
The recursive path and polynomial ordering for
first-order and higher-order terms?

Miquel Bofill1, Cristina Borralleras2, Enric Rodŕıguez-Carbonell3, and Albert
Rubio3

1 Universitat de Girona, Spain
2 Universitat de Vic, Spain

3 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. In most termination tools two ingredients, namely recursive
path orderings (RPO) and polynomial interpretation orderings (POLO),
are used in a consecutive disjoint way to solve the final constraints gen-
erated from the termination problem.
In this paper we present a simple ordering that combines both RPO
and POLO and defines a family of orderings that includes both, and
extend them with the possibility of having, at the same time, an RPO-like
treatment for some symbols and a POLO-like treatment for the others.
The ordering is extended to higher-order terms, providing a new fully
automatable use of polynomial interpretations in combination with beta-
reduction.
Key words: Program correctness, Term rewriting, Typed lambda-calculus,
Termination, Term orderings.

1 Introduction

Term orderings have been extensively used in termination proofs of rewriting.
They are used both in direct proofs of termination showing decreasingness of
every rule or as ingredients for solving the constraints generated by other meth-
ods like the Dependency Pair approach [1] or the Monotonic Semantic Path
Ordering [4].

The most widely used term orderings in automatic termination tools (e.g.,
AProVE [13], CiME [8], MU-TERM [21], TTT [15], . . .) are the recursive path
ordering (RPO) and the polynomial ordering (POLO). Almost all known tools
implement these orderings. RPO and POLO are incomparable, so that they are
used independently in a sequential way, trying first one method (maybe under
some time limit) and, in case of failure, trying the other one afterwards. Some
recent implementations use independent parallel calls to both methods.

As an alternative to this independent application of both methods we pro-
pose a new ordering that combines both RPO and POLO. The new family of
orderings, called RPOLO, includes strictly both RPO and POLO as well as the

? This work has been partially supported by the Spanish MEC/MICINN under grants
TIN2008-04547 and TIN 2010-21062-C02-01

sequential combination of both. Our approach is based on splitting the set of
symbols into those handled in an RPO-like way (called RPO-symbols) and those
that are interpreted using a polynomial interpretation (called POLO-symbols).
In this paper, only linear polynomial interpretations are considered. These inter-
pretations are never applied to terms headed by an RPO-symbol. Instead, the
term is interpreted as a new variable (labeled by the term). This is crucial to
be able to extend the ordering to the higher-order case, since applying polyno-
mial interpretations to beta-reduction is not easy. However, the introduction of
different unrelated variables for every term makes us lose stability under substi-
tutions and (weak) monotonicity. To avoid that, a context relating the variables
is introduced, but then a new original proof of well-foundedness is needed.

Although the new ordering is strictly more powerful than its predecessors
and thus examples that can be handled by RPOLO and neither by RPO nor
by POLO can be cooked, in practice, there is no real gain when using RPOLO
on the first-order examples coming from the Termination Problem Data Base
(TPDB)4.

Due to this, we show its practical usefulness by extending it, using the same
techniques as for the higher-order recursive path ordering [18] (HORPO), to
rewriting on simply typed higher-order terms union beta-reduction. The result-
ing ordering, called HORPOLO, can hence be used to prove termination of the
so called Algebraic Functional Systems [17] (AFS), and provides a new automat-
able termination method that allows the user to have polynomial interpretations
on some symbols in a higher-order setting. Polynomial interpretations for higher-
order rewrite systems à la Nipkow, where studied in [22,23]. In contrast to our
approach, there, under some conditions, even the application operator can be in-
terpreted. Automation of these kind of interpretations has recently been studied
in [10].

In order to ease the reading, the ordering is first presented in Section 3
for first-order terms and later on for higher-order terms. All the novelties of
the ordering are already present in the first-order version, so that the method
can be fully understood within this part. Then the ordering is extended to the
higher-order case by adapting all proofs for HORPO in [18] to HORPOLO.

The paper is structured as follows. In Section 2 some preliminaries on first-
order terms and orderings are given. Section 3 is devoted to presenting the
ordering for first-order terms. In Section 4, basic definitions and notions on
higher-order terms and orderings are provided. In Section 5, the ordering is
extended to higher-order terms. A necessary improvement of the ordering is
given in Section 6 and the resulting ordering is applied to several examples in
Section 7. Finally, experiments and some details about the implementation of
the technique are given in Section 8 before the conclusions.

4 See http://termination-portal.org/wiki/TPDB

2

http://termination-portal.org/wiki/TPDB

2 First-order term rewriting and termination

A signature F is a set of function symbols. Given a signature F and a set of
variable symbols X with F ∩ X = ∅, T (F ,X) denotes the terms build from F
and X . Given t ∈ T (F ,X), |t| denotes the number of symbols in F∪X occurring
in t; |t|F denotes the number of symbols in F occurring in t; Var(t) is the set of
variables occurring in t; and for t 6∈ X , top(t) denotes the topmost symbol of t,
i.e., top(f(t1, . . . , tn)) = f . The notation t shall be ambiguously used for a list,
a multiset, or a set of terms t1, . . . , tn.

The subterm of t at position p is denoted by t|p, where p is a sequence of
positive integers describing the path from the root of t to the subterm, where
λ denotes the empty sequence and hence the root position. Let � denote the
subterm relation, defined as t� t|p for all position p of t, and let � be its strict
part, which fulfils t� t|p for all position p 6= λ of t.

A context u[] is a term with a hole, and u[t] denotes the term resulting from
placing t in the hole of u. A substitution γ is a mapping from variables to terms.
We denote the domain and the range of γ by Dom(γ) and Ran(γ) respectively.
The application of a substitution γ to a term s is denoted by sγ.

2.1 Term orderings

The reflexive and transitive closure of a binary relation � is denoted by �∗, its
reflexive closure by �= and its transitive closure by �+.

An equivalence relation is a reflexive, symmetric and transitive relation. A
transitive and irreflexive binary relation is a (strict partial) ordering and a tran-
sitive and reflexive binary relation is a quasi-ordering. The equivalence relation
associated to a quasi ordering �, denoted by =, is the intersection of � with its
inverse. The associated strict partial ordering, denoted by �, is their difference.
A relation � is said to be compatible with another relation � if � · � ⊆ � or
� · � ⊆ �. If � is the strict part of a quasi-ordering �, then � is compatible
with �.

Given a binary relation �, a term s is strongly normalizing with respect to
� if there is no infinite sequence with � issuing from s. The relation � itself
is strongly normalizing, well-founded or terminating, if all terms are strongly
normalizing with respect to �. A substitution is said to be strongly normalizing
if all terms in its range are strongly normalizing. If � is a well-founded relation
then �+ is a well-founded ordering.

A precedence �F is a quasi-ordering on a signature F such that �F is well-
founded. Note that, in particular, if F is finite then �F is always well-founded.

Let s and t be arbitrary terms in T (F ,X). A relation � is monotonic if s � t
implies u[s] � u[t] for all contexts u[], and stable under substitutions if s � t
implies sγ � tγ for all substitutions γ.

Monotonic orderings that are stable under substitutions are called rewrite
orderings. A reduction ordering � is a rewrite ordering that is well-founded. An
ordering � included in the strict part of a quasi-ordering � is weakly-monotonic
if u[s] � u[t] for all contexts u[] whenever s � t.

3

Given a relation �, the monotonic extension of � on tuples of elements,
denoted by (�)mon, is defined as 〈s1, . . . , sn〉 (�)mon 〈t1, . . . , tn〉 if si � ti
∀i ∈ {1, . . . , n} with n ≥ 0. Similarly, the monotonic extension of � on finite
multisets is defined as {s1, . . . , sn} (�)mon {t1, . . . , tn} if for some permutation
π of {1 . . . n} we have sπ(i) � ti for all i ∈ {1 . . . n}.

Note that, by a straightforward induction, M(�)∗monN implies M(�∗)monN
for both tuples and multisets. Additionally, if � is stable under substitutions
then the extension (�)mon on both tuples and finite multisets is stable under
substitutions.

Given a relation �, the multiset extension of � w.r.t. a relation � on finite
multisets, denoted by (�)mul, is defined as M ∪S (�)mul N ∪T if M (�)mon N
and either S 6= T = ∅ or T 6= ∅ and ∀t ∈ T ∃s ∈ S such that s � t.

If � is a well-founded ordering on terms which is compatible with �, then
(�)mul is a well-founded ordering on finite multisets of terms. If � and � are
stable under substitutions then (�)mul is stable under substitutions. Moreover,
if � is compatible with � then (�)mul is compatible with (�)mon.

Given a relation �, the lexicographic extension of � w.r.t. a relation � on
bounded tuples, denoted by (�)lex, is defined as 〈s1, . . . , sn〉 (�)lex 〈t1, . . . , tm〉
if 〈s1, . . . , sk〉(�)mon〈t1, . . . , tk〉 for some k and k = m < n or sk+1 � tk+1.

If � is a well-founded ordering on terms which is compatible with � then
(�)lex is a well-founded ordering on bounded tuples of terms. If � and � are
stable under substitutions then (�)lex is stable under substitutions. Moreover,
if � is compatible with � then (�)lex is compatible with (�)mon.

Let �1, . . . ,�n be quasi-orderings and �1, . . . ,�n be orderings such that
�i is compatible with �i for all i ∈ {1 . . . n}. The lexicographic combination of
�1, . . . ,�n, denoted by (�1, . . . ,�n)lex, is defined as s〈�1, . . . ,�n〉lext if either
s �i t for some i and s �j t for all j < i.

If all �i are well-founded (stable under substitutions) then so is their lexico-
graphic combination.

2.2 Term rewriting and termination

A term rewrite system (TRS) over a signature F is a set of rules l → r where
l, r ∈ T (F ,X), l 6∈ X and Var(r) ⊆ Var(l).

Given a TRS R, s rewrites to t with R, denoted by s→R t, if there is some
rule l → r in R, such that s = u[lγ] and t = u[rγ] for some context u and
substitution γ. We denote by −→q R a parallel rewriting step using rules in R, i.e.
the application of several rewriting steps at the same time in disjoint positions
(i.e. non-overlapped).

A TRS R is terminating if →R is terminating. Thus, the transitive closure
+→R of →R for any terminating TRS R is a reduction ordering. Furthermore,
reduction orderings characterize termination of TRSs: a rewrite system R is
terminating iff all rules are contained in a reduction ordering �, i.e., l � r for
every l→ r ∈ R.

Instead of finding reduction orderings, most automatic tools for proving ter-
mination are based on constraint frameworks like [12] or [6]. There, a termination

4

problem is transformed into an ordering constraint problem using, for instance,
the Dependency Pair approach, which is successively simplified by applying dif-
ferent sound (and sometimes complete) rules. Some of these transformation rules
are based on finding a so-called reduction pair (�,�) satisfying a set of literals
of the form s � t or s � t.

A quasi-ordering � and an ordering � form a reduction pair (�,�) if

� is monotonic and stable under substitutions,
� is well-founded and stable under substitutions, and
� is compatible with �.

3 The Recursive Path and Polynomial Ordering

We have a signature F split into two sets FPOLO and FRPO where the arity of the
symbols is bounded, a precedence �F on FRPO and a polynomial interpretation
I over the non-negative integers Z+ for the terms in T (F ,X). All symbols f in
FRPO have a status, denoted by stat(f), which indicates if the arguments of f
are compared recursively using a multiset extension or a lexicographic extension.
We assume that if f =F g then stat(f) = stat(g). Moreover, the interpretation
I is defined by a linear interpretation fI with coefficients in Z+ for every symbol
f in FPOLO and a variable xs for every term s with top symbol in FRPO:

I(s) =

{
fI(I(s1), . . . , I(sn)) if s = f(s1, . . . , sn) and f ∈ FPOLO
xs otherwise

In order to handle these introduced variables xs, we define a context information
to be used when comparing the interpretations. In what follows a (polynomial)
context is a set of constraints of the form x ≥ E where x is a variable and E is
a linear polynomial expression over Z+.

The following arithmetic properties on polynomials will be extensively used.

Lemma 1. Let P1 = a0 +a1 ·x1 + . . .+an ·xn and P2 = b0 +b1 ·x1 + . . .+bn ·xn
be two linear polynomials over Z+. Then

– ∀x1, . . . , xn ∈ Z+[P1 ≥ P2] if and only if ai ≥ bi for all i ∈ {0 . . . n}.
– ∀x1, . . . , xn ∈ Z+[P1 > P2] if and only if ai ≥ bi for all i ∈ {1 . . . n} and
a0 > b0.

Proof. In both cases the right-to-left implication is trivial. For the left-to-right,
replacing all variables by 0 we conclude that a0 ≥ b0 and if P1 > P2 then a0 > b0.
For the remaining coefficients, for every i we replace all variables xj with j 6= i
by 0 and xi by a0 + 1. Then we have a0 +ai · (a0 + 1) ≥ b0 + bi · (a0 + 1). Assume
bi > ai, then bi ≥ ai+ 1, which implies the following sequence b0 + bi · (a0 + 1) ≥
b0+(ai+1) ·(a0+1) = b0+ai ·a0+ai+a0+1 > ai ·a0+ai+a0 = a0+ai ·(a0+1),
which is a contradiction. ut

Corollary 1. Let P1 and P2 be two linear polynomials over Z+.

5

– If P1 ≥ P2 then P1 = P2 + P for some linear polynomial P over Z+.
– If P1 > P2 then P1 = P2 + P + 1 for some linear polynomial P over Z+.

Let us now show the way contexts are used when comparing polynomials.

Definition 1. Let C be a context. The relation →C on linear polynomial ex-
pressions over Z+ is defined by the rules P +x→C P +E for every x ≥ E ∈ C.

Let p and q be linear polynomial expressions over Z+. Then p >C q (resp.
p ≥C q) if there is some u such that p −→q =

C u > q (resp. p −→q =
C u ≥ q).

We use here (the reflexive closure of) a parallel rewriting step −→q =
C instead

of the transitive closure of→C because it simplifies the proofs without losing any
power. Additionally, we can keep the same definition of >C in the higher-order
case, where, as we will see, the relations are no longer transitive.

The following three mutually recursive definitions introduce respectively the
context C(S) of a set of terms S, the ordering �RPOLO and the two quasi-orderings
wRPOLO and �RPOLO.

Before giving the definition of the context we introduce some notation. Note
that for all variables xu ∈ Var(I(s)) we have either u = f(u1, . . . , un) and
f ∈ FRPO or u is a variable. Let us define the set of accessible terms Acc(s) of
s as {u | xu ∈ Var(I(s))}. By XS we denote the set of labeled variables xu with
u ∈ S. Note that then we have Var(I(s)) = XAcc(s).

Definition 2. Let S be a set of terms u such that top(u) 6∈ FPOLO. The context
C(S) is defined as the union of

1. xu ≥ E + 1 for all u ∈ S and for all linear polynomial expressions E over
Z+ and variables {xv1 , . . . , xvn} such that u �RPOLO vi for all i ∈ {1, . . . , n}.

2. xu ≥ xv for all u ∈ S and all v such that u wRPOLO v and top(v) ∈ FRPO.

To ease the reading of the paper we define C(s) for some term s with top(s) ∈
FPOLO as C(Acc(s)).

Note that C(s) can be infinite. For this reason, in practice, when comparing
a pair of terms s and t we only generate the part of C(s) that is needed. This
part is chosen by inspecting t.

Now we can define wRPOLO, �RPOLO and �RPOLO.

Definition 3. s wRPOLO t iff

1. s = t ∈ X , or
2. s = f(s1, . . . , sn) and

(a) f ∈ FPOLO, I(s) ≥C(s) I(t) or
(b) t = g(t1, . . . , tn), f, g ∈ FRPO, f =F g and

i. stat(f) = mul and {s1, . . . , sn}(wRPOLO)mon{t1, . . . , tn}, or
ii. stat(f) = lex and 〈s1, . . . , sn〉(wRPOLO)mon〈t1, . . . , tn〉.

Definition 4. s = f(s1, . . . , sn) �RPOLO t iff

1. f ∈ FPOLO and I(s) >C(s) I(t), or

6

2. f ∈ FRPO, and

(a) si �RPOLO t for some i ∈ {1, . . . , n}, or
(b) t = g(t1, . . . , tm), g ∈ FPOLO and s �RPOLO u for all u ∈ Acc(t), or
(c) t = g(t1, . . . , tm), g ∈ FRPO and

i. f �F g and s �RPOLO ti for all i ∈ {1, . . . ,m}, or
ii. f =F g, stat(f) = mul and {s1, . . . , sn}(�RPOLO)mul{t1, . . . , tm}, or

iii. f =F g, stat(f) = lex, 〈s1, . . . , sn〉(�RPOLO)lex〈t1, . . . , tm〉 and s �RPOLO

ti for all i ∈ {1, . . . ,m},

where s �RPOLO t iff s �RPOLO t or s wRPOLO t.

We show that �RPOLO and wRPOLO are well-defined by induction on the pair
〈s, t〉 comparing lexicographically the sizes of the terms. It is easy to see that all
recursive calls in the definition of �RPOLO and wRPOLO decrease in this ordering.
Moreover, in the definition of the context C(Acc(s)) all calls to �RPOLO and
wRPOLO are of the form u �RPOLO v or u wRPOLO v where |s| > |u|, because
top(s) ∈ FPOLO and hence all u ∈ Acc(s) are proper subterms of s.

