure does not have a simple logical explanation. Procedurally,
it can easily be described by the two rules

the literal ->A succeeds if A fails,
the literal -<A fails if A succeeds with answer the identity substitution.

Formally it is defined as SLDNF-resolution which is SLD-resolution plus
negation as failure. Clark has introduced in [3] the completion of a logic
program as a declarative semantics for SLDNF-resolution (or his query
evaluation procedure). He proved the result that

if the query ?— L,, . . ., Ln succeeds from a program P with answer 6 then
comp(P) t V(L, A . . . A Ln)6 and
if the query ?— L,, . . ., Ln fails from P then comp(P) t->3(L, A . . . A Ln).

To have a satisfactory declarative semantics for SLDNF-resolution one
wants also the opposite directions of these statements. But this is not
possible in general since the completion of a program can be inconsistent or
a query can flounder.

Kunen has defined in [8] the three-valued completion of a logic program.
This seems to be a good semantics for negation as failure, since the
soundness results above of Clark remain valid if one replaces the classical

1. Logic Computat., Vol. 1 No. 6, pp. 811-834, 1991 © Oxford University Press

811

812 / Three-valued Completion of Logic Programs

consequence relation ' t ' by the three-valued relation %' and, on the other
hand, SLDNF-resolution is complete with respect to this semantics for the
class of allowed programs. However, the condition of allowedness is very
stringent since it excludes many common Prolog constructs. For example the
following fragment of a program is not allowed:

member^, [X \ L]).

member^, [Y \ L\):- member^, L).

free(L, X) : - good(Ar, L), not member^, L).

Thus the problem is to characterize a class of logic programs which includes
common Prolog constructs and for which SLDNF-resolution is still compl-
ete. In Section 4 we introduce the new class of e-programs. e stands for the
empty substitution or equivalently for the answer 'yes'. We prove that
ESLDNF-resolution, a save extension of SLDNF-resolution, is complete for
this class with respect to the three-valued completion. The difference
between SLDNF- and ESLDNF-resolution is, that in ESLDNF-resolution a
non-ground negative literal ->A may be chosen, and it succeeds and fails
according to the rules above.

The class of e-programs contains the class of allowed programs. It also
contains the class of definite programs. Therefore our completeness result
extends the results of Shepherdson in [13], Cavedon and Lloyd in [2] and
Kunen in [9]. In the program above, the e property means that if the goal
?— good(s, t) succeeds with answer e, then the terms s and t have to be
closed or the goal ?— member(.s, i) has to fail.

Having this large class of programs for which ESLDNF-resolution is
complete in three-valued logic the question is, if there exists a sound and
complete formalization of the three-valued logic used in the completeness
proof. The answer is yes. In Section 5 we introduce a new formal system for
three-valued logic in which one can derive exactly the three-valued
consequences of the completion of a logic program. Thus three-valued logic
becomes more perspicuous. The three-valued completion is only an ap-
proximation for ESLDNF-resolution. The real formal counterpart to it is the
system presented in Section 5. The system is proof theoretically interesting,
since it is a fragment of Gentzen's sequent calculus LK for classical logic.

The plan of this paper is as follows. In Section 2 we summarize the
three-valued completion comp(P) of a logic program and we introduce a
new weak completion comp~(P) of a program, which has the same
three-valued consequences as comp(P). Section 3 is concerned with the

Three-valued Completion of Logic Programs / 813

theory of ESLDNF-resolution. In Section 4 we introduce the class of
e-programs and prove that ESLDNF-resolution is complete for it. In Section
5 we present the new formal system LK(P) and prove that it is a sound and
complete axiomatization of the three-valued completion of a logic program.

2. Three-valued logic

Let ££ be a fixed first order language with equality. We do not make any
assumptions about the number of function symbols or predicate symbols of
<£, but we assume throughout this paper that all programs and goals are
written in this language. The terms r, s, t, . . . and the formulas
A, B,C,F, . . . of % are defined as usual. The literals L, . . . of X are the
atomic and negated atomic formulas of 5£. We write A[x] to indicate that all
free variables of A are from the list x; analogous, t[x] stands for a term with
no variables different from x. An expression of the form

A'. L\, • • •, L,n

where A is atomic, O^n and the L/s are literals is called a program clause.
The atom A is the head of the clause and the sequence Lx,. . ., Ln is the
body of the clause. A program is a finite set of program clauses. A goal is an
expression of the form

We assume that in programs and goals the equality symbol does not occur.
Capital greek letters F, A, A, I I , . . . denote finite lists of literals. Thus
clauses will be denoted by A: — II and goals simply by F (we omit the '?—'
sign). 0 is the empty goal. Small greek letters a, (5, y, 6, q>, x, • • • denote
substitutions, e is the empty substitution.

We summarize now the definition of the completion of a logic program.
Let P be a program and r be an n-ary predicate symbol. We assume that
there are m clauses in P which define r and that the i-th clause is of the form

r(t,.i\y], . . ., tiin[y]).— Lu\y], . . ., LiM0[y].

Then one defines the defining formula for r as

m / n k(i) \

D,[xu . . ., xn] := W 3y(/A x, = tu[y] A /X\ Lu\y])

and the completed definition of r as the formula

VJc(r(Jc) •*/>,[*]).

The cases m = 0 or k(i) = 0 are treated in a natural way. The empty
disjunction is the constant ± and the empty conjunction is the constant T.
The completion comp(P) is obtained from P by taking all completed

814 / Three-valued Completion of Logic Programs

definitions of all predicates of SB and the following equality and freeness
axioms for SB, the so called theory CET (Clark's equality theory).

(l)x=x
(2) x=y^>y=x
(3) x=y f\y = z^*x = z
(4) *i = yi A . . . Axn=yn^>f(xu .. .,xn)=f(yu .. .,yn)
(5) f(xu. ..,xn)=f{yx,.. .,yn)^>xi = yi (for l < i ' s n)
(6) f{xu ..., xK)*g(yi,.. .,ym) (i f / * *)
(7) t =£ x (if Ms a term different from x and x e var(f))

The axiom xx = _y, A . . . Axn =yn A r(xx, . . ., xn)-+r(yu . . ., yn) is not
needed because it is derivable from comp{P).

Following Kunen in [8] and [9] we use the three-valued logic of Kleene for
the interpretation of comp(P). In this logic the three truth values are t
(true), f (false) and a (undefined) with the partial ordering defined by u < t
and o < f. Then x < y is equivalent to the two statements

(1) if x = t then y = t and
(2) ifjc =

The formula A A B is true iff both A and B are true and it is false iff one of
A and B is false and undefined otherwise. The formula A v B is true iff A or
B is true and A v B is false iff A and B are false and A v B is undefined
otherwise. The formula ->A is true iff A is false and it is false iff A is true and
undefined otherwise.