Now, we provide some examples of comparisons between terms that are in-
cluded in our ordering and are neither included in RPO nor in POLO, i.e., using
(linear) integer polynomial interpretations. In fact, since we consider constraints
including both strict and non-strict literals, what we show is that they are in-
cluded in the pair (�RPOLO,�RPOLO).

Example 1. Consider the following constraint consisting of three literals:

H(f(g(g(x)), y), x) > H(f(g(y), x), f(g(y), x))
H(x, g(y)) ≥ H(y, x)
f(g(x), y) ≥ f(y, x)

The first literal cannot be proved by RPO since f(g(g(x)), y) cannot be proved
larger than f(g(y), x) as no argument of the former is greater than g(y). The
constraint cannot be proved by an integer polynomial interpretation either. In
order to explain this claim, let us consider I(H(x, y)) = aH0

+ aH1
· x+ aH2

· y,
I(f(x, y)) = af0 + af1 · x+ af2 · y and I(g(x)) = ag0 + ag1 · x. First note that the
combination of the three literals requires that all non-constant coefficients must
be strictly greater than 0, and then, due to the occurrences of the variable y in
the first literal we have that aH1

· af2 ≥ aH1
· af1 · ag1 + aH2

· af1 · ag1 and due
to the occurrences of the variable x in the third literal af1 · ag1 ≥ af2 is required
which altogether is a contradiction.

Let us prove it using RPOLO. We take H ∈ FRPO with stat(H) = mul and
f, g ∈ FPOLO with fI(x, y) = x+ y and gI(x) = x+ 1.

For the first literal we apply case 4.2(c)ii, and then {f(g(g(x)), y), x}(�RPOLO

)mul{f(g(y), x), f(g(y), x)} is needed, which holds since f(g(g(x)), y) �RPOLO

f(g(y), x) by case 4.1 as I(f(g(g(x)), y)) = xx + xy + 2 > xx + xy + 1 =
I(f(g(y), x)).
The proof of the other two literals reuses part of the previous argument. ut

7

Let us now show an example where we need symbols in FRPO occurring below
symbols that need to be in FPOLO. Moreover, in this example a non-trivial use
of the context is also necessary.

Example 2. Consider the following constraint coming from a termination proof:

f(0, x) ≥ x
f(s(x), y) ≥ s(f(x, f(x, y)))
H(s(f(s(x), y)), z) > H(s(z), s(f(x, y)))

The third literal needs H and s to be in FPOLO. To hint this fact, note that
we cannot remove s and, in that case, no argument in H(s(f(s(x), y)), z) can be
greater than or equal to s(z). On the other hand, since due to the third literal,
s cannot be removed and needs a non-zero coefficient for its argument, there is
no polynomial interpretation for f fulfilling the first two literals, i.e., f must be
in FRPO.

Therefore, we take H, s ∈ FPOLO with HI(x, y) = x+ y and sI(x) = x+ 1,
and f ∈ FRPO with stat(f) = lex.

The first literal holds by case 4.2a. For the second one, f(s(x), y) �RPOLO

s(f(x, f(x, y))) is proved by applying case 4.2b which requires f(s(x), y) �RPOLO

f(x, f(x, y)). We apply then case 4.2(c)iii, showing s(x) �RPOLO x, by case 4.1,
since I(s(x)) = xx+1 > xx = I(x), and f(s(x), y) �RPOLO x and f(s(x), y) �RPOLO

f(x, y) for the arguments. The first one holds by applying cases 4.2a and 4.1
consecutively, and the second one by case 4.2(c)iii as before.

Finally, for the third literal we apply case 4.1, since

xf(s(x),y) + xz + 1→{xf(s(x),y)≥xf(x,y)+2} xf(x,y) + 2 + xz + 1 > xz + xf(x,y) + 2

Note that xf(s(x),y) ≥ xf(x,y) + 2 belongs to the context of H(s(f(s(x), y)), z)
since f(s(x), y) �RPOLO f(x, y). ut

Let us mention that, although in the previous example we have used the
context, in all non crafted examples we have tried the context is not used (see
Section 8). However, the context is still necessary, since otherwise we can prove
neither stability under substitutions nor (weak) monotonicity.

The rest of this section is devoted to proving that (�RPOLO,�RPOLO) is a re-
duction pair.

Lemma 2. The relations wRPOLO and �RPOLO are reflexive.

Proof. s wRPOLO s easily follows by induction on |s| and case analysis on the
definition of wRPOLO. Then reflexivity of �RPOLO directly follows by definition. ut

The following four lemmas provide some necessary results on subterms, being
the first three on accessible terms.

Lemma 3. Let s and w be terms in T (F ,X). Then

(i) s �RPOLO w implies s �RPOLO u for all u ∈ Acc(w).

8

(ii) s �RPOLO w implies s �RPOLO u for all u ∈ Acc(w).

See the proof of Lemma 19 which extends this lemma to the higher-order case.

Lemma 4. Let s, u and v be terms. If u ∈ Acc(s) and u �RPOLO v then xu ≥
I(v) + 1 is in C(s).

Proof. By Lemma 3, u �RPOLO v implies u �RPOLO w for all w ∈ Acc(v). There-
fore, by applying case 1 of the definition of C(s) we have that xu ≥ E+ 1 for all
linear polynomial E over variables xw such that w ∈ Acc(v). Therefore, as I(v)
is one of such polynomials, we have that xu ≥ I(v) + 1 is in C(s). ut

The proof of the following lemma is very similar to the one of Lemma 21,
which is an adaptation to what is needed in the higher-order case.

Lemma 5. Let s and t be terms. Then s �RPOLO t implies ∀u ∈ Acc(t), ∃v ∈
Acc(s) such that v �RPOLO u.

As in the RPO we have the following property for terms headed by a symbol
in FRPO.

Lemma 6. Let t = g(t1, . . . , tn) with g ∈ FRPO.
s �RPOLO t implies s �RPOLO ti for all i ∈ {1, . . . , n}.

Proof. We proceed by induction on |s|+ |t|. The cases with top(s) ∈ FRPO are
standard. Notice that having s �RPOLO t by case 4.2b is not possible since top(t) ∈
FRPO. Consider now top(s) ∈ FPOLO. Then, as top(t) ∈ FRPO, we have that
Acc(t) = {t} and hence, by Lemma 5, there is some u ∈ Acc(s) s.t. u �RPOLO t.
By induction hypothesis, u �RPOLO t implies u �RPOLO ti, and hence, by Lemma 4,
xu ≥ I(ti) + 1 ∈ C(s). This implies I(s) = p+ xu →C(s) p+ I(ti) + 1 > I(ti) for
some polynomial p, and hence we have I(s) >C(s) I(ti) which let us conclude
that s �RPOLO ti holds by case 4.1. ut

The following lemma proves some compatibility and transitivity properties
for �RPOLO and wRPOLO, which are trivially extended to �RPOLO.

Lemma 7. Let s, t and u be terms.

1. Let top(s), top(t) ∈ FPOLO. If s �RPOLO t and I(s) = p −→q =
C(s) q −→q

=
C(t) r

then p −→q =
C(s) r.

2. If s wRPOLO t �RPOLO u then s �RPOLO u.
3. If s �RPOLO t wRPOLO u then s �RPOLO u.
4. If s wRPOLO t wRPOLO u then s wRPOLO u.
5. If s �RPOLO t �RPOLO u then s �RPOLO u.

Proof. We prove all four properties by induction on 〈|s|, |t|〉 compared lexico-
graphically. For cases from 2 to 5, we use a second induction on |u|.

9

1. We proceed by a second induction on the number of steps with →C(t) in
q −→q =

C(t) r. If there are no steps then it trivially holds. Otherwise we have

q →{xu≥E} q′ −→q =
C(t) r for some xu ≥ E in C(t). If the occurrence of xu has

not been introduced in the parallel rewriting step p −→q =
C(s) q then we have

that u ∈ Acc(s), xu ≥ E also occurs in C(s) and the step with →{xu≥E}
can also be performed in parallel with p −→q =

C(s) q, giving p −→q =
C(s) q

′, and
hence we conclude by the inner induction. Otherwise, xu has been introduced
in p −→q =

C(s) q. Let xv be the variable that has been rewritten in the step

introducing xu. Therefore, we have some xv ≥ E′ in C(s) with xu occurring
in E′. We distinguish four cases:

– If E′ = xu and E = xw for some term w then we have v wRPOLO u wRPOLO

w and, by the outer induction hypothesis 4, v wRPOLO w. Therefore xv ≥
xw is in C(s) and thus we can replace the step using xv ≥ xu by a step
using xv ≥ xw and we have p −→q =

C(s) q
′, and conclude by the inner

induction.
– If E′ = xu and u �RPOLO w for all xw occurring in E then we have
v wRPOLO u �RPOLO w and, by the outer induction hypothesis 2, v �RPOLO

w. Therefore, xv ≥ E is in C(s) and thus, as before, we can replace the
step using xv ≥ xu by a step using xv ≥ E obtaining p −→q =

C(s) q
′ which

allows us to conclude by the inner induction.
– If E′ = E′′ + xu with E′′ 6= 0 and E = xw for some term w then we

have v �RPOLO u wRPOLO w and, by the outer induction hypothesis 3,
v �RPOLO w. Moreover, since xv ≥ E′′ + xu ∈ C(s), by definition, for
all xzi occurring in E′′ we have v �RPOLO zi. Therefore, we have that
xv ≥ E′′ + xw is in C(s), since E′′ + xw is a linear polynomial over
Z+ and variables {xz1 , . . . , xzn , xw}, and thus, we conclude as in the
previous cases, replacing the step using xv ≥ E′′ + xu by a step using
xv ≥ E′′ + xw.

– If E′ = E′′ + xu with E′′ 6= 0 and u �RPOLO w for all xw occurring
in E then we have v �RPOLO u �RPOLO w and, by the outer induction
hypothesis 5, v �RPOLO w for all xw occurring in E. Therefore, since,
as in the previous case, we also have v �RPOLO z for all xz occurring in
E′′, we have again that xv ≥ E′′ + E is in C(s) and thus, we conclude
replacing the step as in the previous cases.

2. We distinguish cases according to s wRPOLO t. Since t �RPOLO u we have that
neither s nor t are variables.

(a) If s wRPOLO t by case 3.2a and top(t) ∈ FPOLO then we have that t �RPOLO

u holds necessarily by case 4.1. Thus, we have I(s) ≥C(s) I(t) >C(t)

I(u), which implies, I(s) −→q =
C(s) ps ≥ I(t) −→q =

C(t) pt > I(u) for some

polynomials ps and pt, and, by Corollary 1, I(s) −→q =
C(s) I(t)+p′ −→q =

C(t)

I(u) + q′ + 1 + p′ for some polynomials p′ and q′. Now, by Case 7.1, we
have I(s) −→q =

C(s) I(u) + q′ + 1 + p′, and hence I(s) >C(s) I(u), which
implies s �RPOLO u by case 4.1.

(b) If s wRPOLO t by case 3.2a and top(t) ∈ FRPO then we have Acc(t) = {t}
and thus I(t) = xt. By Lemma 5, there is some v ∈ Acc(s) such that

10

v �RPOLO t. Now, by induction hypothesis 2 and 5, we have v �RPOLO u
and hence, by Lemma 4, xv ≥ I(u) + 1 belongs to C(s). Then I(s) =
xv + ps −→q =

C(s) I(u) + 1 + ps > I(u) holds, and we conclude by case 4.1.

(c) If s wRPOLO t by case 3.2b, then we have that t = f(t1, . . . , tn) with
f ∈ FRPO. We distinguish the cases according to t �RPOLO u.

i. If case 4.2a applies then ti �RPOLO u for some i and, by Lemma 6,
we have s �RPOLO ti. Thus, we conclude s �RPOLO u by the induction
hypothesis 3 and 5.

ii. If case 4.2b applies then t �RPOLO w for all w ∈ Acc(u). By the
induction hypothesis 2, we have s �RPOLO w and hence s �RPOLO u by
case 4.2b.

iii. If one of the cases 4.2c applies then we have s = f(s), t = g(t)
and u = h(u), with f, g, h ∈ FRPO and f =F g �F h. First, if
we are in case 4.2(c)i or 4.2(c)iii since t �RPOLO u′ for all u′ ∈ u
by induction hypothesis 2 we have s �RPOLO u′. Now, if g �F h,
we conclude by case 4.2(c)i. Otherwise, f =F g =F h and either
stat(f) = stat(g) = mul or stat(f) = stat(g) = lex. In the first
case {s}(wRPOLO)mon{t}(�RPOLO)mul{u}, and by induction hypoth-
esis 2 and 4, we have {s}(�RPOLO)mul{u}, and hence s �RPOLO u
by case 4.2(c)ii. In the second case 〈s〉(wRPOLO)mon〈t〉(�RPOLO)lex〈u〉,
and, by induction hypothesis 2 and 4, we have 〈s〉(�RPOLO)lex〈u〉, and
hence s �RPOLO u by case 4.2(c)iii.

3. We distinguish the cases according to s �RPOLO t.

(a) If s �RPOLO t by case 4.1 and top(t) ∈ FPOLO then we have that t wRPOLO

u holds necessarily by case 3.2a. Thus, we have I(s) >C(s) I(t) ≥C(t)

I(u), which implies I(s) −→q =
C(s) ps > I(t) −→q =

C(t) pt ≥ I(u) for some

polynomials ps and pt, and, by Corollary 1, I(s) −→q =
C(s) I(t) + p′ +

1 −→q =
C(t) I(u)+ q′+p′+1 for some p′ and q′. Now, by Case 7.1, we have

I(s) −→q =
C(s) I(u) + q′+ p′+ 1, and hence I(s) >C(s) I(u), which implies

s �RPOLO u by case 4.1.
(b) If s �RPOLO t by case 4.1 and top(t) ∈ FRPO or t is a variable then

top(u) ∈ FRPO or u is a variable as well. Therefore, we have Acc(t) = {t}
and Acc(u) = {u}, and thus I(t) = xt and I(u) = xu. By Lemma 5,
there is some v ∈ Acc(s) such that v �RPOLO t. Now, if v �RPOLO t
then, by induction hypothesis 3, we have v �RPOLO u and hence, by
Lemma 4, xv ≥ I(u) + 1 belongs to C(s). Then I(s) = xv + ps −→q =

C(s)

I(u) + 1 + ps > I(u) holds. Otherwise, if v wRPOLO t then, by induction
hypothesis 4, we have v wRPOLO u, and thus both xv ≥ xt and xv ≥ xu
belong to C(s). Therefore, since I(s) >C(s) I(t) = xt, by Lemma 1, we
have that I(s) −→q =

C(s) xt + 1 + ps > xt = I(t). There are two cases.
If xt has not been introduced by a rewriting step then we have that
t ∈ Acc(s) and xt ≥ xu belongs to C(s), and hence we can also rewrite
xt in the parallel step obtaining I(s) −→q =

C(s) xu + 1 + ps > xu = I(u),
and we conclude by case 4.1. Otherwise, there must be a step replacing
xv by xt in I(s) = xv + ps −→q =

C(s) xt + p′s > xt = I(t). Then, since

11

xv ≥ xu belongs to C(s), we can replace xv by xu instead of xt, and we
obtain I(s) = xv +ps −→q =

C(s) xu+p′s > xu = I(u), and again s �RPOLO u
by case 4.1.

(c) If s �RPOLO t by case 4.2a then si �RPOLO t for some argument si of s.
By induction hypothesis 3 and 4, we have si �RPOLO u and hence we
conclude s �RPOLO u by case 4.2a.

(d) If s �RPOLO t by case 4.2b then we have s �RPOLO w for all w ∈ Acc(t).
By Lemma 5, for all v ∈ Acc(u) there is some w ∈ Acc(t) such that
w �RPOLO v, and, therefore, by induction hypothesis 3 and 5, s �RPOLO v
for all v ∈ Acc(u). Now, if top(u) 6∈ FPOLO, we already have s �RPOLO u,
since Acc(u) = {u}. Otherwise, we have s �RPOLO u by case 4.2b.

(e) If s �RPOLO t by one of the cases 4.2c then we have s = f(s), t = g(t) and
u = h(u), with f, g, h ∈ FRPO and f �F g =F h. First, since t �RPOLO u

′

for all u′ ∈ u by Lemma 6, we have s �RPOLO u
′ by induction hypothesis 5.

Now, if f �F g, we conclude by case 4.2(c)i. Otherwise, f =F g =F h and
either stat(f) = stat(g) = mul or stat(f) = stat(g) = lex. In the first
case {s}(�RPOLO)mul{t}(wRPOLO)mon{u}, and by induction hypothesis 3
and 4 {s}(�RPOLO)mul{u}, and hence s �RPOLO u by case 4.2(c)ii. In the
second case 〈s〉(�RPOLO)lex〈t〉(wRPOLO)mon〈u〉, and, by induction hypoth-
esis 3 and 4, 〈s〉(�RPOLO)lex〈u〉, and hence s �RPOLO u by case 4.2(c)iii.

4. We distinguish the cases according to s wRPOLO t.
(a) If s ∈ X then by definition of wRPOLO we have s = t = u ∈ X and hence,

s wRPOLO u by case 3.1.
(b) If s wRPOLO t and t wRPOLO u by case 3.2a then we have I(s) ≥C(s)

I(t) ≥C(t) I(u), which implies, I(s) −→q =
C(s) ps ≥ I(t) −→q =

C(t) pt ≥
I(u) for some polynomials ps and pt, and, by Corollary 1, I(s) −→q =

C(s)

I(t) + p′ −→q =
C(t) I(u) + q′ + p′. Now, by Case 7.1, we have I(s) −→q =

C(s)

I(u) + q′ + p′, and hence I(s) ≥C(s) I(u), which implies s wRPOLO u by
case 3.2a.

(c) If s wRPOLO t by case 3.2a and top(t) ∈ FRPO or t is a variable, then,
top(u) ∈ FRPO or u is a variable. By Lemma 5, we have that there is
some v ∈ Acc(s) such that v �RPOLO t, since Acc(t) = {t}, and, by the
induction hypothesis 3 and 4, v �RPOLO u. Therefore, since Acc(u) = {u},
by definition xv ≥ xu belongs to C(s), and hence I(s) = xv + ps −→q =

C(s)

xu + ps ≥ xu = I(u) and, hence s wRPOLO u by case 3.2a.
(d) If s wRPOLO t and t wRPOLO u by case 3.2b then s = f(s), t = g(t) and u =

h(u), with f =F g =F h and either stat(f) = stat(g) = mul or stat(f) =
stat(g) = lex. In the first case {s}(wRPOLO)mon{t}(wRPOLO)mon{u}, and
by induction hypothesis 4 {s}(wRPOLO)mon{u}, and hence s wRPOLO u by
case 3.2(b)i. In the second case 〈s〉(wRPOLO)mon〈t〉(wRPOLO)mon〈u〉, and,
by induction hypothesis 4, 〈s〉(wRPOLO)mon〈u〉, and hence s wRPOLO u by
case 3.2(b)ii.

5. We distinguish cases according to s �RPOLO t and t �RPOLO u. Notice that
neither s nor t are variables.
(a) If s �RPOLO t by case 4.1 and top(t) ∈ FPOLO then we have that t �RPOLO

u holds necessarily by case 4.1. Thus, we have I(s) >C(s) I(t) >C(t)

12

I(u), which implies, I(s) −→q =
C(s) ps > I(t) −→q =

C(t) pt > I(u) for some

polynomials ps and pt, and, by Corollary 1, I(s) −→q =
C(s) I(t) + p′ +

1 −→q =
C(t) I(u) + q′ + 1 + p′ + 1. Now, by Case 7.1, we have I(s) −→q =

C(s)

I(u) + q′ + p′ + 2, and hence I(s) >C(s) I(u), which implies s �RPOLO u
by case 4.1.

(b) If s �RPOLO t by case 4.1 and top(t) ∈ FRPO then it holds like in case 2b.
(c) If s �RPOLO t by case 4.2a then it holds like case 3c.
(d) If t �RPOLO u by case 4.2a then it holds like case 2(c)i.
(e) If s �RPOLO t by case 4.2b then it holds like case 3d.
(f) If t �RPOLO u by case 4.2b and top(s) ∈ FRPO then it holds like 2(c)ii.
(g) If we apply one of the cases 4.2c then we have s = f(s), t = g(t) and

u = h(u), with f, g, h ∈ FRPO and f �F g �F h. First, since t �RPOLO u
′

for all u′ ∈ u by Lemma 6, we have s �RPOLO u
′ by induction hypothesis 5.

Now, if f �F g or g �F h, we conclude by case 4.2(c)i. Otherwise,
f =F g =F h and either stat(f) = stat(g) = mul or stat(f) = stat(g) =
lex. In the first case {s}(�RPOLO)mul{t}(�RPOLO)mul{u}, and by induction
hypothesis 2,3,4 and 5, {s}(�RPOLO)mul{u}, and hence s �RPOLO u by
case 4.2(c)ii. In the second case 〈s〉(�RPOLO)lex〈t〉(�RPOLO)lex〈u〉, and, by
induction hypothesis 2,3,4 and 5, 〈s〉(�RPOLO)lex〈u〉, and hence s �RPOLO u
by case 4.2(c)iii. ut

Corollary 2. �RPOLO and �RPOLO are transitive and �RPOLO is compatible with
�RPOLO.

Now we provide the lemmas needed for proving the monotonicity and stability
under substitutions.

Lemma 8. If s �RPOLO t then I(f(. . . , s, . . .)) ≥C(f(...,s,...)) I(f(. . . , t, . . .)), for
all function symbols f ∈ FPOLO.

Lemma 9. wRPOLO and �RPOLO are monotonic.

See respectively the proofs of lemmas 22 and 23 which extend these lemmas
to the higher-order case.

In order to prove stability under substitutions, we extend the definition of
polynomial interpretation to substitutions in the natural way.

Definition 5. Let γ be a substitution. Then we define

γI = {xt 7→ I(tγ) | t ∈ T (F ,X)}.

The following lemma easily holds by induction on the size of the term (see
Lemma 24 for the details).

Lemma 10. Let γ be a substitution such that xt /∈ Dom(γ) for any term t.
Then I(sγ) = I(s)γI for every term s.

Using the previous lemma we can show stability under substitutions of our
relations (see the proof of Lemma 25 for details).

13

Lemma 11. wRPOLO and �RPOLO are stable under substitutions.

Corollary 3. �RPOLO and �RPOLO are stable under substitutions.

The following lemmas are devoted to proving well-foundedness of the order-
ing. The first one roughly shows that >C is well-founded on linear polynomials
if the context C is built using a set of strongly normalizing terms (the proof is
exactly as the one for Lemma 28).

Lemma 12. Let S be a set of terms closed w.r.t. �RPOLO.

1. If p and q are linear polynomials, Var(p) ⊆ XS and p >C(S) q then Var(q) ⊆
XS .

2. If all terms in S are strongly normalizing w.r.t. �RPOLO then >C(S) is well-
founded on linear polynomials over Z+ and XS .

The following two lemmas show roughly that POLO symbols and RPO sym-
bols preserve strong normalization. In the first case we assume that the accessible
terms are strongly normalizing, while in the second case we assume that the ar-
guments are strongly normalizing.

Lemma 13. Let t be a term with top(t) ∈ FPOLO s.t. Acc(t) = {u1, . . . , uk}.
If u1, . . . , uk are strongly normalizing w.r.t. �RPOLO then t is strongly normal-

izing w.r.t. �RPOLO.

Lemma 14. Let t1, . . . tn be terms in T (F ,X).
If t1, . . . , tn are strongly normalizing w.r.t. �RPOLO and f ∈ FRPO then

f(t1, . . . , tn) is strongly normalizing w.r.t. �RPOLO.

See the proofs of lemmas 29 and 30, which extend these lemmas to the higher-
order case.

Using the previous lemmas we can prove well-foundedness of the ordering (see
the proof of Lemma 31 which is the extension of this lemma to the higher-order
case).

Lemma 15. �RPOLO is well-founded.

We conclude the Section with the main Theorem of the first-order part, which
follows directly from corollaries 2 and 3 and lemmas 9 and 15.

Theorem 1. (�RPOLO,�RPOLO) is a reduction pair.

As we have seen, in order to form a reduction pair we just need the quasi-
ordering to be monotonic. However, if we want to use the ordering for directly
proving termination then we need a reduction ordering and, hence, monotonicity
of the strict ordering is required. In this case, to make �RPOLO monotonic there
are two possibilities.

The first and simplest one relies on considering only monotonic polynomial
interpretations, i.e. interpretations fI(x1, . . . , xn) = c0 + c1 · x1 + . . . + cn · xn

14

where cj > 0 for all j ∈ {1 . . . n} and for all f ∈ FPOLO. Then, if s �RPOLO t
by case 4.1 then since top(s) ∈ FPOLO we have that C(s) ⊆ C(f(. . . s . . .)), and
hence I(s) >C(s) I(t) implies I(f(. . . s . . .)) >C(f(...s...)) I(f(. . . t . . .)), which
implies f(. . . s . . .) �RPOLO f(. . . t . . .) by case 4.1. Otherwise, if s �RPOLO t by
case 4.2b then, since top(s) ∈ FRPO and top(t) ∈ FPOLO, we have, by Lemma 4,
xs ≥ I(t) + 1 ∈ C(f(. . . , s, . . .)), and since I(f(. . . s . . .)) = . . . + xs + . . . and
I(f(. . . t . . .)) = . . .+ I(t) + . . ., we can conclude by case 4.1, again. Finally, the
rest of the cases are proved as in the recursive path ordering.

The second solution is based on splitting the case 4.1 of RPOLO (where
top(s) ∈ FPOLO) in two cases. The first one is as before, i.e. requires I(s) >C(s)

I(t), and the second one requires I(s) ≥C(s) I(t) and Acc(s)(�RPOLO)mulAcc(t).
Now, it is easy to prove monotonicity, but well-foundedness needs to be revised.
To this end we just need to consider a second component (combined lexico-
graphically) in the induction argument of the proof of Lemma 13. Being precise,
we have to proceed by induction on the pair 〈I(t),Acc(t)〉 w.r.t. the ordering
(>C , (�RPOLO)mul)lex, which is well-founded since, by assumption, all terms in
Acc(t) are strongly normalizing w.r.t. �RPOLO. This is very similar to what is
necessary for proving Lemma 14. Since these proofs are omitted, see the proofs
of Lemma 29 and Lemma 30 which respectively extend both lemmas to the
higher-order case.

4 Higher-order terms and orderings

Given a set S of sort symbols, the set of types is the usual set of simple types
generated by the constructor → for functional types:

TS := s ∈ S | TS → TS

Types are functional when headed by the→ symbol, and data types otherwise.
The operator → associates to the right. We use σ, τ, ρ, θ for arbitrary types.

Function symbols are meant to be algebraic operators equipped with a fixed
number n of arguments (called the arity) of respective types σ1, . . . , σn, and an
output type σ. Let F =

⊎
σ1,...,σn,σ

Fσ1×...×σn→σ. The membership of a given
function symbol f to Fσ1×...×σn→σ is called a type declaration and written f :
[σ1 × . . .× σn]→ σ.

The set T (F ,X) of raw algebraic λ-terms is generated from the signature
Σ = (S,F) and a denumerable set X of variables according to the grammar:

T := X | (λX : TS .T) | @(T , T) | F(T , . . . , T).

Raw terms of the form λx : σ.u are called abstraction, while the other raw
terms are said to be neutral. @(u, v) denotes the application of u to v. We may
sometimes omit the type σ in λx : σ.u. As a matter of convenience, we may
write @(u, v1, . . . , vn) for @(. . .@(u, v1), . . . , vn), assuming n > 0. The raw term
@(u, v1, . . . , vn) is called a (partial) left-flattening of s = @(. . .@(u, v1), . . . , vn),

15

u being possibly an application itself (hence the word ’partial’). We use Var(t)
for the set of free variables of t.

An environment Γ is a finite set of pairs written as {x1 : σ1, . . . , xn : σn},
where xi is a variable, σi is a type, and xi 6= xj for i 6= j. Var(Γ) = {x1, . . . , xn}
is the set of variables of Γ . Given two environments Γ and Γ ′, their composition,
denoted by Γ · Γ ′, is the environment Γ ′ ∪ {x : σ ∈ Γ | x /∈ Var(Γ ′)}. Two
environments Γ and Γ ′ are compatible if Γ · Γ ′ = Γ ∪ Γ ′.

Given a signature Σ, our typing judgements are written as Γ `Σ s : σ. A
raw term s has type σ in the environment Γ if the judgement Γ `Σ s : σ is
provable in the inference system given at Figure 1. An important property of
our type system is that a raw term typable in a given environment has a unique
type. Typable raw terms are called terms.

Variables:
x : σ ∈ Γ
Γ `Σ x : σ

Functions:
f : [σ1 × . . .× σn]→ σ ∈ F

Γ `Σ t1 : σ1 . . . Γ `Σ tn : σn

Γ `Σ f(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} `Σ t : τ

Γ `Σ (λx : σ.t) : σ → τ

Application:
Γ `Σ s : σ → τ Γ `Σ t : σ

Γ `Σ @(s, t) : τ

Fig. 1. The type system for monomorphic higher-order algebras

A substitution γ of domain Dom(γ) = {x1, . . . , xn} is a set of triples γ =
{Γ1 `Σ x1 7→ t1, . . . , Γn `Σ xn 7→ tn}, such that xi and ti have the same
type in the environment Γi. Substitutions are extended to terms by morphism,
variable capture being avoided by renaming bound variables when necessary. We
use post-fixed notation for substitution application.

Given a signature Σ, a higher-order rewrite rule is a triple written Γ Σ̀ l→ r
where Γ is an environment and l, r are higher-order terms such that Var(r) ⊆
Var(l) ⊆ Var(Γ) and for all substitutions γ such that Γ ` Σ lγ : σ, then
Γ Σ̀ rγ : σ. A higher-order rewrite system is a set of higher-order rewrite rules.

The rewrite relation which is considered in the following sections is the union
of the one induced by a set of higher-order rewrite rules and the β- and η-
reduction relations all working modulo α-conversion, i.e.,

→Rβη =→R ∪ →β ∪ →η

where
{u : α, v : β} `Σ @(λx : α.v, u)→β v{x 7→ u}
{x : α, u : α→ β} `Σ λx.@(u, x)→η u if x 6∈ Var(u)

For simplicity reasons, typing environments are omitted in the rest of the paper,
except when presenting type inference rules.

16

For some proofs we will use an extension of the subterm relation � based on
α-conversion, which is denoted by �α and defined as u�α v if u�v or u = λx.u′

and v = u′{x 7→ y} for some fresh variable y. We have that �α is well-founded
since u�αv implies |u| > |v|. Moreover, since �α is compatible with β-reduction,
we have →β ∪�α is well-founded on typed terms.

Definition 6. A higher-order reduction ordering � is a well-founded ordering
which is

(i) monotonic: s : σ � t : σ implies u[s] : τ � u[t] : τ for all u[x : σ] : τ ;

(ii) stable: s : σ � t : σ implies sγ : σ � tγ : σ for every substitution γ;

(iii) functional: s : σ →β ∪ →η t : σ implies s : σ � t : σ.

Higher-order reduction orderings allow us to show that the relation →Rβη is
terminating by simply comparing the left-hand and right-hand sides of each rule
in R.

Theorem 2. Let R = {li → ri}i∈I be a higher-order rewrite system and � be
a higher-order reduction ordering such that li � ri for every i ∈ I. Then the
relation →Rβη is strongly normalizing.

As in the first-order case, methods like the ones in [7,24,19] require higher-
order reduction pairs to solve the constraints generated by the method.

Definition 7. Given � and �, (�,�) is a higher-order reduction pair if � is
a quasi-ordering which is monotonic, stable under substitutions and functional
and � is a well-founded ordering which is stable under substitutions, functional
and compatible with �.

In the following section we will provide a higher-order reduction pair by
extending the results of Section 3.

5 The Higher-Order Recursive Path and Polynomial
Ordering

We have, as for the first-order case, F split into two sets FPOLO and FRPO, a
precedence �F on FRPO and a polynomial interpretation over the natural num-
bers I on terms in T (F ,X). For any symbol f whose output type is functional,
we have f ∈ FRPO (i.e., for any term f(s1 : σ1, . . . , sn : σn) : ρ→ τ , f ∈ FRPO).

The interpretation I is enlarged as follows. If t has a functional type then
I(t) = 0 and otherwise if the top symbol of t is @ then I(t) = xt. In any other
case we proceed as before. However, to be able to handle the introduced vari-
ables xt, while keeping monotonicity of beta-reduction, we need to add context
information recording the relation between xt and t.

17

I(s) =

0 if s : σ and σ is functional
xs if s = @(s1, . . . , sn) : σ and σ is a data type
fI(I(s1), . . . , I(sn)) if s = f(s1, . . . , sn) : σ, σ is a data type, f ∈ FPOLO
xs if s = f(s1, . . . , sn) : σ, σ is a data type, f ∈ FRPO
xs if s = x : σ ∈ X , and σ is a data type

Given a term s, its set of accessible terms Acc(s) is defined identically as in
the first-order case. Remark that for all terms u : τ ∈ Acc(s), τ is a data type
and either top(u) ∈ FRPO ∪ {@} or u is a variable.

Now we define a quasi-ordering on types exactly as done in [2], which is also
an ingredient of the ordering:

Definition 8. Let ≥T be a quasi-ordering on types satisfying the following prop-
erties:

1. Well-foundedness: >→T = >T ∪�→ is well-founded, where σ → τ �→ σ;
2. Right arrow subterm: σ → τ >T τ ;
3. Arrow preservation: τ → σ =T α iff α = τ ′ → σ′ , τ =T τ

′ and σ =T σ
′;

4. Arrow decreasingness: τ → σ >T α implies either σ ≥T α or α = τ ′ → σ′,
τ =T τ

′ and σ >T σ
′;

where >T is its strict part and =T its equivalence.