A three-valued structure si is a non-empty set |s$\ of objects together with
interpretations of the function symbols and the equality relation in a
two-valued manner and interpretations of the n-ary predicates as functions
from |^|" into {t,f,u}. The quantifiers V and 3 are treated as infinite
conjunctions and disjunctions. So &4(VxA[x, 3]) = t iff for all b e \si\:
si(A[b, 5]) = t and sHyxA[x, a]) = f iff there exists a b e \si\ such that
sl(A[b, a]) = f. st(3xA[x, a]) = t iff there exists a b e \si\ such that
si\A[b, a]) = t and si(lxA[x, a]) = f iff for all b e \sl\: s4(A[b, a]) = f. We
write sit3 A[x] iff for all a e \s4\: s4(A[3]) = t and for theories T we write
Tt=3y4 iff for all structures si: sit3T implies si^A.

Kunen has given to the connective '<->' in the completed definition the
following interpretation: A++B is true in a model if and only if A and B
have the same truth value. This information about '<->' suffices, since we are
only interested in the relation comp(P) t3 F, where the formula F contains -i,
A, v, 3 and V. Such formulas are called Kleene formulas. We will show
below that one can replace '••' by a weaker connective.

On three-valued structures the following s relation is denned. Let si ^ 98
iff si and 98 have the same universe and the same interpretation of functions
and equality and for all predicates r, for all a € \si\: si(r(a)) ^ S8(r(a)). It is

Three-valued Completion of Logic Programs / 815

easy to see that this is a partial ordering. If si < 98 and F[x] is a Kleene
formula then si(F[S]) < 9B(F[a]) for all a e \si\.

In [5] Fitting has defined for a program P an operator OP which is the
three-valued analogue of the 'immediate consequence operator' TP of logic
programming. The operator <J>P assigns to a three-valued structure si a new
structure <&p$l defined by

where the completed definition of r in P is Vx(r(x)<^Dr[x]). The operator
OP is monotonic, since si < 98 implies <S>psi < <I>p98. A structure si satisfying
CET is a fixpoint of 3>P iff si is a model of comp(P).

Now we introduce the weak completion of a logic program. We denote by
comp~{P) the theory which is obtained from comp(P) if one replaces the
equivalence '•*' in the completed definitions by a new connective '<^' such
that they are of the form

The interpretation of ' # ' is as follows: A # B is true in a model iff the truth
value of B is less than or equal to the truth value of A and false otherwise.
Hence we have that a structure si is a model of comp~{P) iff si is closed
under OP. In the case A, B have values among t, f A # 5 has the same truth
value as A++B. The difference between comp{P) and comp~(P) can be
expressed by the following two equivalences:

comp (P),

comp

We want now to show that comp~(P) has the same logical consequences as
comp(P). To prove this we need the following lemma.

LEMMA 1

If <Ppsi < si then there exists a structure 98 < si such that 3>P2B = 98.

PROOF. If Q>psi<si then Op is monotonic on the cpo {9&\9&<si}, so it
must have a fixed point there. •

LEMMA 2

If F is a Kleene formula then comp(P) t3 F iff comp~(P) E3 F.

PROOF. The direction from right to left is trivial. For the direction from left
to right we assume that comp(P) E3 F and that si E3 comp~(P). Then we have
<&psi ^ si and by Lemma 1 there exists a 98 < j# with 4>p98 = 98. Now
9813 comp(P) and 9813 F and since F is a Kleene formula si t3 F. D

816/ Three-valued Completion of Logic Programs

Lemma 1 and 2 will essentially be used in the proofs of the main theorems of
Section 4 and 5. The next section is about the theory of extended
SLDNF-resolution.

3. Theory of extended SLDNF-resolution
In this section we give a formal definition of extended SLDNF-resolution
and prove some basic facts about it. We will use these technical lemmas in
the completeness proof of Section 4. In Shepherdson's papers [12] and [13]
some of them are proved in detail, but the version of SLDNF-resolution that
he uses is weaker than our version. We do not require that negative selected
literals have to be closed. So we will prove the lemmas here again but every
time when there is a correspondence to [12] and [13] we will indicate it. The
most interesting new results of this section are Lemma 14 and Corollary 15.

One serious problem of the negation as failure rule is its nested use.
Negation as failure is easily implemented. Unfortunately it is much more
difficult to describe and to understand what happens in a query evaluation
process. The following two definitions are an adaptation of the definitions in
Section 15 of Lloyd [10].

DEFINITION 3

A goal F' is derived from F using (the selected atom) A, (the input clause) C
and (the most general unifier) 0 if F is of the form Ao, A, Aj and C of the
form B: — U and 0 is a most general unifier1 of A and B and F =
(Ao, n , A,)6>.

Let P be a program and F be a goal. One defines by recursion on k the two
notions

(a) r0, r,, . . . , Tn, elt . . ., 6n is an ESLDNF proof of PIT of rank k with
answer 0 and

(b) T is a finitely failed ESLDNF tree for PIT of rank k.

DEFINITION 4

(a) r0, r,, . . ., Fn, 0,, . . ., 0n is an ESLDNF proof of PIT of rank k
with answer 0, if Fo = T and Tn = 0 (empty goal) and 0 =
0i . . . 0n \ var(F) and for every i < n there is in F, a literal L (the
selected literal), i.e. F, is of the form Ao, L, Aj, such that

(a+) if L is positive then there is a variant C of a clause of P, in
which no variables occur from Fo0i . . . 0; or F,, and F1+i is
derived from F, using L, C and 0,+1,

(a—) if L is the negative literal -*A then there is a finitely failed
ESLDNF tree for PI A of rank less than k and F /+1 = Ao, A] and
0,+, = e.

1 We assume in this paper that a most general unifier is idempotent, i.e. 08 = 0. This implies especially
that var(0) c var(/l) U var(fl).

Three-valued Completion of Logic Programs / 817

(b) T is a finitely failed ESLDNF tree for PIT of rank k, if T is a finite
tree with root F consisting of non empty goals such that in every node
A of T there is a literal L (the selected literal), i.e. A is of the form
Ao, L, Au such that

(b+) if L is positive then there is for every clause of P, which has a
variant unifying L, exactly one variant C with no variables in
common to A and a child A' derived from A using L, C and
some most general unifier, and A has no other children,

(b-) if L is the negative literal ->A then there is an ESLDNF proof of
PI A of rank less than k with answer e and A has no children.

This definition is more general than the usual definition of SLDNF-
resolution as presented for example in Lloyd [10]. Normally in the steps
(a—) and (b—) the literal ->A has to be closed. But we think that there is no
reason to require this. The ESLDNF derivation procedure corresponds to
the implementation of negation in IC-Prolog [4].