Remark 1. The type ordering ≥T and the polynomial interpretation I have to
satisfy the following condition. For all f : [σ1 × . . .× σn]→ σ ∈ FPOLO, and for
all i ∈ {1, . . . , n}, if ∀x1 . . . xn : I(f(x1, . . . , xn)) ≥ xi then σ ≥T σi.

Using this condition we can infer the following crucial property.

Property 1. Let t : σ and w : τ be typed terms. If w ∈ Acc(t) then σ ≥T τ .

Proof. By induction on |t|. Since w ∈ Acc(t), we have that τ is a data type. If
top(t) ∈ FRPO ∪ {@} or t is a variable then it trivially holds since Acc(t) = {t}.
Otherwise, t = f(t1, . . . , tn) and f : [σ1× . . .×σn]→ σ ∈ FPOLO, and moreover
w ∈ Acc(ti) for some i ∈ {1, . . . , n} such that I(f(x1, . . . , xn)) ≥ xi. Therefore,
by Remark 1, we have σ ≥T σi and since, by induction hypothesis, σi ≥T τ we
conclude σ ≥T τ . ut

The following three mutually recursive definitions introduce respectively the
context C(S) of a set of terms S, and the relations wHORPOLO, �HORPOLO and
�HORPOLO.

We give first the definition of context as in the first-order case, but using
�HORPOLO instead of �RPOLO. Note that beta-reduction is included in the definition
of �HORPOLO and hence it is also considered in the definition of context.

Definition 9. Let S be a set of terms u : σ such that σ is a data type and
top(u) 6∈ FPOLO. The context C(S) is defined as the union of

18

1. xu ≥ E+1 for all u ∈ S and for all linear polynomial expressions E over Z+

and variables {xv1 , . . . , xvn} such that u �HORPOLO vi for all i ∈ {1, . . . , n}.
2. xu ≥ xv for all u ∈ S and for all v such that u wHORPOLO v and top(v) ∈
FRPO ∪ {@}.

As before, we define C(t) for some term t with top(t) ∈ FPOLO as C(Acc(t)).
Now we can define the relations wHORPOLO, �HORPOLO and �HORPOLO.

Definition 10. s : σ wHORPOLO t : τ iff

1. s = t ∈ X , or
2. s = f(s1, . . . , sn) and

(a) f ∈ FPOLO, σ ≥T τ with τ a data type and I(s) ≥C(s) I(t), or
(b) t = g(t1, . . . , tn), f, g ∈ FRPO, f =F g, σ =T τ and

i. stat(f) = mul and {s1, . . . , sn}(wHORPOLO)mon{t1, . . . , tn}, or
ii. stat(f) = lex and 〈s1, . . . , sn〉(wHORPOLO)mon〈t1, . . . , tn〉

3. s = @(u, v), t = @(u′, v′), {u, v}(wHORPOLO)mon{u′, v′} and σ =T τ
4. s = λx : α.u and t = λy : β.v with α =T β, σ =T τ and u{x 7→ z} wHORPOLO

v{y 7→ z} for some fresh variable z : α.

Definition 11. s : σ �HORPOLO t : τ iff σ ≥T τ and

1. s = f(s1, . . . , sn) and
(a) f ∈ FPOLO and

i. τ is a data type and I(s) >C(s) I(t), or
ii. τ is functional and u �HORPOLO t for some u ∈ Acc(s), or

(b) f ∈ FRPO and
i. si �HORPOLO t for some i ∈ {1, . . . , n}, or

ii. t = g(t1, . . . , tm), g ∈ FPOLO and s �HORPOLO u for all u ∈ Acc(t),
or

iii. t = g(t1, . . . , tm), g ∈ FRPO,
A. f �F g and for all i ∈ {1, . . . ,m} we have s �HORPOLO ti or

sj �HORPOLO ti for some j ∈ {1, . . . , n}, or
B. f =F g, stat(f) = mul and
{s1, . . . , sn}(�HORPOLO)mul{t1, . . . , tm}, or

C. f =F g, stat(f) = lex,
〈s1, . . . , sn〉(�HORPOLO)lex〈t1, . . . , tm〉 and
for all i ∈ {1, . . . ,m} we have s �HORPOLO ti or sj �HORPOLO ti for
some j ∈ {1, . . . , n}, or

iv. t = @(t1 . . . , tm) for some partial left-flattening of t and for all i ∈
{1, . . . ,m} we have s �HORPOLO ti or sj �HORPOLO ti for some j ∈
{1, . . . , n}, or

2. s = @(s1, s2) and either
(a) s1 �HORPOLO t or s2 �HORPOLO t, or
(b) t = @(t1, . . . , tm) for some partial left-flattening of t and
{s1, s2}(�HORPOLO)mul{t1, . . . , tm}, or

3. s = @(λx.w, v) and w{x 7→ v} �HORPOLO t, or

19

4. s = λx : α.u and

(a) u{x 7→ z} �HORPOLO t for some fresh variable z : α, or
(b) t = λy : β.v, α =T β and u{x 7→ z} �HORPOLO v{y 7→ z} for some fresh

variable z : α, or
(c) u = @(w, x), x 6∈ Var(w) and w �HORPOLO t,

where s : σ �HORPOLO t : τ iff s : σ �HORPOLO t : τ or s : σ wHORPOLO t : τ .

In order to show that �HORPOLO and wHORPOLO are well-defined we proceed like
in the first order case but by induction on the pair 〈s, t〉 compared lexicograph-
ically with (→β ∪�α,�)lex.

Let us show the use of the defined relations in a simple example. Some larger
examples will be given in Section 7.

Example 3. Let o be a data type, F = {s : [o]→ o, p : [o× o]→ o, r : [o× (o→
o→ o)]→ o} and X = {x : o, y : o, F : o→ o→ o}.

Consider the following constraint literal:

r(p(s(s(x)), y), F) > @(F, y, r(p(s(y), x), F))

First of all, let us mention that HORPO fails to prove this literal since we need
p(s(s(x)), y) to be greater than p(s(y), x), which cannot happen in any RPO-
like ordering. However, it is proved with HORPOLO taking r ∈ FRPO with
stat(r) = mul and p, s ∈ FPOLO with pI(x, y) = x+ y and sI(x) = x+ 1.
By case 11.1(b)iv, since F is already an argument of r(p(s(s(x)), y), F), we just
need to show that r(p(s(s(x)), y), F) �HORPOLO y and r(p(s(s(x)), y), F) �HORPOLO

r(p(s(y), x), F). For the former we first apply case 11.1(b)i and then case 11.1(a)i,
since I(p(s(s(x)), y)) = xx + xy + 2 > xy = I(y). For the latter, we apply first
case 11.1(b)iiiB, which requires p(s(s(x)), y) �HORPOLO p(s(y), x), that holds by
case 11.1(a)i, since I(p(s(s(x)), y)) = xx + xy + 2 > xx + xy + 1 = I(p(s(y), x)).

ut

As done in the previous example, in practice we would like to use the defined
relations �HORPOLO and �HORPOLO to prove termination. However, the relation
�HORPOLO cannot be proved transitive and moreover �HORPOLO and �HORPOLO are
not compatible, and hence (�HORPOLO,�HORPOLO) is not a higher-order reduction
pair. Fortunately, we can define two more relations ≥HORPOLO and >HORPOLO, which
extend respectively �HORPOLO and �HORPOLO, and such that (≥∗HORPOLO, >

+
HORPOLO) is

a higher-order reduction pair. Note that, since �HORPOLO is included in >HORPOLO

and thus in >+
HORPOLO, we can use �HORPOLO in the termination proofs (and anal-

ogously for �HORPOLO and ≥∗HORPOLO).

Definition 12. The relations >HORPOLO and ≥HORPOLO are defined as

>HORPOLO = w∗HORPOLO · �HORPOLO

≥HORPOLO = w∗HORPOLO · �HORPOLO

20

Notice that ≥HORPOLO = w∗HORPOLO ∪ >HORPOLO, since �HORPOLO = wHORPOLO

∪ �HORPOLO implies ≥HORPOLO = w∗HORPOLO · (wHORPOLO ∪ �HORPOLO) = w+
HORPOLO

∪ (w∗HORPOLO · �HORPOLO) = w+
HORPOLO ∪ >HORPOLO = w∗HORPOLO ∪ >HORPOLO.

Moreover, ≥∗HORPOLO is a quasi-ordering and >+
HORPOLO is an ordering.

The rest of this section is devoted to proving that (≥∗HORPOLO, >
+
HORPOLO) is a

higher-order reduction pair. To this end we will show the following properties.

– >+
HORPOLO is compatible with ≥∗HORPOLO.

– >HORPOLO is strongly-normalizing.
– ≥HORPOLO is monotonic.
– both >HORPOLO and ≥HORPOLO are stable under substitutions.
– both >HORPOLO and ≥HORPOLO are functional.

The strong normalization proof proceeds like in [18] but uses ideas already
introduced for the first-order case when handling polynomial interpretations.

5.1 Candidate terms

Our strong normalization proof is based on Tait and Girard’s reducibility tech-
nique. In order to apply this method we have to define for each type σ, a set of
terms called the computability predicate [[σ]]. Terms in [[σ]] are called computable.
In practice, [[σ]] can be defined by the properties it should satisfy. The most im-
portant one is that computable terms must be strongly normalizable. The rest
of the proof is based on lemmas similar to the ones introduced in the first order
case but working on computable terms instead of strongly normalizing terms.
See [14] for a detailed exposition of the method in case of system F , and [11] for a
discussion about the different possibilities for defining computability predicates
in practice.

Since we work with an equivalence relation =T on types, the set [[σ]] is actually
associated to the equivalence class of σ modulo =T . Moreover, we need, for
instance, that if s ∈ [[σ → τ]] and t ∈ [[σ]], then the raw term @(s, t) must belong
to the set [[τ]] even if it is not typable, which may arise in case t does not have
type σ but σ′ =T σ. Now we give a type system in which all raw terms needed
in the strong normalization proof become typable candidate terms.

Definition 13. A raw term s is a candidate term if the judgement Γ Σ̀ s :C σ
is provable in the type system of Figure 2.

The set of types of a typable candidate term of type σ is a union of type
equivalence classes modulo =T :

Lemma 16. For all σ and τ such that σ =T τ , we have Γ ` Σ s :C σ iff
Γ `Σ s :C τ .

This allows us to talk about the types of a candidate term up to type equiv-
alence.

21

Equivalence:
Γ `Σ s :C σ σ =T τ

Γ `Σ s :C τ

Variables:
x : σ ∈ Γ

Γ `Σ x :C σ

Functions:
f : [σ1 × . . .× σn]→ σ ∈ F

Γ `Σ t1 :C σ1 . . . Γ `Σ tn :C σn

Γ `Σ f(t1, . . . , tn) :C σ

Abstraction:
Γ · {x : σ} `Σ t :C τ

Γ `Σ (λx : σ.t) :C σ → τ

Application:
Γ `Σ s :C σ → τ Γ `Σ t :C σ

Γ `Σ @(s, t) :C τ

Fig. 2. The type system for Candidate Terms

5.2 Properties of the order

First of all, let us mention that, in this Section Definition 9, 10 and 11 are applied
to candidate terms, and moreover, since the proof of strong normalization works
on candidate terms and relies on all the following properties, we will prove them
for candidate terms as well.

Lemma 17. The ordering >+
HORPOLO is compatible with the quasi-ordering ≥∗HORPOLO.

Proof. We show that if s ≥∗HORPOLO t >
+
HORPOLO u then s >+

HORPOLO u. We proceed
by induction on the length of the sequence from s to t. If s = t we are done.
Otherwise, we have a sequence s = s0 ≥HORPOLO s1 . . . ≥HORPOLO sn = t >+

HORPOLO u
with n > 0. Now, on the one hand, by induction hypothesis we have s1 >

+
HORPOLO

u. On the other hand, ≥HORPOLO = w∗HORPOLO ∪ >HORPOLO. Thus, if s0 ≥HORPOLO s1,
then either s0 w∗HORPOLO s1 or s0 >HORPOLO s1. If s0 w∗HORPOLO s1 then s0 w∗HORPOLO

· >+
HORPOLO u and, since >HORPOLO = w∗HORPOLO · �HORPOLO, we have s0 >

+
HORPOLO u.

If, otherwise, s0 >HORPOLO s1, then we trivially have s0 >
+
HORPOLO u. Thus, we have

proved that s >+
HORPOLO u. ut

In order to be able to prove most of the properties, some lemmas holding for
first-order terms need to be generalized for higher-order terms.

Lemma 18 (Generalization of Lemma 2). The relations wHORPOLO and �HORPOLO

are reflexive.

The proof holds trivially like in the first-order case.

Lemma 19 (Generalization of Lemma 3). Let s :C σ and w :C τ be candi-
date terms. Then

(i) s �HORPOLO w implies s �HORPOLO u for all u ∈ Acc(w).
(ii) s �HORPOLO w implies s �HORPOLO u for all u ∈ Acc(w).

Proof. We proceed by induction on s w.r.t. →β ∪�α. If τ is functional then
Acc(w) = ∅, and hence the lemma trivially holds. Otherwise, τ is a data type.
If top(w) ∈ FRPO ∪ {@} or w is a variable, then Acc(w) = {w} and the lemma

22

trivially holds as well. Otherwise, top(w) ∈ FPOLO. Then, by definition, we have
σ ≥T τ and, by Property 1, for all u :C τ

′ in Acc(w) we have τ ≥T τ ′ and hence
σ ≥T τ ′.

If s wHORPOLO w then, since top(w) ∈ FPOLO, it can only be by case 10.2a.
Then we have I(s) ≥C(s) I(w). By definition of I, for all u :C τ

′ ∈ Acc(w), we
have I(w) = P +xu for some polynomial P , which implies I(s) ≥C(s) I(u) = xu.
Hence, since σ ≥T τ ′ and all terms in Acc(w) have a data type, s wRPOLO u holds
by case 10.2a.

Otherwise, we have s �HORPOLO w. Since top(w) ∈ FPOLO, these are the only
applicable cases.

– s �HORPOLO w holds by case 11.1(a)i. Then we have both σ ≥T τ and
I(s) >C(s) I(w). By definition of I, for all u :C τ ′ ∈ Acc(w), we have
I(w) = P + xu for some polynomial P , which implies I(s) >C(s) I(u) = xu
and, since all terms in Acc(w) have a data type, we conclude s �RPOLO u by
case 11.1(a)i.

– s �HORPOLO w holds by case 11.1(b)i. Then si �HORPOLO w for some argu-
ment si of s. By induction hypothesis, we have si �HORPOLO u :C τ

′ for all
u ∈ Acc(w), and hence, since σ ≥T τ ′, we conclude s �HORPOLO u :C τ

′ by
case 11.1(b)i for all u ∈ Acc(w).

– s �HORPOLO w holds by case 11.2a. The proof is analogous to the previous,
using case 11.2a instead of case 11.1(b)i.

– s �HORPOLO w holds by case 11.1(b)ii. Then s �HORPOLO u for all u ∈ Acc(w)
holds by definition.

– s �HORPOLO w holds by case 11.3. Then s→β s
′ �HORPOLO w for some s′ :C σ.

Then, by induction hypothesis, s′ :C σ �HORPOLO u :C τ
′ for all u ∈ Acc(w),

and hence s :C σ �HORPOLO u :C τ
′ by case 11.3 for all u ∈ Acc(w).

– s �HORPOLO w holds by case 11.4a. Then s = λx : α.v and v{x 7→ z} �HORPOLO

w for some fresh variable z : α. Since λx : α.v �α v{x 7→ z}, by induction
hypothesis v{x 7→ z} �HORPOLO u for all u ∈ Acc(w) and hence s �HORPOLO u
by case 11.4a for all u ∈ Acc(w).

– s �HORPOLO w holds by case 11.4c. Then s = λx : α.@(v, x), x 6∈ Var(v) and
v �HORPOLO w. By induction hypothesis v �HORPOLO u for all u ∈ Acc(w) and
hence s �HORPOLO u by case 11.4c for all u ∈ Acc(w). ut

The following lemma is adapted from Lemma 4, but using �HORPOLO. The
proof is analogous.

Lemma 20. Let s, u and v be terms. If u ∈ Acc(s) and u �HORPOLO v then
xu ≥ I(v) + 1 is in C(s).

The next lemma extends Lemma 5 to both �HORPOLO and ≥HORPOLO. The first
one is used in Lemma 25 and the second one in Lemma 29.

Lemma 21 (Generalization of Lemma 5). Let s :C σ with σ a data type
and t :C τ be candidate terms.

– If s �HORPOLO t then ∀u ∈ Acc(t), ∃v ∈ Acc(s) such that v �HORPOLO u.

23

– If s ≥HORPOLO t then ∀u ∈ Acc(t), ∃v ∈ Acc(s) such that v ≥∗HORPOLO u.

Proof. For the first property we distinguish two cases according to the type of t.
If τ is functional then it trivially holds since Acc(t) = ∅. Otherwise τ is a

data type. Then if s is a variable we necessarily have s = t and since Acc(s) =
{s} = Acc(t) it trivially holds. If top(s) ∈ FRPO ∪ {@} then Acc(s) = {s} and
hence we conclude by Lemma 19.