We say that a goal F succeeds with answer 6 (from P) or equivalently 6 is
a computed answer for F if there exists a k > 0 and an ESLDNF proof of
PIT of rank k with answer 0. A goal F is finitely failed (from P) if there
exists a k^O and a finitely failed ESLDNF tree for PIT of rank k.

If T is a finitely failed ESLDNF tree for PIT of rank k with less than or
equal to n nodes then we say that F is finitely failed of rank (k, n). We take
the lexicographical ordering on pairs of natural numbers to compare the
ranks of finitely failed goals.

If k ^ k' then a proof (finitely failed tree) of rank k is also a proof (finitely
failed tree) of rank k'.

The following lemma is a version of the lifting lemma which we think is
the most appropriate and the most useful tool for proving theorems about
ESLDNF-resolution.

LEMMA 5 (Lifting)
If F is the goal Ao, A, Ax and C the clause B:—Tl and if o and x are
substitutions such that Ao = Bx then the head of every variant C of C which
has no variables common to F is unifiable with A, and if F' is the goal
derived from F using A, C and some most general unifier 6 then there exists
a substitution oc such that one obtains F 'a from Fa if one replaces Ao by the
body IIT of clause Cx, i.e. T'a = A0o, FIT, AXO.

PROOF. Assume that Ao = Bx and that C" is a variant of C such that
var(C') D var(F) = 0 . Then there is a permutation of variables t) such that
C = Cr\. Let x be the substitution o \ var(F) U f a ^ r) \ var(C'). The
substitution % a c t s o n T like o and on C like r\~xx. Then

A% = Ao = Bx = BT)(T]-1T) = (BV)x

and A and Br) are unifiable. Let 0 be a most general unifier of A and Br],

818 / Three-valued Completion of Logic Programs

Now there exists a substitution a such that x = ®a- Thus Y' = (Ao, Tit], Ai)0
and AjOa = A,x = A,a and (Ilr}d)a = YIT]X = Ylr](r)~lx) = IIT. Altogether
we obtain Y'a = Aoa, Yix, Axa. •

The next lemma corresponds to the Lemmas 2 and 3 of [12].

LEMMA 6

Let F be a goal and q> be a substitution.

(a) If r0, I \ , . . ., Tn, e lf . . ., 0n is an ESLDNF proof of T of rank k with
answer 6 then there exists an ESLDNF proof of YOcp of rank k with
answer e.

(b) If T is finitely failed of rank (k, n) then Yep is finitely failed of
rank (k, n).

PROOF. The two statements (a) and (b) are proved simultaneously by
induction on k.

(a) Let r0, I \ , . . ., Tn, elt . . ., 6n be an ESLDNF proof of Y of rank k with
answer 0. Using the induction hypothesis we may assume that there is a
j^n such that in all Y,, i<j, only positive literals are selected and Yt

consists entirely of negative literals -\A where A is finitely failed of rank
less than k. Let Y':=Y6q). We construct recursively on i<y an
ESLDNF derivation H,, r{ , . . . , T/, 6[, . . ., 0/ of Y' and substitutions a,
and Pi such that

0) Y'd[...e;ai = Y',
(ii) rl'al = rlel+1...en<p,

(iii)

If J = 0 then we put To:=r' , ao:= e and fio:= 0, . . . 0n<p. Now we
assume that i <j and that we have already constructed the derivation up
to i. The goal Y, is of the form Ao, A, A, and Y[= A'o> A', A[and there
is a variant B : - n of a clause such that r,+1 = (Ao, II, A,)0,+1. We put
T := 6i+l .. . Qn(p and then A'a, = Ax = Bx and by Lemma 5 applied to
the enlarged goal (1^01. . . 6',, T'i) one can continue the derivation to
r,'+1 = (Ao, Yir\, Ai)0/+i for some renaming r\, and there is a substitution
a,+x such that (Y'0[. .. d',d',+uY'l+i)ai+1 is obtained from
(Yod[. . . 9'i, Y'i)a, = (r , r,T) by replacing Ax by Yix, i.e.

(ii) Y'l+lal+1 = AQx, Yix, A,r = T/+10/+2. . . 0n<p.

In order to obtain the substitution /3/+1 we will again use Lemma 5. Since
Api6',+i = A'9'i+i = Brj6'l+i there is a substitution Bl+l such that Yl+1Bl+l

is obtained from 170,'+, by replacing A'd'l+i by IIT;0/+1, i.e.

Three-valued Completion of Logic Programs / 819

(Hi) ri+lpl+l = Ke'i+

Now Yfij = F,' and Fy' consists therefore of negative literals -i<4 where A
is finitely failed of rank less than k. Since T9q>9[. . . 9)<Xj = F' = F0<p it
follows that Y9q>9[. . . 9\ is a variant of T9q> and therefore the
computed answer is e.

(b) We prove by induction on n that if F is finitely failed of rank (k, n) then
Tq> is finitely failed of rank (k, n).

(b—) F is of the form Ao, ~vl, A! and A has a proof of rank less than k
with answer e: By the main induction hypothesis on k the atom
Aq> has a proof of rank less than k with answer e too and Yep is
finitely failed of rank {k, n).

F is of the form Ao, A, A, and all goals derived from T using A are
finitely failed of rank (k, m) with m<n: Using Lemma 5 we see
that if a variant of some clause unifies with Aq> then the goal
derived from Tq> using Atp is an instance of a child of F and is
therefore finitely failed of rank less than (k, n). Putting all
together we obtain that F<p is finitely failed of rank (k, n). O

The next lemma is a weakening of the previous one, since we do not
consider the ranks of the proofs and finitely failed trees.

LEMMA 7

Let F be a goal and cp be a substitution.

(a) If F succeeds with answer 9 then F0<p succeeds with answer e.
(b) If F is finitely failed then Tq> is finitely failed.

The notion of implication trees, which we shall now introduce, seems to be
very useful, because in implication trees the non-determinism in selecting
the literals is missing. It is important to note that implication trees are not
computations of an ideal logic programming machine like ESLDNF proofs.
They are only a tool for proving properties of computations. Using
implication trees one can give a very short proof for the completeness of
SLD-resolution for definite programs (see Stark [15]). Closed implication
trees were first introduced by Apt et al. [1].

DEFINITION 8
Let L be a literal and P be a program. An implication tree for L with respect
to P of rank k is a finite tree T whose nodes are literals and whose root is L
such that

(a+) if A is a positive node of T then there exists a clause B:— FI in P
and a substitution 9 such that A = B9 and the children of A in T are
exactly the literals of U9,

820 / Three-valued Completion of Logic Programs

(a—) if -iA is a negative node of T then A is finitely failed of rank less
than k and ~>A has no children.

Using Lemma 6 one sees that if T is an implication tree for L of rank k and
a is a substitution then also Ta is an implication tree for La of rank k.

LEMMA 9
If the goal F has an ESLDNF proof of rank k with answer 6 then every
literal in TO has an implication tree of rank k.

PROOF. By induction on the length of an ESLDNF proof. •

The reverse of Lemma 9 in not true in general. Take for example the
program consisting of the two clauses r(X) :-~iq(X) and q(0) and let
d:= {X :=1}. Then r(X)6 has an implication tree but r(X) does not
succeed with any answer. Later we will introduce the class of e-programs for
which the reverse of Lemma 9 holds. The next lemma will help us to prove
that a goal cannot succeed and fail.

LEMMA 10
If the goal F is finitely failed of rank (k, n) and 6 is a substitution then it is
not possible that every literal in T9 has an implication tree of rank k.

PROOF. The proof is by induction on (k, n). Let F be finitely failed of rank
(*, n).
Case—: Suppose that F = Ao, ->A, Aj and that A has a proof of rank less than
k with answer e. If we assume that ->A6 has an implication tree of rank k
then A6 is finitely failed of rank less than k. But A6 has by Lemma 6 a proof
of rank less than k with answer e too and by Lemma 9 an implication tree of
rank less than k which contradicts the induction hypothesis.

Case+: Suppose that F = A<,, A, A, and every derived goal from F using A is
finitely failed of rank less than (k, n). If we assume that every literal in F0
has an implication tree of rank k then in particular Ad has one. This means
that there exists a clause B :— FI and a substitution T such that Ad = Bx and
every literal in Ur has an implication tree of rank k. Let F' be the goal
derived from F using A and (a variant of) B : — II. By Lemma 5 such a goal
exists and there is a substitution a such that T'a = A00, Fir, A,0. Since F' is
finitely failed of rank less than (k, n) this contradicts the induction
hypothesis. •

The next lemma follows from Lemma 9 and Lemma 10 and it corresponds to
Shepherdson's Theorem 4 of [12]. It justifies ESLDNF-resolution.

LEMMA 11

If F is finitely failed then F does not succeed with any answer.

The following lemma is exactly Lemma 6 of [12]. We omit its proof.

Three-valued Completion of Logic Programs / 821

LEMMA 12
If the goal F, A is finitely failed and if F and A have no variables in common
then either F or A is finitely failed.

One can also prove something like a 'cut rule' for ESLDNF-resolution. This
is not the same kind of cut that is used in the formal system of Section 5.

LEMMA 13
If the goal F, A is finitely failed of rank (k, n) and every literal in A has an
implication tree then F is finitely failed of rank (k, n).

PROOF. The proof is by induction on (k, n).

Case-: Suppose that the selected literal in F, A is ->A and A succeeds with
answer e. Then ->A cannot be in A since then A would be finitely failed and
this would contradict Lemma 11. Therefore ->A is in F and F is finitely failed
of rank {k, n).

Case+: Suppose that the selected literal is A and every goal derived from
F, A using A is finitely failed of rank less than (k, n).

Case+ 1: A is in F: All goals derived from F, A using A are of the form
A, A a where A is derived from F. Since every literal in A a has an
implication tree too, every A is finitely failed by induction hypothesis and
therefore F is finitely failed of rank(fc, n).

Case+2: A is in A: Then A is of the form Ao, A, Aj and there is a clause
B : - FI and a substitution T such that A = Bx and every literal in Fir has an
implication tree. By Lemma 5 there is a goal A derived from F, A and a
substitution a such that Acr = F, Ao, Fir, A,. Since A is finitely failed of
rank less than (k, n) by Lemma 6 Aar is finitely failed of rank less than {k, n)
too and by induction hypothesis F is finitely failed of rank (k, n). •

From Lemma 9 and Lemma 13 we obtain

LEMMA 14 (Cut rule)
If the goal F, A is finitely failed and A succeeds with answer e then F is
finitely failed.

COROLLARY 15
If the goal F, A is finitely failed and A succeeds with answer 6 then TO is
finitely failed.

PROOF. If A succeeds with answer 0 then by Lemma 7 the goal Ad succeeds
with answer e. If F, A is finitely failed then by Lemma 7 the goal Yd, A0 is
finitely failed and by Lemma 14 the goal TO is finitely failed. •

822 / Three-valued Completion of Logic Programs

4. Completeness of extended SLDNF-resolution

Until this point all properties of ESLDNF-resolution were proved for any
given program. We now define the class of e-programs and prove that
ESLDNF-resolution is complete for it.

DEFINITION 16
Let r be a goal and P be a program. T is an e-goal for P if for every
substitution 0:

if every positive literal in Yd succeeds with answer e

then

every negative literal ->Ad in F0 is closed or A6 is finitely failed.

P is an e-program if for every clause A : — F of P the body F is an e-goal for
P.

It is easy to see that the e-property is not decidable. But it is even worse. I
am grateful to the referee for bringing the following argument to my
attention which shows that the set of (finite) e-programs is a complete FI°
set.

PROOF. It is obviously FÎ . Let {k | Vn 3m{k, n, m) eA} be a complete Ff̂
set, with A primitive recursive. Let Q be a definite program which defines
the complement A in the sense that ? - b(sk(0), s"(0), sm(0)) succeeds if
(k, n, m)$A and fails finitely if (k, n, m) e A. Let Pk be the program Q
together with:

g:-p(N), -iq(sk(0),N,Y). q(K, N, Y):- r(K, N,0).

p(0). r(K, N, M) :-b(K, N, M), r(K, N, s(M)).

p(s(N)):-p(N).

Then every clause body of Pk is an e-goal except possibly the clause body
p(N), -tq(sk(Q), N, Y). Since p(N) succeeds only with the substitutions
{N: = sn(0)}, Pk is an e-program iff for all n, r(s*(O), s"(0), 0) is finitely
failed. Note that r(sk(0), s"(0), 0) never succeeds, and is finitely failed iff for
some m, the atom b(sk(0), sn(0), sm(0)) fails. Thus Pk is an e-program iff
Vn 3m(k, n, m) eA.

However, there are some well known subclasses of e-programs which are
defined purely syntactically.

REMARKS 17
(1) If P is definite then P is an e-program, since in P there are no negated

atoms.

Three-valued Completion of Logic Programs / 823

(2) A clause is called allowed if every variable of the clause occurs also in
a positive literal of the body of the clause. A program is allowed if
every clause of it is allowed. A goal is allowed if every variable of the
goal occurs also in a positive literal of the goal. Now if P is allowed
then P is an e-program, and if P and F are allowed then F is an e-goal
for P.

(3) P is quasi-definite if for every negative literal -\A in the body of a
clause of P the atom A does not unify with the head of any clause in
P. Now if P is quasi-definite then P is an e-program.