Otherwise top(s) ∈ FPOLO. Then whether s wHORPOLO t or s �HORPOLO t, we
have that I(s) ≥C(s) I(t), and hence I(s) −→q =

C(s) p ≥ I(t) for some polynomial

p. Note that, by definition, for all xu ≥ E in C(s) we have that u ∈ Acc(s).
Moreover, for all terms u ∈ Acc(t) there is a variable xu occurring in I(t). The
property trivially holds for those variables xu occurring in I(t) such that xu also
occurs in I(s). For those variables xu occurring in I(t) such that xu does not
occur in I(s) we will have a step with→C(s) in I(s) −→q =

C(s) p ≥ I(t) introducing

xu. Therefore, there exists some variable xv in I(s) such that either xv ≥ xu
is in C(s) and xv is replaced by xu or xv ≥ P + xu + 1 is in C(s) for some
polynomial P and xv is replaced by P + xu + 1. Now, we have that v ∈ Acc(s)
and v wHORPOLO u in the first case and v �HORPOLO u in the second one.

For the second property we proceed by induction on the number of steps
with wHORPOLO that we have in s ≥HORPOLO t.

If there are no steps, it holds by the first property. Otherwise, we have
s wHORPOLO s′ ≥HORPOLO t. Then, by induction we have that for all u ∈ Acc(t)
there is some v′ ∈ Acc(s′) such that v′ ≥∗HORPOLO u, and by the first property we
have that for all v′ ∈ Acc(s′) there is some v ∈ Acc(s) such that v �HORPOLO v

′.
Therefore for all u ∈ Acc(t) there is some v ∈ Acc(s) such that v ≥∗HORPOLO u. ut

The next lemma is used in the following one, which states the monotonicity
of our non-strict relations on candidate terms.

Lemma 22 (Generalization of Lemma 8). If s :C σ �HORPOLO t :C σ then
I(f(. . . , s, . . .)) ≥C(f(...,s,...)) I(f(. . . , t, . . .)), for all terms f(. . . , x : σ, . . .) such
that f ∈ FPOLO
Proof. If I(f(. . . , s, . . .)) = I(f(. . . , t, . . .)) then it trivially holds. Otherwise σ
is not functional and we have I(f(. . . , s, . . .)) = p+ I(s) and I(f(. . . , t, . . .)) =
p + I(t) for some polynomial p, and Acc(s) ⊆ Acc(f(. . . , s, . . .)) which implies
C(s) ⊆ C(f(. . . , s, . . .)).

Now, if top(s) ∈ FRPO ∪ {@} then I(s) = xs, i.e., Acc(s) = {s}. In this case
s �HORPOLO t gives us either xs ≥ I(t) ∈ C(f(. . . , s, . . .)) or, by Lemma 20, xs ≥
I(t)+1 ∈ C(f(. . . , s, . . .)), and hence, since I(f(. . . , s, . . .)) = p+xs →{xs≥I(t)}
p + I(t) = I(f(. . . , t, . . .)) and I(f(. . . , s, . . .)) = p + xs →{xs≥I(t)+1} p +
I(t) + 1 > p+ I(t) = I(f(. . . , t, . . .)), we conclude I(f(. . . , s, . . .)) ≥C(f(...,s,...))

I(f(. . . , t, . . .)). If top(s) ∈ FPOLO then s �HORPOLO t gives us I(s) ≥C(s) I(t) and
since C(s) ⊆ C(f(. . . , s, . . .)) we have I(f(. . . , s, . . .)) = p + I(s) ≥C(f(...,s,...))

p+ I(t) = I(f(. . . , t, . . .)). Therefore, we conclude I(f(. . . , s, . . .)) ≥C(f(...,s,...))

I(f(. . . , t, . . .)).
Finally, if s is a variable then necessarily s wHORPOLO t by case 10.1, which

implies s = t and hence I(f(. . . , s, . . .)) = I(f(. . . , t, . . .)). ut

24

Lemma 23 (Generalization of Lemma 9). wHORPOLO and �HORPOLO are mono-
tonic for candidate terms.

Proof. We have to prove that s :C σ wHORPOLO t :C σ implies u[s] :C τ wHORPOLO

u[t] :C τ and s :C σ �HORPOLO t :C σ implies u[s] :C τ �HORPOLO u[t] :C τ for all
u[x :C σ] :C τ .

We proceed by induction on the size of u. If u is empty it trivially holds. For
the induction step we have to prove the following properties.

– s :C σ wHORPOLO t :C σ implies f(. . . , s, . . .) :C θ wRPOLO f(. . . , t, . . .) :C θ and
s :C σ �HORPOLO t :C σ implies f(. . . , s, . . .) :C θ �RPOLO f(. . . , t, . . .) :C θ for
all function symbol f . If f ∈ FPOLO, we apply Lemma 22 and case 10.2a.
Otherwise, it holds as in RPO applying the case depending on the status of
f .

– If s :C σ wHORPOLO t :C σ then @(s, v) :C θ wHORPOLO @(t, v) :C θ (respectively
@(v, s) :C θ wHORPOLO @(v, t) :C θ), which holds by case 10.3.

– If s :C σ �HORPOLO t :C σ then @(s, v) :C θ �HORPOLO @(t, v) :C θ (respectively
@(v, s) :C θ �HORPOLO @(v, t) :C θ), which holds by case 11.2b.

– If s :C σ wHORPOLO t :C σ then λy.s :C θ wHORPOLO λy.t :C θ, which holds by
case 10.4.

– If s :C σ �HORPOLO t :C σ then λy.s :C θ �HORPOLO λy.t :C θ, which holds by
case 11.4b. ut

Corollary 4. ≥HORPOLO is monotonic and >HORPOLO is weakly monotonic for can-
didate terms.

Now we proceed to prove stability under substitutions of both wHORPOLO and
�HORPOLO, which also implies that �HORPOLO is stable under substitutions.

Lemma 24 (Generalization of Lemma 10). Let γ be a substitution such
that xt /∈ Dom(γ) for any term t. Then I(sγ) = I(s)γI for every candidate term
s :C τ .

Proof. By induction on |s|. If τ is functional then I(s) = 0 and, since sub-
stitutions preserve types, I(sγ) = 0 as well. Hence, in this case the lemma
trivially holds. Otherwise, τ is a data type. If s is a variable or a term with
top(s) ∈ FRPO ∪ {@} then I(s) = xs and hence I(s)γI = I(sγ). Finally, if
s = f(s1, . . . , sn) with f ∈ FPOLO then I(s) = fI(I(s1), . . . , I(sn)) and since,
by induction hypothesis, I(siγ) = I(si)γI for all i ∈ {1, . . . , n}, we have that
I(sγ) = fI(I(s1γ), . . . , I(snγ)) = fI(I(s1)γI , . . . , I(sn)γI) = I(s)γI . ut

Lemma 25 (Generalization of Lemma 11). The relations wHORPOLO and
�HORPOLO are stable under substitutions for candidate terms.

Proof. Given s :C σ and t :C τ , we have to prove that s wHORPOLO t implies
sγ wHORPOLO tγ and s �HORPOLO t implies sγ �HORPOLO tγ, for every substitution
γ s.t. xu /∈ Dom(γ) for any term u, by induction on the pair 〈s, t〉 w.r.t. (→β

∪�α,�)lex. Since substitutions preserve types, we will only consider the term

25

comparisons of the ordering and omit all references to types. Notice that we can
restrict the domain of the substitution in the indicated way, as we can assume
that no variable of the form xu occur in the terms. There are the following cases
according to the definitions:

1. If s wHORPOLO t by case 10.1 then s = t ∈ X and hence sγ wHORPOLO tγ by
reflexivity of wHORPOLO.

2. If s wHORPOLO t by case 10.2a we must show that I(s) ≥C(s) I(t) implies
I(sγ) ≥C(sγ) I(tγ). First we will show that if xu ≥ E is in C(s) then xuγ ≥
EγI is in C(sγ).
– If xu ≥ xv is in C(s) then we have u ∈ Acc(s), u wHORPOLO v and
top(v) ∈ FRPO ∪ {@}. Hence we have that top(uγ), top(vγ) ∈ FRPO ∪
{@}, uγ ∈ Acc(sγ) and, by induction hypothesis, uγ wHORPOLO vγ. There-
fore we have that xuγ ≥ xvγ is in C(sγ). Now, since I(vγ) = xvγ and,
by Lemma 24, I(vγ) = I(v)γI , and I(v) = xv, we conclude xuγ ≥ xvγI
is in C(sγ).

– If xu ≥ P + 1 is in C(s) then we have u ∈ Acc(s) and u �HORPOLO v for
all labeled variables xv in P . Hence, as top(u) ∈ FRPO ∪ {@} we have
that top(uγ) ∈ FRPO ∪ {@} and uγ ∈ Acc(sγ). Moreover, by induction
hypothesis, we have uγ �HORPOLO vγ for all labeled variables xv in P , and,
by Lemma 21, uγ �HORPOLO vγ implies uγ �HORPOLO w for all w ∈ Acc(vγ).
Now, as all labeled variables in PγI are either xvγ for some labeled
variable xv in P , or xw for some w ∈ Acc(vγ) and labeled variable xv in
P , we conclude xuγ ≥ PγI + 1 is in C(sγ).

We have proved that if xu ≥ E is in C(s) then xuγ ≥ EγI is in C(sγ). Now
we will prove that if p + xu →{xu≥E} p + E then pγI + xuγI →{xuγ≥EγI }
pγI +EγI . By Lemma 24, we have that I(uγ) = I(u)γI , and since top(u) ∈
FRPO ∪ {@}, we have I(u) = xu and I(uγ) = xuγ . Thus, we have that
xuγ = xuγI and hence, we conclude pγI + xuγI →{xuγ≥EγI} pγI + EγI .
Finally, we have that I(s) ≥C(s) I(t) implies I(s) −→q =

C(s) p ≥ I(t) for some

polynomial p, and by Corollary 1, p = q+ I(t). Moreover, we have seen that
I(s) −→q =

C(s) q + I(t) implies that I(s)γI −→q =
C(sγ) qγI + I(t)γI and hence,

by lemma 24, we have I(sγ) −→q =
C(sγ) qγI + I(tγ). Therefore, we conclude

I(sγ) ≥C(sγ) I(tγ) and hence sγ wHORPOLO tγ by case 10.2a.
3. If s wHORPOLO t by case 10.2b, by case 10.3 or by case 10.4, we conclude by

induction hypothesis and by each of the cases, respectively.
4. If s �HORPOLO t by case 11.1(a)i, the proof is analogous to that of s wHORPOLO t

by case 10.2a.
5. If s �HORPOLO t by case 11.1(a)ii, then there is some u ∈ Acc(s) such

that u �HORPOLO t. Then u cannot be a variable and hence uγ ∈ Acc(sγ).
Therefore, since by induction hypothesis, uγ �HORPOLO tγ we conclude by
case 11.1(a)ii.

6. If s �HORPOLO t by case 11.1(b)i, by case 11.1(b)iii, by case 11.1(b)iv, or by
case 11.2, we conclude by induction hypothesis and by each of the subcases.

7. If s �HORPOLO t by case 11.1(b)ii, then we have top(s) ∈ FRPO, top(t) ∈
FPOLO and s �HORPOLO u for all u ∈ Acc(t). Therefore, we have that

26

top(sγ) ∈ FRPO, top(tγ) ∈ FPOLO and, by induction hypothesis, sγ �HORPOLO

uγ for all u ∈ Acc(t). Now we will prove that sγ �HORPOLO vγ for all v ∈
Acc(tγ) which will allow us to conclude that sγ �HORPOLO tγ by case 11.1(b)ii.
If v ∈ Acc(tγ) with v = uγ for some u ∈ Acc(t) then since sγ �HORPOLO uγ
for all u ∈ Acc(t) we have sγ �HORPOLO v. Otherwise v ∈ Acc(tγ) with
v ∈ Acc(xγ) for some variable x ∈ Acc(t) and hence we are done since
sγ �HORPOLO xγ, by Lemma 19, implies sγ �HORPOLO v.

8. If s �HORPOLO t by case 11.3, then the property holds by induction hypothesis,
stability of β-reduction, and case 11.3.

9. If s �HORPOLO t by case 11.4a, then s = λx.u and u{x 7→ z} �HORPOLO t for
some fresh variable z. Let γ be a substitution of domain Var(s) ∪ Var(t).
By induction hypothesis u{x 7→ z}γ �HORPOLO tγ. Then, since Dom(γ) only
contains free variables we have x /∈ Dom(γ), and since z is fresh, we have
that z /∈ Dom(γ). Thus, we have u{x 7→ z}γ = uγ{x 7→ z} which implies
uγ{x 7→ z} �HORPOLO tγ and hence, we conclude sγ = λx.uγ �HORPOLO tγ by
case 11.4a.

10. If s �HORPOLO t by case 11.4b, then s = λx.u, t = λy.v and u{x 7→ z} �HORPOLO

v{y 7→ z} for some fresh variable z. By induction hypothesis we have that
u{x 7→ z}γ �HORPOLO v{y 7→ z}γ, and assuming that x, y, z /∈ Dom(γ) (x and
y are not free variables and z is fresh) then we have u{x 7→ z}γ = uγ{x 7→ z}
and v{y 7→ z}γ = vγ{y 7→ z} which implies uγ{x 7→ z} �HORPOLO vγ{y 7→ z}.
Therefore, we conclude that sγ = λx.uγ �HORPOLO λy.vγ = tγ by case 11.4b.

11. If s �HORPOLO t by case 11.4c, the property holds by induction hypothesis,
stability of η-reduction and case 11.4c. ut

Corollary 5. >HORPOLO and ≥HORPOLO are stable under substitutions for candi-
date terms.

5.3 Candidate interpretations

To prove well-foundedness of the ordering we follow Tait and Girard’s com-
putability predicate proof method. We denote by [[σ]] the computability predi-
cate for candidate terms of type σ. Our definition of computability for candidate
terms is standard and it is like the one in [18], but without considering polymor-
phism.

Definition 14. The family of candidate interpretations {[[σ]]}σ∈TS is the family
of subsets of the set of typed terms whose elements are the least sets satisfying
the following properties:

1. If σ is a data type, then s :C σ ∈ [[σ]] iff ∀t :C τ such that s >HORPOLO t,
t ∈ [[τ]].

2. If s :C σ = τ → ρ then s ∈ [[σ]] iff @(s, t) ∈ [[ρ]] for every t ∈ [[τ]].

A typed term s of type σ is said to be computable if s ∈ [[σ]]. A vector s of
terms is computable if and only if so are all its components.

27

As in [18], computability is shown to be well-defined by a lexicographic com-
bination of an induction on the well-founded type ordering >→T (which includes
>T and �→), and a fixpoint computation for equal data types. Since case 1 does
not involve any negation, it is monotonic with respect to set inclusion, which
ensures the existence of a least fix point.

Then, if we apply case 2 we decrease in >→T as it includes �→ and if we
apply case 1 either we decrease in >→T , as it includes >T , or σ =T τ and both
are data types, and then we conclude by the fixpoint computation. Note that for
data types this definition can be seen as a closure w.r.t. case 1, taking as initial
set for each data type the set of minimal, w.r.t. >HORPOLO, terms (which includes
the variables).

Preservation of data types follows easily from arrow preservation:

Lemma 26. Assume that σ =T τ and σ is a data type, then τ is a data type as
well.

Lemma 27. If σ =T τ then [[σ]] = [[τ]].

Proof. We proceed by induction on �→. Consider first σ is a data type. By
Lemma 16, s :C σ and σ =T τ implies s :C τ . On the other hand, σ =T τ gives us
s :C σ �HORPOLO t :C ρ iff s :C τ �HORPOLO t :C ρ. Consequently, since by Lemma 26
we have that τ is also a data type, by applying Definition 14.1 we conclude
s ∈ [[τ]].

If σ =T τ and σ is a functional type of the form α → ρ then, by arrow
preservation, τ is also a functional type of the form α′ → ρ′, where α =T α

′ and
ρ =T ρ

′. Moreover, by Definition 14.2, s ∈ [[σ]] iff @(s, t) ∈ [[ρ]] for every t ∈ [[α]].
By induction hypothesis, [[α]] = [[α′]] and [[ρ]] = [[ρ′]], and hence s ∈ [[τ]]. ut

In order to prove the well-foundedness of >HORPOLO, we first prove five prop-
erties on computability of candidate terms. Recall that a term is neutral if it is
not an abstraction.

Property 2. Computability properties.

1. Every computable term is strongly normalizing w.r.t. >HORPOLO.
2. If s is computable and s ≥∗HORPOLO t then t is computable.
3. A neutral term s is computable if t is computable for every t s.t. s >HORPOLO t.
4. If t is a vector of at least two computable terms s.t. @(t) is a candidate term,

then @(t) is computable.
5. λx : σ.u is computable iff u{x 7→ w} is computable for every computable

term w :C σ.

All proofs are adapted from [18], with some additional difficulties.

Proof.

– Property 4. By induction on the length of t and applying case 2 of the
definition of candidate interpretations.