(4) The programs which are safe for negation of Van Gelder in [16] are
e-programs.

DEFINITION 18
A weak implication tree T for L with respect to P is defined like an
implication tree for L (Definition 8) but clause (a—) is replaced by

(a—) If ~iA is a negative node of T then there exists a substitution o such
that A a is finitely failed and ->A has no children.

The notion of weak implication trees is only an ad hoc notion. Every
implication tree is also a weak implication tree. For e-programs one can
prove now the reverse of Lemma 9.

LEMMA 19
Suppose that F is an e-goal for the e-program P, that q> is a substitution and
that every literal in Fq> has a weak implication tree. Then there exists a
computed answer 6 of F and a substitution a such that TOa — Tq>.

PROOF. By induction on the total number of nodes of the weak implication
trees of F<p. Assume that there are n positive and k negative nodes in the
weak implication trees of F<p. Then using Lemma 5 one can construct an
ESLDNF derivation Fo, F,, . . ., Fn) 0,, . . ., 0n of F and a substitution a
such that Fo0i . . . 6na = F<p and in F, (i < n) only positive literals are
selected and Yna consists of the k negative literals of the weak implication
trees. If we can prove that for every literal ->B of Fn the atom B is finitely
failed we are done.

Assume that -i/? is in the body FI of a clause which was used in the
resolution step from F, to F,+, (or that ->B is in Fo and i=0) . Then
-iB6i+l... 0n is in Fn. Every positive literal of FI0,+1 . . . 6n (or FO0, . . . 6n)
has a weak implication tree with less than n + k nodes and since a positive
literal is trivially an e-goal for P, by induction hypothesis, it succeeds with
answer e. Since P is an e-program (and F is an e-goal for P) ~^BBi+x . . . &„ is
closed or Bd,+l. . . dn is finitely failed. If -iB6l+i . . . 0n is closed then
B8i+i . . . 6n is finitely failed since it is a leaf of a weak implication
tree. •

824 / Three-valued Completion of Logic Programs

As an immediate consequence we have:

LEMMA 20
If P is an e-program and A:—F a clause of P and 6 a substitution, and if
every positive literal of T9 succeeds with answer e and every negative literal
->B6 in F0 is such that B6 is finitely failed, then Ad succeeds with answer e.

There is an alternative way to characterize the class of e-programs.

REMARK 21
If one denotes the sequence of all positive literals of a goal F by F+ and the
sequence of all negative literals by F~ then one can define the notions of an
e-goal for an e-program in the following equivalent way: F is called a regular
goal for P if for every computed answer 0 of F+ every literal ->B6 in F~0 is
closed or B9 is finitely failed. P is a regular program if for every clause
A : — F of P the body F is a regular goal for P.

One can prove Lemma 19 in an analogous way for regular programs, and
using this fact it is easy to see that P is an £-program iff P is a regular
program, and if this is the case then F is an e-goal for P iff it is a regular goal
for P.

We come to the main theorem of this section. It corresponds to the
completeness of the negation as failure rule for definite programs which was
proved by Jaffar, Lassez and Lloyd in [7].

THEOREM 22
Let P be an e-program. If the goal ?— L,, . . ., Lq is not finitely failed then
there exists a countable three-valued structure M with

(1) M is a model of comp(P),
(2) -i3(L, A . . . A Lq) is not true in M,
(3) if an atom A is true in M then some instance of A succeeds with

answer e,
(4) if a closed atom A is false in Ai then A is finitely failed.

PROOF. Note that ~i3(Lt A . . . A Lq) is not true in a model M iff there is
a variable assignment a such that M(Lit a) ¥= f for i = 1, . . ., q.

Let Ao, Au . . . be an enumeration of all atoms of % such that every atom
occurs infinitely many times in the enumeration. Let Fo:= L,, . . ., Lq. We
will construct by recursion a sequence Fo, F l 5 . . . of non-finitely failed goals
and a sequence 6U 62, • • • of substitutions. This sequence will be something
like a generalized infinite fair SLD-derivation of Fo.

We assume that Fo, F1? . . ., FB and 0u . . ., 6n are already constructed and
that Fn is not finitely failed. We consider two cases.

Case n = 2i: Assume that Fn = Ao, A, A, and that A is the leftmost positive
literal in F,,. Since Fn is not finitely failed there is a variant C of a clause of P

Three-valued Completion of Logic Programs / 825

of the form B:— FI and a most general unifier 0n+1 of A and B such that
(Ao, A,, n) 0 n + 1 is not finitely failed. We put Fn + 1 := (Ao, A1? n)0 n + 1 . If
there is no positive literal in Fn then we put Fn + 1 := Fn and dn+1 := e.

Case n=2i + l: If Fn, (A,0, . . . 0n) is not finitely failed then Fn + 1 := Fn,
(^ ,0 , . . . 0n) else F n + 1 : - Fn. In every case dn+1 := e.

It is easy to see that all compositions 0 , . . . 0n are idempotent (i.e.
0 X . . . 0n = 0 i . . . 0 n 0 i . . . dn) and that for every Fn there exists a F^ such
that Fn = T'nQx • • -dn. (We assume that in step n =2i the clause C has no
variables affected by 0 , . . .dn.) Let F be the set of all literals which occur in
some Tn. We define now a three-valued structure si. Let the universe \si\ of
si be the set of all terms of 56 and f*(tu . . ., tn) : = f{tx, • • ., tn). Like in
Theorem 16.1 of Lloyd [10] a binary relation is defined on \s&\ by

5 ~ t :Othere exists a n n e N such that 50! . . . 0n = tdx • • . dn.

It is easy to see that '—' satisfies the equality and freeness axioms. The
interpretation of the predicates is as follows

t, if there ex. a n n e N such that Adx. . . dn
succeeds with answer e;

f, if for all neM: Adi • • • dn$r;

u otherwise.

The definition makes sense since it is not possible that an atom A is t and f:
Assume that Adx • . . dn succeeds with answer £. Fix i^n such that A is Ah

and let m = 2* + 1. By Lemma 7 the atom Adx ... dm succeeds with answer e
too. If Fm, Adx • • • 0m would be finitely failed then by Lemma 14 Fm would
be finitely failed. Since this is not the case Adx . . . 0m is in Fm + 1 c F.

Now we show that if si(A) = f and Adx... dp is closed then Adx ... 0P is
finitely failed: Let si(A) = f. Fix i ~>p such that A=A, and let m — 2i + \.
The atom Adx. . . 0m is tried in step m. But Adx . . . dm=Adx. . . Bp and
since si{A) = f we have Adx . . . dp$F and the goal Fm, Adx... dp is finitely
failed. By Lemma 12 the goal Fm or the atom ^40,. . . 0P is finitely failed.
Since Fm is not finitely failed Adx... dp is finitely failed.