28

– Properties 1, 2, 3 are proved together.
Given a type σ, we prove by induction on the definition of [[σ]] that
1. Given s :C σ ∈ [[σ]], then s is strongly normalizing w.r.t. >HORPOLO.
2. Given s :C σ ∈ [[σ]] such that s ≥HORPOLO t for some t :C τ , then t ∈ [[τ]]. By

repeated applications of such property we have that given s :C σ ∈ [[σ]]
such that s ≥∗HORPOLO t for t :C τ , then t ∈ [[τ]].

3. A neutral candidate term u :C σ ∈ [[σ]] if w :C θ ∈ [[θ]] for all w such that
u >HORPOLO w. In particular, variables are computable.

We prove each property distinguishing in each case whether σ is a data type
or functional.
1. Given s :C σ ∈ [[σ]], then s is strongly normalizing.

If σ is a data type then, by definition 14.1, s computable implies t com-
putable for every t such that s >HORPOLO t. By induction hypothesis t is
strongly normalizing, and hence s is strongly normalizing.
Otherwise σ = θ → τ . We will prove that t :C ρ is strongly normalizing
for every t such that s >HORPOLO t. Then, let s′ :C σ

′ be a term such that
s :C σ w∗HORPOLO s′ :C σ

′ �HORPOLO t :C ρ. By definition of wHORPOLO, we
have that σ′ = θ′ → τ ′, with θ =T θ′ and τ =T τ ′. By definition of
�HORPOLO, we have σ′ ≥T ρ and hence, by arrow preservation and arrow
decreasingness, there are only two cases to be considered:
• Case τ =T τ ′ ≥T ρ. Then we have @(s, y) w∗HORPOLO @(s′, y) by

case 10.3 and @(s′, y) �HORPOLO t by case 11.2a for some variable y : θ.
Since y :C θ is computable by induction hypothesis 3, @(s, y) :C τ is
computable by assumption and definition of [[τ]]. Then, by induction
hypothesis on @(s, y) :C τ , we have that t is strongly normalizing.
• Case ρ = θ′′ → τ ′′ with θ =T θ′ =T θ′′ and τ =T τ ′ ≥T τ ′′. Then

we have @(s, y) w∗HORPOLO @(s′, y) by case 10.3 and @(s′, y) �HORPOLO

@(t, y) by case 11.2b for some variable y : θ. Since y :C θ is com-
putable by induction hypothesis 3, @(s, y) :C τ is computable by
assumption and definition of [[τ]]. Then, by induction hypothesis on
@(s, y) :C τ , we have that @(t, y) is strongly normalizing, which again
by case 11.2b, implies strong normalization of t.

2. Given s :C σ ∈ [[σ]] such that s ≥HORPOLO t for some t :C τ , then t ∈ [[τ]].
Consider first that σ is a data type. Then if s >HORPOLO t the property
follows from case 1 of the definition. Otherwise, s w∗HORPOLO t. Since
s ∈ [[σ]], we have ∀w :C τ such that s >HORPOLO w, w ∈ [[τ]]. Now as
∀w :C τ such that t >HORPOLO w we have s w∗HORPOLO t >HORPOLO w and
hence s >HORPOLO w, we conclude t ∈ [[τ]] by case 14.1.
Consider now σ = θ → ρ. First, note that, by definition of wHORPOLO,
for every s′ :C σ

′, such that s :C σ wHORPOLO s′ :C σ
′, we have σ′ =T σ

and, thus, σ′ is functional. Now, by arrow decreasingness and by arrow
preservation there are two cases:
(a) ρ ≥T τ . Since s :C σ is computable, by case 14.2, @(s, u) is com-

putable ∀u ∈ [[θ]]. Let y :C θ. By induction hypothesis 3, y ∈ [[θ]],
hence @(s, y) is computable. Then, as @(s, y) :C ρ w∗HORPOLO · �HORPOLO

t :C τ by cases 10.3 and 11.2a and hence @(s, y) :C ρ >HORPOLO t :C τ ,
we conclude t is computable by induction hypothesis 2.

29

(b) τ = θ′ → ρ′ with θ =T θ
′ and ρ ≥T ρ′. Now, by case 14.2, for all u ∈

[[θ]] we have @(s, u) ∈ [[ρ]]. Then, since @(s, u) w∗HORPOLO · �HORPOLO

@(t, u) by cases 10.3 and 11.2b and hence, @(s, u) ≥HORPOLO @(t, u),
by induction hypothesis 2, @(t, u) ∈ [[ρ′]]. Since by Lemma 27 [[θ]] =
[[θ′]], then t ∈ [[τ]] by case 14.2.

3. A neutral candidate term u :C σ ∈ [[σ]] if w :C θ ∈ [[θ]] for all w such that
u >HORPOLO w.
If σ is a data type then, the property follows from the definition of
candidate interpretations.
Assume now that σ = σ1 → . . .→ σn → τ where n > 0 and τ is a data
type. By case 14.2, u ∈ [[σ]] if @(u, u1, . . . , un) ∈ [[τ]] for arbitrary terms
u1 ∈ [[σ1]], . . . , un ∈ [[σn]] which are strongly normalizing by induction
hypothesis 1. Since τ is a data type then, by definition, @(u, u1, . . . , un)
is computable iff so are all its reducts.
We prove that for all w :C ρ such that @(u, u1, . . . , uk) >HORPOLO w,
w ∈ [[ρ]], for all k ∈ {0 . . . n}. It is proved by induction on the multiset
{u1, . . . , uk} ordered by (>HORPOLO)mul. Taking k = n yields the desired
property, implying that u is computable.
If k = 0 then we have to prove w ∈ [[ρ]] for all w :C ρ such that u >HORPOLO

w which holds by assumption. For the general case, let k = (j + 1) ≤ n.
We need to consider all terms w s.t. @(@(u, u1, . . . , uj), uj+1) >HORPOLO w
i.e. @(@(u, u1, . . . , uj), uj+1) w∗HORPOLO · �HORPOLO w. We consider several
cases according to the definition of�HORPOLO. Note that @(u, u1, . . . , uj) is
neutral even if j = 0. Then, for every u′ such that @(u, u1, . . . , uj) w∗HORPOLO

u′, we have that u′ is neutral since otherwise, by definition of wHORPOLO,
@(u, u1, . . . , uj) must be an abstraction. Therefore case 11.3 of �HORPOLO

does not apply and hence we only need to consider case 11.2.
• If @(@(u, u1, . . . , uj), uj+1) w∗HORPOLO · �HORPOLO w using case 11.2a

then we have that either @(u, . . . , uj) w∗HORPOLO · �HORPOLO w or
uj+1 w∗HORPOLO · �HORPOLO w.
∗ If @(u, . . . , uj) w∗HORPOLO · �HORPOLO w then, as w is also a reduct

of @(@(u, . . . , uj), uj+1), for typing reasons, we actually have
@(u, . . . , uj) w∗HORPOLO · �HORPOLO w that is @(u, . . . , uj) >HORPOLO

w. We conclude w is computable by inner induction hypothesis.
∗ If uk w∗HORPOLO · �HORPOLO w and hence uk ≥HORPOLO w, we con-

clude by assumption and by induction hypothesis 2.
• If @(@(u, u1, . . . , uj), uj+1) w∗HORPOLO · �HORPOLO w = @(w) using

case 11.2b then, for some partial left-flattening @(w1, . . . , ws) of w,
we have {@(u, u1, . . . , uj), uj+1}(wHORPOLO)∗mon·(�HORPOLO)mul{w1, . . . , ws}
and hence we have {@(u, u1, . . . , uj), uj+1}(w∗HORPOLO)mon · (�HORPOLO

)mul{w1, . . . , ws}. By definition of the monotonic and multiset ex-
tensions and for type reasons, there are two possibilities:
∗ Consider first the case @(u, u1, . . . , uj) w∗HORPOLO w1 and uj+1

w∗HORPOLO · �HORPOLO wi ∀i ∈ {2, . . . , s}, implying that wi is
computable by assumption and induction hypothesis 2 (since
>HORPOLO = w∗HORPOLO · �HORPOLO). By induction hypothesis all

30

reducts of @(u, u1, . . . , uj) are computable. Therefore, all reducts
of w1 are computable and, as w1 is neutral (it is an application),
we have that w1 is computable by induction hypothesis 3. It
follows that w is computable by Property 2.4.

∗ Otherwise, ∀wi ∈ {w1, . . . , ws} we have either @(u, u1, . . . , uj)
w∗HORPOLO · �HORPOLO wi or uj+1 w∗HORPOLO · �HORPOLO wi. In the
first case we have @(u, u1, . . . , uj) >HORPOLO wi and we conclude
wi is computable by induction hypothesis. For the second case we
have uj+1 ≥HORPOLO wi and as uj+1 is computable by assumption,
we conclude wi is computable by induction hypothesis 2. Then,
by Property 2.4, we conclude w is computable.

As a consequence, all reducts of @(u, u1, . . . , un) are computable and we
are done.

– Property 5: λx : σ.u is computable iff u{x 7→ w} is computable for every
computable term w :C σ.

First we prove the only if part. By definition 14.2, λx : σ.u ∈ [[σ → τ]] implies
@(λx.u, w) ∈ [[τ]] for all w ∈ [[σ]]. Then, by Property 2.2, @(λx.u, w) >HORPOLO

v implies v is computable. Therefore, we have that u{x 7→ w} is computable
since @(λx.u, w) �HORPOLO u{x 7→ w} by case 11.3 and hence, by definition
of >HORPOLO, @(λx.u, w) >HORPOLO u{x 7→ w}.
For the if part we will prove that u{x 7→ w} ∈ [[τ]] for every w ∈ [[σ]]
implies @(λx.u, w) ∈ [[τ]] since, by definition 14.2, this implies λx : σ.u is
computable.

Since variables are computable by Property 2.3, u{x 7→ z} is computable by
assumption for some fresh variable z. Therefore, by Property 2.1 we have that
u{x 7→ z} and w are strongly normalizing and hence we can use induction
on the pair 〈u{x 7→ z}, w〉 ordered by (>HORPOLO)lex to prove @(λx.u, w) is
computable.

Since @(λx.u, w) is neutral, by Property 2.3, it is computable if v is com-
putable for all v such that @(λx.u, w) >HORPOLO v, that is, @(λx.u, w) w∗HORPOLO

· �HORPOLO v. There are three cases:

1. @(λx.u, w) w∗HORPOLO · �HORPOLO v using case 10.3 for wHORPOLO and
case 11.2a for �HORPOLO. There are two cases:

(a) if w w∗HORPOLO · �HORPOLO v we conclude that v is computable by
Property 2.2 as ≥HORPOLO = w∗HORPOLO · �HORPOLO.

(b) if λx.u w∗HORPOLO · �HORPOLO v then, for typing reasons, we have
λx.u w∗HORPOLO · �HORPOLO v. Steps of wHORPOLO hold by case 10.4
and for �HORPOLO there are three cases:

i. If λx.u w∗HORPOLO · �HORPOLO v by case 11.4a then we have that
u{x 7→ z} w∗HORPOLO · �HORPOLO v and hence u{x 7→ z} ≥HORPOLO v.
We conclude again that v is computable by Property 2.2.

ii. If λx.u w∗HORPOLO · �HORPOLO v = λy : β.u′ by case 11.4b then,
since z is fresh, we have u{x 7→ z} w∗HORPOLO · �HORPOLO u

′{y 7→
z}. Now, for every computable term w′ :C β, we have that u{x 7→
w′} is computable by assumption, and u{x 7→ w′} >HORPOLO

31

u′{y 7→ w′}, by stability under substitutions, which, by Prop-
erty 2.2, implies that u′{y 7→ w′} is computable. Now, by in-
duction hypothesis applied to the pair 〈u′{y 7→ z}, w′〉, we have
that @(λy.u′, w′) is computable, and we conclude that v is com-
putable by definition 14.2.

iii. If λx.u w∗HORPOLO · �HORPOLO v by case 11.4c then we have u =
@(u′, x), x 6∈ Var(u′) and u′ w∗HORPOLO · �HORPOLO v, and hence
u′ ≥HORPOLO v. By the main assumption we have that @(u′, x){x 7→
t} = @(u′, t) is computable for all computable term t and hence,
by definition 14.2, we have u′ is computable. Therefore, since
u′ ≥HORPOLO v, we conclude v is computable by Property 2.2.

2. @(λx.u, w) w∗HORPOLO · �HORPOLO @(v) using case 10.3 for wHORPOLO and
case 11.2b for �HORPOLO. Then, {λx.u, w}((wHORPOLO)mon)∗ · (�HORPOLO

)mul{v} and hence {λx.u, w}(w∗HORPOLO)mon · (�HORPOLO)mul{v}. For typ-
ing reasons, there are two cases:
• λx.u w∗HORPOLO v1 = λy.u′ and w w∗HORPOLO · �HORPOLO vj for all
j > 1. By Property 2.2 we have that vj is computable for all vj
s.t. w ≥HORPOLO vj . As λx.u w∗HORPOLO v1 = λy.u′ implies u{x 7→
z} w∗HORPOLO u′{y 7→ z}, then by stability it also holds u{x 7→
v2} w∗HORPOLO u

′{y 7→ v2}. Now, as u{x 7→ v2} is computable by as-
sumption, and we have u{x 7→ v2} ≥HORPOLO u

′{y 7→ v2}, we conclude
that u′{y 7→ v2} is computable by Property 2.2. Hence, by induction
hypothesis we have @(v1, v2) is computable. Now if v = @(v1, v2) we
are done and we conclude by Property 2.4 otherwise.

• λx.u w∗HORPOLO · �HORPOLO vj or w w∗HORPOLO · �HORPOLO vj for all
j ≥ 1. By Property 2.2 we have that vj is computable for all vj s.t.
w ≥HORPOLO vj or u{x 7→ z} ≥HORPOLO vj . If λx.u w∗HORPOLO · �HORPOLO

vj holds by case 11.4c we can prove that vj is computable as done
in the previous case 1(b)iii. Otherwise it holds by case 11.4b and
hence λx.u w∗HORPOLO · �HORPOLO λy.u

′ = vj with u{x 7→ z} w∗HORPOLO

· �HORPOLO u′{y 7→ z}, and hence u{x 7→ z} >HORPOLO u′{y 7→ z}.
Then, by assumption u{x 7→ v′′} is computable for an arbitrary
computable v′′ and, by stability under substitutions, it also holds
u{x 7→ v′′} >HORPOLO u

′{y 7→ v′′}. Now by Property 2.2 we conclude
u′{y 7→ v′′} is computable. Hence, by induction hypothesis λy.u′ =
vj is computable. Therefore @(v) is computable by Property 2.4.

3. @(λx.u, w) w∗HORPOLO · �HORPOLO v using case 10.3 for wHORPOLO and
case 11.3 for �HORPOLO, that is @(λx.u, w) w∗HORPOLO @(λy.u′, w′) and
u′{y 7→ w′} �HORPOLO v. Then, by definition of wHORPOLO we have u{x 7→
z} w∗HORPOLO u′{y 7→ z} and w w∗HORPOLO w′, and hence, by stability
and monotonicity u{x 7→ w} w∗HORPOLO u′{y 7→ w′}. Therefore we have
u{x 7→ w} >HORPOLO v and since u{x 7→ w} is computable by the main
assumption, then v is computable by Property 2.2. ut

Lemma 28 (Generalization of Lemma 12). Let S be a set of terms closed
w.r.t. ≥HORPOLO.

32

1. If p and q are linear polynomials, Var(p) ⊆ XS and p >C(S) q then Var(q) ⊆
XS .

2. If all terms in S are computable then >C(S) is well-founded on linear poly-
nomials over Z+ and XS .

Proof. Let C be C(S). Given a polynomial p = a0 + a1 ·xu1 + . . .+ an ·xun over
labeled variables in XS , we define M(p) as the multiset containing ai occurrences
of ui for all i ∈ {1 . . . n}, and K(p) as the non-negative integer a0.

Then, if we have p+ xu →C p+ E then there are two cases:

1. E = xv with u wHORPOLO v. Then v ∈ S which implies xv ∈ XS , M(p +
xu)(wHORPOLO)monM(p+ E) and K(p+ xu) = K(p+ E).

2. E = q + 1 with u �HORPOLO v ∈ S for all xv occurring in E, which implies
xv ∈ XS and M(p+ xu) (�HORPOLO)mulM(p+ E).

Repeatedly applying both cases above, if p −→q =
C p′ then we have that (i)

Var(p) ⊆ XS implies Var(p′) ⊆ XS , and (ii) either M(p) (�HORPOLO)mulM(p′) or
both M(p) (wHORPOLO)monM(p′) and K(p) =K(p′). Moreover, by Corollary 1, if
p′ > q then p′ = q+ q′+ 1 for some q′, which implies that (iii) Var(q) ⊆ Var(p′)
and (iv) either M(q + q′ + 1) (�HORPOLO)mulM(q) or M(q′) =∅.