In a next step we prove that if L e F then si(L) =£ f: If L is positive then
this is clear. Assume now that L e F and L = ->A and si(pA) = f. Then
si(A) = t and there exists an n e N such that Adx... 0n succeeds with answer
e. There exists also an i e N such that -iA is in F, and A=A'dl...dl. If
m := max(/, n) then - i / t '0 , . . . 0m is in Fm and Adx . . . dm = A'dx. . . dm and
Adx... dm succeeds with answer e. But then Fm is finitely failed which is not
the case. Therefore sH^A)^i.

Now we show that <f>psi s si. Let r be a predicate symbol with completed
definition Vx(r(x) <-• Z)r[x]) where

m In t(/) \

Dr[xx, . . ., xn] = W 3y[/M x, = tu\y] A fj(\ Lijly]).
/-i \y-i y-i /

826 / Three-valued Completion of Logic Programs

We show in a first step that if si(Dr[s]) = t then s£(r(s)) -t. Assume that
s4(Dr[s]) = t. Then there exist terms r and an i (1 < i < m) such that

(n *<7) \

fl\si = ti,i[r]A/kLu[r])
=t.

There exists a p e W such that s,6i. . . 6P = f/,/[r]t3i. . . dp (j = 1, . . ., n) and
if LtJ[r] is positive then / ^ [r] ^ . .. 6P succeeds with answer e. Since P is an
e-program, if Lu[r]dx. . . 6P =->A then A is closed or A is finitely failed. If
A is closed then A is finitely failed. By Lemma 20 the head r(s)dx. . . 6p

succeeds with answer e and thus s£(r(s)) = t.
In a next step we show that if rf(r(s)) =£ f then si(Dr[s]) ¥= f. If si(r(s)) * f

then by definition of si there exists a n n ^ O such that r(s)dx... 0n is in F.
There exists an / > 0 such that r(s)dx . . . 6n is in F, and of the form
r(s')6l. . . 9,. The atom r(s)6x. .. dn is selected later and hence there is a
j>i and a variant r(7'):—FT of a clause r(T):—FI such that r(l')di =
r(s')01. . . 6j and FI'0y c Fy c F. Since 5 - 5 0 ! . . . 0n = s'd^. . . 0, ~
s'dl... 6/ = Tdj we get s~V6j and d(Dr[s]) *f.

Since <t>pj4 < j ^ by Lemma 1 there is a structure M<sl such that
<Dp^ = ./#. Then Mt3comp(P) and -i3(Lx A . . . A L,) is not true in At,
since J ^ | ^ - I 3 (L X A . . . A Lq). If ^t^3V(A) then ^ 3 V (, 4) and jtf(A) = t and
there exists an n e N such that A9X . . . 6n succeeds with answer e. If A is
closed and M t=3 —1̂4 then si t3-*A and si(A) = f and A is finitely failed. •

An immediate consequence of this theorem is the completeness of finite
failure for e-programs.

THEOREM 23 (Completeness of ESLDNF-resolution for negative queries)
Let P be an e-program.
If comp(P) ^-i3(Li A . . . A Ln) then the goal ?— Lx, . . ., Ln is finitely
failed.

Note that there is no e-condition on the goal ? - Llt . . ., Ln. In the case of
success there is the following condition.

THEOREM 24 (Completeness of ESLDNF-resolution for positive queries)
Let P be an e-program and let ? - Llt. .., Ln be an e-goal for P.
If comp(P) t=3 V(Lj A . . . A Ln)a then the goal ? - Llt. . ., Ln succeeds with
answer 0 including a, i.e. there exists a substitution a such that (Lx A . . . A
Ln)da=(Li A. . . ALn)o.

PROOF. Assume that P is an e-program and that ?— Lx, . . ., Ln is an e-goal
for P and that com/>(P)E3V(Li A . . . A Ln)o. Let l^i^n. We have
comp(P) t3V(LiO) and therefore comp(P) t^3-i3-i(L,a). If Lt is positive then
by Theorem 23 ->L,a is finitely failed, and this implies that L,a succeeds with
answer e. If L, is negative and of the form -iA, then by Theorem 23 A,a is

Three-valued Completion of Logic Programs / 827

finitely failed. By Lemma 19, there is a computed answer 6 of the goal
? - Lu . . ., Ln and a substitution a such that (L, A . . . A Ln)da = (L, A
. . . A Ln)o. D
REMARK 25

Allowed programs P and an allowed goal F have the following properties:
(a) If T succeeds with answer 0 from P using ESLDNF-resolution then F

succeeds with answer 0 using SLDNF-resolution.
(b) If T is finitely failed in ESLDNF-resolution then F is finitely failed in

SLDNF-resolution.
These statements follow from the facts that for an allowed program P an
atom A is ground if it succeeds with answer e in ELSDNF-resolution; and
that in every ESLDNF-derivation which ends in a goal consisting only of
negative literals this goal is ground.

5. An axiomatizatlon of three-valued logic
Let P be any given program. We introduce a formal system LK(P) with the
property that comp(P) t3A iff LK(P) I- A.

From now on we will consider only Kleene formulas of Z£, i.e. formulas
with -i, A, v, V and 3 . The capital greek letters F, A, A, FI,. . . will denote
finite sequences of such formulas. An expression of the form F 3 A is called
a sequent. We say that a sequent T[x] 3 A[x] is valid in a three-valued
structure si (written i ^ r [i] 3 A [i]) if for all 5 e | j ^ | there is a formula
A[a] in F[a] which is false in si or there is a formula B[a] in A [a] which is
true in si. Thus we have that

^1=3^!, . ..,Amz)Bu. . ., Bn

is equivalent to
sit3-iAi v . . . v~iAm v 5 , v . . . v Bn.

The main difference between Gentzen's sequent calculus LK for classical logic
and LK(P) is that in LK(P) there are no axioms of the form A^>A, since
such sequents are in general not valid in three-valued structures. LK(P)
consists of the exchange, weakening, contraction and cut rule, the left and
right introduction rules for -•, A, v, V, 3 and some initial equality sequents.

r,
r,

A,
B,

1

B,
A,

A, F :

A, A, I

A
A

=>/

LK(P)
structural rules

DA F 3

3A F 3

^ I

i A F :

A, A, B, n
A, B, A, n

= A,i4, A

. y A M. y M~ y 4 A. ^ ^ ^ ^ X ^^ ' m y A K y M*J y X X

cx 1 r ex
F, B, A, A 3 A F3A, B, A, U

wl ———- :—r rw
A, 1 3 A

\, A, F3/?