Therefore, by (i) and (iii) we have that if Var(p) ⊆ XS then Var(q) ⊆
Var(p′) ⊆ XS , which ends the proof of (1). Now, we conclude with the proof of
(2). Assume we have an infinite sequence p0 >C p1 >C p2 >C . . . with Var(p0) ⊆
XS . By definition, we have p0 −→q =

C p′0 > p1 −→q =
C p′1 > p2 −→q =

C p′2 > . . . Then,
for all i ≥ 0, it holds that

– Var(pi) ∪ Var(p′i) ⊆ XS , by induction on i using (1) to prove Var(pi) ⊆ XS
and then (i), as above, to conclude that Var(p′i) ⊆ XS ;

– M(pi) (�HORPOLO)mulM(p′i) or both M(pi) (wHORPOLO)monM(p′i) and K(pi) =
K(p′i), by (ii);

– M(p′i) (�HORPOLO)mulM(pi+1) or M(p′i) (wHORPOLO)monM(pi+1), by (iv).

As, Var(pi) ∪ Var(p′i) ⊆ XS , we have M(pi) ∪ M(p′i) ⊆ S for all i ≥ 0,
and since all terms in S are strongly normalizing w.r.t. >HORPOLO, we have
that (>+

HORPOLO)mul is well-founded. Thus, from some point k on we have that
M(pi)(wHORPOLO)monM(p′i)(wHORPOLO)monM(pi+1) and K(pi) = K(p′i) for all i ≥
k, since otherwise, as �HORPOLO⊆>HORPOLO and wHORPOLO⊆≥HORPOLO and >+

HORPOLO

is compatible with ≥∗HORPOLO, we would have an infinite sequence with (>+
HORPOLO

)mul. Therefore, we have K(pi) = K(p′i) > K(pi+1) for all i ≥ k, which is a
contradiction. ut

Lemma 29 (Generalization of Lemma 13). Let t :C τ be a candidate term
with top(t) ∈ FPOLO s.t. Acc(t) = {u1, . . . , uk}. If u1, . . . , uk are computable
then t is computable.

Proof. Let S be the closure of {u1, . . . , uk} w.r.t. ≥HORPOLO. Note that, since
computability implies strong normalization by Property 2.1, we have that >C(S)
is well-founded by Lemma 28.2.

33

Now, since τ is a data type, by Property 2.3, we have to prove that w is
computable for all candidate terms w :C ρ such that t >HORPOLO w. We proceed
by induction on I(t) w.r.t. >C , taking C = C(S).

If ρ is a functional type then there is some u ∈ Acc(t) such that u �HORPOLO w,
and hence u >HORPOLO w. Since u is computable by assumption, we have w is
computable by Property 2.2.

Otherwise, ρ is a data type. By Lemma 21, t >RPOLO w implies that for all
v ∈ Acc(w) there is some u ∈ Acc(t) such that u ≥∗HORPOLO v. Therefore, since S
is the closure of Acc(t) w.r.t. ≥HORPOLO, we have that all terms in Acc(w) are in
S, and thus computable by Property 2.2.

There are two cases to be considered. If top(w) ∈ FRPO ∪ {@} or w is a
variable then, since Acc(w) = {w}, we have that w is computable. Otherwise,
top(w) ∈ FPOLO and hence, by definition of the ordering, I(t) >C(t) I(w). Since
C(t) = C(Acc(t)) and Acc(t) ⊆ S, we have that C(t) ⊆ C(S) = C, which
implies I(t) >C I(w). Finally, by Lemma 28.1, Var(I(w)) ⊆ XS , which allows
us to conclude, by induction hypothesis, that w is computable. ut

Lemma 30 (Generalization of Lemma 14). Let f :C σ → τ ∈ FRPO and
t1 :C σ1, . . . , tn :C σn be a set of candidate terms. If t1, . . . , tn are computable
then f(t1, . . . , tn) :C τ is computable.

Proof. The proof is done by induction on 〈f, {t1, . . . , tn}〉 ordered lexicographi-
cally by (�F , (>+

HORPOLO)stat(f))lex where stat is either mul or lex depending on
the symbol f and (>+

HORPOLO)mul is the multiset extension of >+
HORPOLO w.r.t.

≥∗HORPOLO and (>+
HORPOLO)lex is the lexicographic extension of >+

HORPOLO w.r.t.
≥∗HORPOLO. This relation is well-founded since we are assuming that t1, . . . , tn
are computable and hence strongly normalizing w.r.t. >HORPOLO by Property 2.1.

Since f(t1, . . . , tn) is neutral, by Property 2.3, it is computable if every w
such that f(t1, . . . , tn) >HORPOLO w :C ρ is computable, which we prove by an
inner induction on |w|.

By definition of >HORPOLO, t = f(t1, . . . , tn) >HORPOLO w implies that t =
f(t1, . . . , tn) w∗HORPOLO t′ �HORPOLO w for some t′ :C τ ′. Now, by definition of
wHORPOLO we have that τ =T τ

′, top(t) =F top(t
′) ∈ FRPO and we also have that

for all t′j argument of t′ there is some ti argument of t such that ti w∗HORPOLO t
′
j ,

and hence, by definition of ≥HORPOLO, ti ≥HORPOLO t′j . Therefore, as by assump-
tion t1, . . . , tn are computable then, by Property 2.2, all arguments of t′ are
computable.

We distinguish several cases according to the definition of �HORPOLO.

– If t′ �HORPOLO w holds by case 11.1(b)i then we have t′j �HORPOLO w for some t′j
argument of t′. Thus, by Property 2.2, w is computable since�HORPOLO⊆≥HORPOLO

and as we have seen, t′j is computable.
– If t′ �HORPOLO w holds by case 11.1(b)ii then we have top(w) ∈ FPOLO

and t′ �HORPOLO w
′ ∀w′ ∈ Acc(w). By the inner induction hypothesis, w′ is

computable and hence, by Lemma 29, w is computable.
– If t′ �HORPOLO w holds by case 11.1(b)iiiA then top(w) ∈ FRPO, top(t′) �F
top(w) and for every wi argument of w either t′ �HORPOLO wi, in which case wi

34

is computable by the inner induction hypothesis (as t w∗HORPOLO t
′ �HORPOLO wi

implies t >HORPOLO wi), or t′j �HORPOLO wi for some t′j argument of t′, and
since �HORPOLO⊆≥HORPOLO, wi is computable by Property 2.2. Therefore, wi is
computable for all wi argument of w, and since top(t) =F top(t

′) �F top(w),
we conclude that w is computable by the outer induction hypothesis.

– If t′ �HORPOLO w holds by case 11.1(b)iiiB then we have top(t′) =F top(w) ∈
FRPO and {t′1, . . . , t′n}(�HORPOLO)mul{w1, . . . , wm}. Thus, we have top(t) =F
top(w) and {t1, . . . , tn}(wHORPOLO)∗mon{t′1, . . . , t′n}(�HORPOLO)mul{w1, . . . , wm},
and hence, {t1, . . . , tn}(w∗HORPOLO)mon{t′1, . . . , t′n}(�HORPOLO)mul{w1, . . . , wm}.
Now, we prove that {t1, . . . , tn}(>HORPOLO)mul{w1, . . . , wm}, which implies
that all terms w1, . . . , wm are computable and allows us to conclude that w
is computable by the outer induction hypothesis using the second component
of (�F , (>HORPOLO)+stat)lex.
By definition, {t1, . . . , tn}(w∗HORPOLO)mon{t′1, . . . , t′n} implies that there is some
permutation π such that tπ(i) w∗HORPOLO t

′
i for all i, and {t′1, . . . , t′n}(�HORPOLO

)mul{w1, . . . , wm} implies {t′1, . . . , t′n} = M ′ ∪S′ and {w1, . . . , wm} = N ∪T
and M ′(wHORPOLO)monN and for all wj ∈ T there is a t′i ∈ S′ such that
t′i �HORPOLO wj . Take M = {tπ(i) | t′i ∈ M ′} and S = {tπ(i) | t′i ∈ S′}. Then
M(w∗HORPOLO)monM

′(wHORPOLO)monN , which implies M(w∗HORPOLO)monN , and
for all wj ∈ T we have that tπ(i) ∈ S fulfils tπ(i) w∗HORPOLO t′i �HORPOLO

wj . Finally, by definition of ≥HORPOLO and >HORPOLO, we have M(≥HORPOLO

)monN and ∀wj ∈ T ∃tπ(i) ∈ S such that tπ(i) >HORPOLO wj , and hence
{t1, . . . , tn}(>HORPOLO)mul{w1, . . . , wm}.

– If t′ �HORPOLO w holds by case 11.1(b)iiiC then we have top(w) ∈ FRPO,
top(t′) =F top(w), 〈t′1, . . . , t′n〉(�HORPOLO)lex〈w1, . . . , wm〉 and for all wj argu-
ment of w, either t′ �HORPOLO wj or t′i �HORPOLO wj for some t′i argument of
t′. As in case 11.1(b)iiiA, we conclude wj is computable for all wj argument
of w. Moreover, we have 〈t1, . . . , tn〉(wHORPOLO)∗mon〈t′1, . . . , t′n〉(�HORPOLO)lex
〈w1, . . . , wm〉 and hence, by definition of the lexicographic extension we
have that 〈t′1, . . . , t′n〉(�HORPOLO)lex〈w1, . . . , wm〉 implies 〈t′1, . . . , t′k〉(wHORPOLO

)mon〈w1, . . . , wk〉 for some k and either k = m < n or t′k+1 �HORPOLO

wk+1. Thus, by definition of the monotonic extension on tuples, for all
i ∈ {1, . . . , k}, we have ti w∗HORPOLO t

′
i wHORPOLO wi, and either k = m < n or

tk+1 w∗HORPOLO t
′
k+1 �HORPOLO wk+1. Hence, by definition of >HORPOLO, we have

ti ≥HORPOLO wi for all i ∈ {1, . . . , k}, and either k = m < n or tk+1 >HORPOLO

wk+1. Therefore we conclude 〈t1, . . . , tn〉(>HORPOLO)lex〈w1, . . . , wm〉. Hence,
as top(t) = top(w), we conclude that w is computable by the outer induction
hypothesis using the second component of (�F , (>HORPOLO)+stat)lex.

– Consider now t′ �HORPOLO w by case 11.1(b)iv for some @(w1, . . . , wm) partial
left-flattening of w. Hence, we have for all i ∈ {1, . . . ,m}, either t′ �HORPOLO

wi or t′j �HORPOLO wi for some j ∈ {1, . . . , n}. By the inner induction in the
first case and by Property 2.2 in the second case, we conclude wi is com-
putable for all i ∈ {1, . . . ,m}, and hence w is computable by Property 2.4.

ut

Lemma 31 (Generalization of Lemma 15). >HORPOLO is well-founded.

35

Proof. We will prove that tγ is computable for every typed term t and com-
putable substitution γ. Then, taking the empty substitution we have that all
terms are computable and hence, by Property 2.1, strongly normalizing w.r.t.
>HORPOLO.

The proof is by induction on |t|.

– If t is a variable x then either x ∈ Dom(γ) and xγ is computable by assump-
tion, or xγ = x, which is computable by Property 2.3.

– If t = λx.u then, by Property 2.5, tγ is computable if uγ{x 7→ w} is com-
putable for every well-typed computable term w. Let δ = γ ∪ {x 7→ w}.
Then we have uγ{x 7→ w} = u(γ ∪ {x 7→ w}) = uδ since x may not occur
in γ. Since δ is computable, and |t| > |u|, by induction hypothesis, uδ is
computable and hence tγ is computable.

– t = f(t1, . . . , tn) with f ∈ FRPO. By induction hypothesis tiγ is computable
for all i, and hence, tγ is computable by Lemma 30.

– t = @(t1, t2). By induction hypothesis t1γ and t2γ are computable, and
hence, tγ is computable by Property 2.4.

– t = f(t1, . . . , tn), f ∈ FPOLO and Acc(t) = {u1, . . . , uk}. By induction
hypothesis uiγ is computable for all i ∈ {1, . . . , k}. Now, for all w ∈ Acc(tγ)
we have that w ∈ Acc(uiγ) and, by Lemma 19, we have that uiγ �HORPOLO w.
Therefore, w is computable by Property 2.2, and hence tγ is computable by
Lemma 29. ut

As in the first-order case, we conclude with our main theorem stating that
we have a reduction pair.

Theorem 3. (≥∗HORPOLO, >
+
HORPOLO) is a higher-order reduction pair.

Proof. We show that all required properties hold.

– By Corollary 4 we have that≥HORPOLO is monotonic and hence, as the reflexive
and transitive closure of a monotonic relation is also monotonic, we have that
≥∗HORPOLO is monotonic.

– By Corollary 5 we have that both ≥HORPOLO and >HORPOLO are stable under
substitutions and hence, as the reflexive and transitive closure of a stable
under substitutions relation is also stable under substitutions, we have that
both ≥∗HORPOLO and >+

HORPOLO are stable under substitutions.
– By Lemma 31 we have that >HORPOLO is well-founded, and hence, >+

HORPOLO

also is.
– By Lemma 17, we have that >+

HORPOLO is compatible with ≥∗HORPOLO.
– Finally, we have �HORPOLO ⊆ >HORPOLO ⊆ ≥HORPOLO, and→β ∪ →η ⊂ �HORPOLO

by cases 3 and 4c of Definition 11. Therefore both >+
HORPOLO and ≥∗HORPOLO

are functional. ut

6 The computability closure

Like for the HORPO in [18], in order to have a useful ordering the HORPOLO
has to be extended with the so called computability closure.

36

In order to ease the reading we will only consider a simplified definition of
the computability closure that includes the cases that are used most often.

Definition 15. Given a term s = f(s) with f ∈ FRPO, we define its com-
putability closure CC(s) as CC(s,∅), where CC(s,V) for a set of variables V with
V ∩ Var(s) = ∅, is the smallest set of typable terms containing all variables in
V, all terms in s and closed under the following operations:

1. precedence: let g ∈ FRPO such that f �F g and t ⊆ CC(s,V), then g(t) ∈
CC(s,V);

2. status: let g ∈ FRPO such that f =F g, if s(�HORPOLO)stat(f)t and t ⊆ CC(s,V)
then g(t) ∈ CC(s,V);

3. polo: let t = g(t) with g ∈ FPOLO and Acc(t) ⊆ CC(s,V), then t ∈ CC(s,V);
4. application: let @(t) be a partial left-flattening of t and t ⊆ CC(s,V), then

t ∈ CC(s,V);
5. abstraction: let x /∈ Var(s)∪V and t ∈ CC(s,V ∪ {x}), then λx.t ∈ CC(s,V).
6. reduction: let u ∈ CC(s,V) and u �HORPOLO t, then t ∈ CC(s,V).

Note that in case 2, if the status is mul then the condition t ⊆ CC(s,V)
already holds applying the reduction case and the fact that s (�HORPOLO)mul t.

Now we give a modified version of �HORPOLO which includes the use of the
computability closure in some of the cases with top(s) ∈ FRPO.

Definition 16. s : σ �HORPOLO t : τ iff σ ≥T τ and

1. s = f(s1, . . . , sn) and
(a) f ∈ FPOLO and

i. τ is a data type and I(s) >C(s) I(t), or
ii. τ is functional and u �HORPOLO t for some u ∈ Acc(s), or

(b) f ∈ FRPO and
i. si �HORPOLO t for some i ∈ {1, . . . , n}, or t ∈ CC(s), or

ii. t = g(t1, . . . , tm), g ∈ FPOLO and s �HORPOLO u or u ∈ CC(s) for all
u ∈ Acc(t), or

iii. t = g(t1, . . . , tm), g ∈ FRPO,
A. f �F g and for all i ∈ {1, . . . ,m} we have s �HORPOLO ti or

ti ∈ CC(s), or
B. f =F g, stat(f) = mul and
{s1, . . . , sn}(�HORPOLO)mul{t1, . . . , tm}, or

C. f =F g, stat(f) = lex,
〈s1, . . . , sn〉(�HORPOLO)lex〈t1, . . . , tm〉 and
for all i ∈ {1, . . . ,m} we have s �HORPOLO ti or ti ∈ CC(s), or

iv. t = @(t1 . . . , tm) for some partial left-flattening of t and for all i ∈
{1, . . . ,m} we have s �HORPOLO ti or ti ∈ CC(s), or

2. s = @(s1, s2) and either
(a) s1 �HORPOLO t or s2 �HORPOLO t, or
(b) t = @(t1, . . . , tm) for some partial left-flattening of t and
{s1, s2}(�HORPOLO)mul{t1, . . . , tm}, or

37

3. s = @(λx.w, v) and w{x 7→ v} �HORPOLO t, or
4. s = λx : α.u and

(a) u{x 7→ z} �HORPOLO t for some fresh variable z : α, or
(b) t = λy : β.v, α =T β and u{x 7→ z} �HORPOLO v{y 7→ z} for some fresh

variable z : α, or
(c) u = @(w, x), x 6∈ Var(w) and w �HORPOLO t,

where s : σ �HORPOLO t : τ iff s : σ �HORPOLO t : τ or s : σ wHORPOLO t : τ .