A, F3A

828 / Three-valued Completion of Logic Programs

cut

Tz>A,A
^A,T^l

A,B,Tz>
AAB,TZ3

A, F D A B,
A v B, T =>

i4[jc/r], r 3
VxA, rD

A, fDA

TDA

logical rules
A

A

A

r=>A
A

quantifier i

i A

A

A

r
r=>A,

r=>
T :

rules
r

r=)A
r=>

L, r=> A

=>A,-iA

A T 3
A, A A

3 A, A, I
A, Aw

=. A, A
, VyA[xi

A, A[x/

A,B

B

3

BV l - " F M B

rV

.-, r =) A, A[j:/f]
3 4 [/ y] , T=>A* T=>A, 3xA '

* if x $ var(F, A) and x = y or y $ var(A).

program rules
(for a predicate r with completed definition Vf (/•(£) <-> £>,[£]))

Dr[s\,r=>A r=>A,Pr[?]
1

equality and freeness sequents

S = t ZDS - t

U=t2=>t2 = tt

U = h, /2 = r3 => r, = h
s1 = t1, . . •,sn = tnz>f(sl, . . .,sn)=f(tu . . ., in)
f(s1,...,sn)=f(tl>. ..,tn)=>s, = t, (for l<i<n)

j D (if x ̂ t and * e var(f))
It is easy to see that the structural rules, the cut rule, the logical rules and
the quantifier rules are valid in any three-valued structure si, i.e. if jtfl^S,
for all premises 5, of a rule with conclusion 5 then si t=3 5.

The only axioms of LK(P) are the equality and freeness sequents and
those are valid in any three-valued structure satisfying CET, since equality is
always interpreted two-valued.

The proof of the soundness of LK(/)) is now routine.

Three-valued Completion of Logic Programs / 829

THEOREM 26 (Soundness of LK(P))
If a sequent F 3 A is provable in LK(P) then F 3 A is valid in any
three-valued model of comp(P).

The proof of the completeness of LK(P) goes similar to the proof of the
completeness of Schutte valuations (see [11]). A version with the same
terminology and notions that we use can be found in Girard's book [6,
theorem 3.1.9, p. 164].

THEOREM 27 (Completeness of LK(P))
If a sequent F 3 A is valid in any three-valued model of comp(P) then F 3 A
is provable in LK(P) (with only atomic cuts).

PROOF. Assume that Fo 3 Ao is not provable in LK(P) with only atomic cuts.
We will construct recursively a sequence So, Sly . . . of non provable sequents
from which one can extract a three-valued model of comp(P) in which
F 0 3 Ao is not valid.

Let t0, tly. . . be an enumeration of all terms of X and Ao, Au . . . be an
enumeration of all atomic formulas (inclusive equations) of 5£. Let 5^: =
Fo 3 Ao. Consider the following reduction rules.

(l) r 0) I A , r , D A - r 0 , r , z > A , A
(2) r0, A A B, r , 3 A ~» Fo, A, B, F, 3 A
(3) r0, A v B, r , 3 A ~* To, A, Tx 3 A or Fo, B . T . D A

(4) F0) VxA, r , 3 A ~- Fo, A[x/tn], F,, VxA 3 A
(5) r0, 3xA, r , D A - r0, A[x/y], F, 3 A (y « var(F0, F,, A))
(6) r 0 , r (s) , r .DA-r 0 , r 1 ; D,[S] =,A
(7) r=>A<,,-n4, A, — A, F3A 0 , A,
(8) F 3 Ao, A A B, A, ~* F 3 Ao, A, A, or F 3 Ao, B, A,
(9) F 3 A 0 , A v B , A . - T D A C A B, A,

(10) F 3 Ao, VJC/1, A , - T D AO, A[x/y], A, (y $ var(F, Ao, A,))
(11) F 3 Ao, ixA, Ax -» F 3 Ao, i4[jc//n], A,, 3x>l
(12) F 3 Ao, r(s), A, - F 3 Ao, A,, D,[s]
(13) F 3 A — An, F 3 A o r F 3 A , An

We observe that if the left hand side of a reduction rule is not provable with
atomic cuts only then also one of the sequents on the right hand side is not
provable with atomic cuts only. Now we apply these reduction rules in a fair
manner to So and obtain a sequence So, Su . . . of non provable sequents.

Let F be the set of all formulas which occur on the left hand side of a
sequent 5n and let A be the set of all formulas which occur on the right hand
side of a sequent Sn. Then F and A have the following properties.

(1) -v
(2) A A B e Td>A e F and B e F,
(3) Av BeT^AeToT BeT,

830 / Three-valued Completion of Logic Programs

(4) VxA e T=> for all terms t is A[x/t] e T,
(5) 3xA e T=> there exists a y such that A[jc/y] e T,
(6) r(s)
(7) ^A
(8) A A B 6 A => A e A or fl e A,
(9) A v fl e A => A e A and B e A,

(10) VxA e A =>there exists a v such that A[*Ay] e A,
(11) 3xA e A =>for all terms f is A[x/f] e A,
(12) r(j)€A=>D r[5]eA,
(13) for each atomic formula y l i s .Aero r .AeA,
(14) there is no equality or freeness sequent A 3 n such that A c T and

l i e A.

A three-valued structure si is defined as follows. Let \si\ be the set of all
terms and let /^(/ i , . . ., tn) : = f{tx, ...,tn). Equality and predicates are
defined by

otie^ise
otherwise.

It is easy to see that si satisfies the equality axioms. We show only—as an
example—the symmetry axiom. Suppose that s — t eF. Then t — s eT or
t = s e A. Since s =tzit = s is an equality sequent it follows that t = s eF. So
if si(s = t) = t then si(t = s) = t.

In a next step one proves by induction on the length of a formula A that,
if A is in F then A is not false in si and if A is in A then A is not true in si
under the canonical variable assignment where the value of a variable vt is
the element vt. From this it follows that the sequent To =3 Ao is not valid in
si.

Now we claim that <3>psi < si. If r(s) is not true in si then by definition of
si the atom r(s) e A and therefore Dr[s] e A and Dr[s] is not true in si. A
similar observation shows that if r(s) is not false in si then Dr[s] is not false
in si.

Now we apply Lemma 1 and obtain a structure 9&-^si with <PP9tl = 98.
Hence 38 l=3 comp(P) but 98 f3 To =» Ao. •

One can combine the previous two theorems to get the following one.

THEOREM 28

If F is a Kleene formula then comp(P) l=3 F iff LK(P) h F.

From the soundness and completeness theorems we also obtain the following
partial cut elimination theorem for LK(P).

Three-valued Completion of Logic Programs / 831

LEMMA 29 (Partial cut elimination)
If the sequent F => A is provable in LK(P) then it is provable with atomic
cuts only.

This lemma can also be proved in the usual constructive way. We do not
want to go further into the details of the proof theory of LK(P) in this
paper. There are only two technical remarks to mention.

REMARKS 30

(1) If there is no clause in P which defines the predicate r then the
completed definition of r is Vx(r (*)<-» ±). We have two possibilities
in this case. The first is to add the axiom ±, F=> A to LK(P) and to
formulate the rules for r as before. The second possibility is without
1. Then the rules for r can be formulated as a single axiom
r(5),r=>A.

(2) T h e s e q u e n t s , = tu . . ., s n = tn, r(su . . . , . $ „) => r(tlt . . .,tn) is n o t
valid in general, but the following substitution rule is admissible in
LK(P). If r[x/s] => A[x/s] is provable then s = t, T[x/t] 3 A[x/t] is
provable in LK(P).

In LK(P) only the direction from right to left of the completed definitions is
used. If the right hand side is true (false) then the left hand side is true
(false). Since in a proof of a sequent the program rules are only used finitely
many times the following stronger form of the soundness theorem is not
surprising. Consider a structure si satisfying CET with si ^ <&p$l. Then we
define <&%?$:= sd and <££+1J# := O P (O ^) . The structure <t>",>s& is in general
neither a model of comp(P) nor of comp~(P).

THEOREM 31 (Strong soundness of LK(P))
If the sequent F => A is provable in LK(P) then there exists a natural number
neM such that for every three-valued structure si satisfying CET and
si ^ <!>psi we have <&"psi ^ F D A .

PROOF. Easy induction on the length of a proof of T 3 A. One uses the fact
that <Kd ^ 4>"P

+isi. •

From this theorem we obtain as a corollary the following theorem of Kunen
(one direction of Theorem 6.3 in [8]) which he had proved in a purely model
theoretic way, using ultra powers.

COROLLARY 32

If comp(P)E3V(F) then there exists a natural number neN such that for
every three-valued structure si satisfying CET and si<<&psi we have

There are two natural structures over the Herbrand universe of 56 with
i. The first is the everywhere undefined structure, and the second is

832 / Three-valued Completion of Logic Programs

the success-failure structure in which a closed atom is true iff it succeeds and
false iff it fails.

6. Conclusion

We have characterized in this paper a large class of programs for which
ESLDNF-resolution is complete with respect to the three-valued comple-
tion. Then we have introduced LK(i>) and we have proved that it is a sound
and complete axiomatization of the three-valued completion of logic
programs. But LK(P) is still not complete for negation as failure.

Consider the program P below with the completed definitions for p, q and
r on the right hand side.

P is not an e-program. The goal ?—p does not fail but ->p is cut-free
provable in LK(P):

r(X)z>X = c v 3Y(X = Y A ->r(Y))
r(X)=>q(X)

= X A

3Y(X = YA MY))
= cv 3Y(X = Y A ^r

One question is now, how can one restrict LK(P) such that the proof
above is not possible? More generally: how can one restrict LK(P) such that
it is sound and complete for ESLDNF-resolution? One possibility is to
exclude axioms of the form s = t=>s = t. But these axioms are needed for the
soundness of ESLDNF-resolution.

Another possibility is to restrict the negation rules to have only equational

Three-valued Completion of Logic Programs / 833

side formulas. They are then written as

with the condition that F consists only of equations. Then LK(P) is still
sound for ESLDNF-resolution. But what is the semantics of this logic? Some
kind of three-valued Kripke structures? Is it simpler than the procedural
semantics of negation as failure?

Another possibility is to omit the contraction rules in LK(P) and to use a
version of linear logic. But ESLDNF-resolution has contraction, since for
example if the goal ?— A, A, T is finitely failed then the goal I—A, F is
finitely failed or if ?— A, A, T succeeds with answer e then ? - A, F succeeds
with answer e.

It would be interesting to compare LK(P) or one of its subsystems with
the provability relation h3/ of Shepherdson in [14]. The relation l-3/ is
three-valued sound and intuitionistically sound. Therefore it is weaker than
LK(P).

Acknowledgment
I am grateful to John Shepherdson and an anonymous referee for helpful comments
to the earlier version of the paper.

References
[1] K. R. Apt, H. A. Blair and A. Walker (1987). Towards a theory of declarative

knowledge. In J. Minker (ed.), Foundations of Deductive Databases and Logic
Programming, 89-148. Morgan Kaufmann, Los Altos.

[2] L. Cavedon and J. W. Lloyd (1989). A completeness theorem for SLDNF-resolution.
Journal of Logic Programming, 7, 177-191.

[3] K. L. Clarke (1978). Negation as failure. In H. Gallaire and J. Minker (eds), Logic and
Data Bases, 293-322. Plenum Press, New York.

[4] K. L. Clark, F. G. McCabe and S. Gregory (1982). IC-PROLOG language features. In
K. L. Clark and S.-A. Tarnlund (eds), Logic Programming, 253-266, Academic Press,
London.

[5] M. Fitting (1986). A Kripke-Kleene semantics for logic programs. Journal of Logic
Programming, 2, 295-312.

[6] J.-Y. Girard (1987). Proof Theory and Logical Complexity. Bibliopolis, Napoli.
[7] J. Jaffar, J.-L. Lassez and J. W. Lloyd (1983). Completeness of the negation as failure

rule. In Proceedings of the 8th International Joint Conference on Artificial Intelligence,
500-506, Karlsruhe.

[8] K. Kunen (1987). Negation in logic programming. Journal of Logic Programming, 4,
289-308.

[9] K. Kunen (1989). Signed data dependencies in logic programs. Journal of Logic
Programming, 7, 231-245.

[10] J. W. Lloyd (1987). Foundations of Logic Programming. Springer, Berlin.
[11] K. SchQtte (1977). Proof Theory. Springer, Berlin.
[12] J. C. Shepherdson (1984). Negation as failure: a comparison of Clark's completed data

base and Reiter's closed world assumption. Journal of Logic Programming, 1, 51-79.

834 / Three-valued Completion of Logic Programs

[13] J. C. Shepherdson (1985). Negation as failure II. Journal of Logic Programming, 2,
185-202.

[14] J. C. Shepherdson (1989). A sound and complete semantics for a version of negation as
failure. Theoretical Computer Science, 65, 343-371.

[15] R. F. Stark (1990). A direct proof for the completeness of SLD-resolution. In E. Borger,
H. Kleine Buning, and M. M. Richter (eds), Lecture Notes in Computer Science 440.
CSL '89, 382-383. Springer-Verlag.

[16] A. Van Gelder (1987). Negation as failure using tight derivations for general logic
programs. In J. Minker (ed.), Foundations of Deductive Databases and Logic
Programming, 149-176. Morgan Kaufmann, Los Altos.

Received 3 April 1991

	1