First of all note that now the definition of �HORPOLO is also mutually recursive
with the definition of CC, and due to the Case 1(b)i of �HORPOLO and the Case 6 of
CC we cannot use a measure on (s, t) to prove well-definedness. Therefore, in this
case, we prove that the ordering is well-defined by a fixpoint computation. Note
that, since no case involves negation, the definitions are monotonic with respect
to set inclusion, and hence the existence of the least fixpoint is guaranteed.

A more compact and elegant way to combine the ordering with the com-
putability closure is given in [2]. There, a single ordering, called the computability
path ordering (CPO) is defined. Combining CPO with polynomial interpretations
can be done in the same way as in this paper for HORPO.

The proofs are extended following the same approach as for HORPO in [18].
In what follows, only the proofs that differ from the previous section are provided.

We first need to prove again Lemma 19 stated for the ordering with the
computability closures, whose proof has to consider two additional cases.

Lemma 32 (Revision of Lemma 19). Let s :C σ and w :C τ be candidate
terms. Then

(i) s �HORPOLO w implies s �HORPOLO u for all u ∈ Acc(w).
(ii) s �HORPOLO w implies s �HORPOLO u for all u ∈ Acc(w).

Proof. The proof proceeds as before, but due to the use of the Computability
Closure in the definition of �HORPOLO, two new cases must be considered when
top(w) ∈ FPOLO. Note that, by definition, if u has type τ ′ then we have that
σ ≥T τ ≥T τ ′.

– s �HORPOLO w because w ∈ CC(s) by case 16.1(b)i. We have already proved
(without any use of the induction hypothesis) that w �HORPOLO u for all
u ∈ Acc(w). Therefore, by the case of reduction we also have that u ∈ CC(s),
and since σ ≥ τ ′ we conclude that s �HORPOLO u by case 16.1(b)i.

– s �HORPOLO w by case 16.1(b)ii, that is, s �HORPOLO u or u ∈ CC(s) for all
u ∈ Acc(t). If u ∈ CC(s) then since σ ≥ τ ′ we have that s �HORPOLO u by
case 16.1(b)i and hence, we can conclude in both cases.

ut

Due to the mutually recursive definition of HORPOLO and the computability
closure, the stability under substitutions of wHORPOLO and �HORPOLO has to be
proved along with the stability under substitutions of the membership in CC.

38

Lemma 33 (Extension of Lemma 25). The relations wHORPOLO and �HORPOLO

are stable under substitutions for candidate terms, and if u ∈ CC(t) then uγ ∈
CC(tγ) for all type-preserving substitutions γ.

Proof. We prove all three properties by induction on the four mutually recursive
definitions (the context, wHORPOLO, �HORPOLO and CC). The proofs of stability
under substitutions of wHORPOLO and �HORPOLO are as before but now use the new
induction argument and the property on CC when needed.

Now, we prove that if u ∈ CC(t,V) with V ⊆ X \(Var(t)∪Var(tγ)∪Dom(γ)),
then uγ ∈ CC(tγ,V). Note that the property on V depends on t and γ, but not
on u. It will therefore be trivially satisfied in all cases but polo and abstraction.
And indeed, these are the only cases in the proof which are not routine, hence
we do them in detail.

– Case 3: u = g(u) with g ∈ FPOLO where Acc(u) ⊆ CC(t,V). By induction
hypothesis Acc(u)γ ⊆ CC(tγ,V). We will prove that Acc(uγ) ⊆ CC(tγ,V)
and hence uγ ∈ CC(tγ,V) by Case 3. Let v ∈ Acc(uγ). If v ∈ Acc(u)γ
then we are done. Otherwise v ∈ Acc(xγ) for some variable x ∈ Acc(u)
and top(xγ) ∈ FPOLO. Since xγ ∈ Acc(u)γ and Acc(u)γ ⊆ CC(tγ,V) then
xγ ∈ CC(tγ,V). Now, since by Lemma 32 xγ �HORPOLO v, we conclude that
v ∈ CC(tγ,V) by Case 6.

– Case 5: let u = λx.s with x ∈ X \ (V ∪ Var(t)) and s ∈ CC(t,V ∪ {x}).
At the price of renaming the variable x in s if necessary, we can assume in
addition that x 6∈ Var(tγ)∪Dom(γ), and therefore V ∪ {x} ⊆ X \ (Var(t)∪
Var(tγ) ∪ Dom(γ)). By induction hypothesis, sγ ∈ CC(tγ,V ∪ {x}). Since
x 6∈ Var(tγ) ∪ V, by Case 5 of the definition λx.sγ ∈ CC(tγ,V) and, since
x 6∈ Dom(γ), we have uγ = λx.sγ.

– Case 6: v �HORPOLO u for some v ∈ CC(t,V). Then by induction hypothesis
we have vγ �HORPOLO uγ and vγ ∈ CC(tγ,V), which implies uγ ∈ CC(tγ,V),
by Case 6. ut

The precise formulation of this statement arises from its forthcoming use in the
proof of Lemma 35.

Lemma 34. Assume t : τ is computable, as well as every term g(s) with g ∈
FRPO, s computable and smaller than t = f(t) in the ordering (�F , (>+

HORPOLO

)stat(f))lex operating on pairs 〈f, t〉. Then every term in CC(t) is computable.

Proof. We prove that uγ : σ is computable for every computable substitution γ
of domain V and every u ∈ CC(t,V) such that V ∩ Var(t) = ∅. We obtain the
result by taking V = ∅. We proceed by induction on the definition of CC(t,V).

For the basic case: if u ∈ V, then uγ is computable by the assumption on γ;
and if u ∈ t, we conclude by the assumption that t is computable, since uγ = u
by the assumption that V ∩ Var(t) = ∅. For the induction step, we discuss the
successive operations to form the closure:

– Case 1: u = g(u) where u ⊆ CC(t,V). By induction hypothesis, uγ is com-
putable. Since f �F g, uγ is computable by our assumption that terms
smaller than f(t) are computable.

39

– Case 2: u = g(u) where f =F g, t(�HORPOLO)stat(f)u, u ⊆ CC(t,V) and
Var(u) ⊆ Var(t). By induction hypothesis, uγ is computable. By assump-
tion, and by stability of the ordering under substitutions, tγ(�HORPOLO)stat(f)uγ
and hence tγ(>HORPOLO)stat(f)uγ. Note that tγ = t by our assumption that
V ∩ Var(t) = ∅. Therefore uγ = g(uγ) is computable by our assumption
that terms smaller than f(t) are computable.

– Case 3: u = g(u) with g ∈ FPOLO where Acc(u) ⊆ CC(t,V). By induction
hypothesis, for all u′ ∈ Acc(u) we have u′γ is computable. Then for all
v ∈ Acc(uγ), if v ∈ Acc(u)γ then v is computable; otherwise v ∈ Acc(xγ) for
some variable x ∈ Acc(u) and top(xγ) ∈ FPOLO. By Lemma 32, v ∈ Acc(xγ)
implies that xγ �HORPOLO v and hence xγ ≥HORPOLO v which implies that v is
computable by Property 2.2. Therefore, we have that Acc(uγ) is computable
and hence uγ is computable by Lemma 29.

– Case 4: by induction hypothesis and Property 2.4.

– Case 5: let u = λx.s with x 6∈ V ∪ Var(t) ∪ Dom(γ) and s ∈ CC(t,V ∪ {x}).
Then we have (V ∪ {x}) ∩ Var(t) = ∅ and, given an arbitrary computable
term w, we have that γ′ = γ ∪ {x 7→ w} is a computable substitution of
domain V ∪ {x}. Therefore, by induction hypothesis, sγ′ is computable and,
by Property 2.5, (λx.s)γ is computable as well.

– Case 6: by induction hypothesis, stability and Property 2.2. ut

Lemma 35. Let f :C σ → τ ∈ FRPO and t1 :C σ1, . . . , tn :C σn be a set of can-
didate terms. If t1, . . . , tn are computable then f(t1, . . . , tn) :C τ is computable.

Proof. The proof is done by induction on 〈f, {t1, . . . , tn}〉 ordered lexicographi-
cally by (�F , (>+

HORPOLO)stat(f))lex and is exactly like the one for Lemma 30, but
applying Lemma 34, when the computability closure of f(t1, . . . , tn) is used. ut

7 Examples

In the following examples, the type ordering ≥T is defined by equating all sort
symbols and considering that σ → τ ≥ ρ if τ ≥ ρ. This ordering can be easily
extended to one fulfilling all conditions of Definition 8.

The constraints we show in all the examples have been automatically gener-
ated by our tool THOR (see Section 8 for more details).

Example 4. Let nat be a data type, F = {s : [nat] → nat, 0 : [] → nat, dec :
[nat × nat] → nat, grec : [nat × nat × nat × (nat → nat → nat)] → nat,+ :
[nat× nat]→ nat, log2 : [nat× nat]→ nat, sumlog : [nat]→ nat} and X = {x :
nat, y : nat, u : nat, F : nat→ nat→ nat}.

40

Consider the following set of rules:

dec(0, x) → 0
dec(x, 0) → x
dec(s(x), s(y)) → dec(x, y)
grec(0, y, u, F) → u
grec(s(x), s(y), u, F)→ grec(dec(x, y), s(y),@(@(F, u), x), F)
0 + x → x
s(x) + y → s(x+ y)

log2(s(0), 0) → 0
log2(0, s(y)) → s(log2(s(y), 0))
log2(s(0), s(y)) → s(log2(s(y), 0))
log2(s(s(x)), y) → log2(x, s(y))
sumlog(x) → grec(x, s(s(0)), 0, λz1 : nat.λz2 : nat.log2(s(z2), 0) + z1)

The first rules define a tail recursive generalized form of the Gödel recursor where
we can decrease in any given fixed amount at every recursive call. Using it we
define a function that given a natural number n computes the sum of the series
of the logarithm to base two of n, n− 2, etc. Note that log2(n, 0) computes the
the logarithm to base two of n.

In order to prove this example we need to solve, among others, the constraint
below

GREC(s(x), s(y), u, F) > GREC(dec(x, y), s(y),@(@(F, u), x), F)

dec(0, x) ≥ 0 dec(x, 0) ≥ x dec(s(x), s(y)) ≥ dec(x, y)
0 + x ≥ x s(x) + y ≥ s(x+ y) grec(0, y, u, F) ≥ u
grec(s(x), s(y), u, F) ≥ grec(dec(x, y), s(y),@(@(F, u), x), F)

log2(s(0), 0) ≥ 0 log2(0, s(y)) ≥ s(log2(s(y), 0))
log2(s(0), s(y)) ≥ s(log2(s(y), 0)) log2(s(s(x)), y) ≥ log2(x, s(y))

sumlog(x) ≥ grec(x, s(s(0)), 0, λz1 : nat.λz2 : nat.log2(s(z2), 0) + z1)

Note that HORPO fails to prove this constraint due to the combination of
the first literal (the one on terms headed by GREC) and the last three literals
on terms headed by log2.

The constraint can be proved by HORPOLO taking FRPO = {GREC, grec,
+, sumlog} with sumlog �F grec, sumlog �F + and all having status lex, and
FPOLO = {dec, log2, s, 0} with decI(x, y) = x, log2I(x, y) = x+2·y, sI(x) = x+1
and 0I = 0.

In the remainder of the example we show how three of these literals are
included in the reduction pair (�+

HORPOLO,�∗HORPOLO). Note that, in fact, we just
use �HORPOLO and �HORPOLO.

– GREC(s(x), s(d), u, F) �HORPOLO GREC(dec(x, d), s(d),@(@(F, u), x), F).
We start applying case 16.1(b)iiiC. To this end we first need 〈s(x), s(d), u, F 〉
(�HORPOLO)lex〈dec(x, d), s(d),@(@(F, u), x), F 〉, which holds since s(x) �HORPOLO

41

dec(x, d) by case 16.1(a)i as I(s(x)) = x + 1 >C(s(x)) x = I(dec(x, d)). We
conclude showing that

• s(d), F ∈ CC(GREC(s(x), s(d), u, F)), by the base case.

• GREC(s(x), s(d), u, F) �HORPOLO dec(x, d), which holds by case 16.1(b)ii,
showing x, d ∈ CC(GREC(s(x), s(d), u, F)) by the base case and case 6,
since both s(x) �HORPOLO x and s(d) �HORPOLO d hold by case 16.1(b)i.

• GREC(s(x), s(d), u, F) �HORPOLO @(F, u, x), which holds by case 16.1(b)iv,
since as seen F, x ∈ CC(GREC(s(x), s(d), u, F)) and u ∈ CC(GREC(s(x),
s(d), u, F)) by the base case.

– log2(s(s(x)), y) �HORPOLO log2(x, s(y)).

We show that t = log2(s(s(x)), y) wHORPOLO log2(x, s(y)), by case 10.2a, since
I(log2(s(s(x)), y)) = x+ 2y + 2 ≥C(t) x+ 2y + 2 = I(log2(x, s(y))).

– sumlog(x) �HORPOLO grec(x, s(s(0)), 0, λz1 : nat.λz2 : nat.log2(s(z2), 0) +
z1). We show that sumlog(x) �HORPOLO grec(x, s(s(0)), 0, λz1 : nat.λz2 :
nat.log2(s(z2), 0) + z1) by case 16.1(b)iiiA, showing that

• x ∈ CC(sumlog(x)) by the base case.

• sumlog(x) �HORPOLO s(s(0)) and sumlog(x) �HORPOLO 0 by case 16.1(b)ii.
Note that Acc(s(s(0))) = Acc(0) = ∅.

• λz1 : nat.λz2 : nat.log2(s(z2), 0) + z1 ∈ CC(sumlog(x)) by case 5 twice
and showing that log2(s(z2), 0) + z1 ∈ CC(sumlog(x), {z1, z2}), applying
case 1 first and then proving log2(s(z2), 0) ∈ CC(sumlog(x), {z1, z2}) by
case 3 and z2, z1 ∈ CC(sumlog(x), {z1, z2}) by the base case. ut

Example 5. The example is based on the previous one, replacing the last five
rules by the following ones.

quad(0) → 0
quad(s(x)) → s(s(s(s(quad(x)))))

sqr(x) → sqrp(p(x, 0))

sqrp(p(0, 0)) → 0
sqrp(p(s(s(x)), y))→ sqrp(p(x, s(y)))
sqrp(p(0, s(y))) → quad(sqrp(p(s(y), 0)))

sqrp(p(s(0), y)) → quad(sqrp(p(y, 0))) + s(quad(y))
sumsqr(x) → grec(x, s(s(0)), 0, λz1 : nat.λz2 : nat.sqr(s(z2)) + z1)

and F extended with {quad : [nat] → nat, sqr : [nat] → nat, p : [nat× nat] →
pair, sqrp : [pair]→ nat, sumsqr : [nat]→ nat}.

This example computes the square of x using the recurrence x2 = 4(x div 2)2

when x is even and x2 = 4(x div 2)2+4(x div 2)+1 when x is odd. Note that in the
square definitions the even/odd checking is done along with the computation.
To be able to handle this example we need to introduce the symbol p, which
allows us to have sqrp ∈ FRPO and p ∈ FPOLO. Checking termination of these
rules requires solving the constraint obtained from replacing the last five literals

42

of the previous example by:

quad(0) ≥ 0 quad(s(x)) ≥ s(s(s(s(quad(x)))))

sqr(x) ≥ sqrp(p(x, 0)) sqrp(p(0, 0)) ≥ 0
sqrp(p(s(s(x)), y)) ≥ sqrp(p(x, s(y)))
sqrp(p(0, s(y))) ≥ quad(sqrp(p(s(y), 0)))
sqrp(p(s(0), y)) ≥ quad(sqrp(p(y, 0))) + s(quad(y))
sumsqr(x) ≥ grec(x, s(s(0)), 0, λz1 : nat.λz2 : nat.sqr(s(z2)) + z1)

Using HORPOLO, the constraint holds using the following settings:
FRPO = {GREC, grec,+, sumsqr, sqr, sqrp} with sumsqr �F grec, sumsqr �F
+, sumsqr �F sqr �F sqrp and all status lex and FPOLO = {0, s,+, p, quad}
with 0I = 0, sI(x) = x + 1, +I(x, y) = x + y, pI(x, y) = x + 2 · y and
quadI(x) = 4 · x. ut

The following two examples introduce several standard operations on lists.
The first one computes some permutation of the tail of a given list by shuffling
the elements a logarithmic number of times with respect to the first element of
the list.

Example 6. Let nat and list be data types, F = {s : [nat] → nat, nil : [] →
list, app : [list × list] → list, cons : [nat × list] → list, shuffle : [list] →
list, rshuffle : [list] → list, reverse : [list] → list, hrepeat : [nat × (list →
list) × list] → list, 0 : [] → nat, ceilhalf : [nat] → nat, tail : [list] →
list, head : [list] → nat} and X = {n : nat, x : list, y : list, l : list, F : list →
list}.

app(nil, l) → l
app(cons(n, l), y) → cons(n, app(l, y))
reverse(nil) → nil
reverse(cons(n, l))→ app(reverse(l), cons(n, nil))
shuffle(nil) → nil
shuffle(cons(n, l)) → cons(n, shuffle(reverse(l)))

ceilhalf (0) → 0
ceilhalf (s(0)) → s(0)
ceilhalf (s(s(n))) → s(ceilhalf (n))

hrepeat(0, F, l) → l
hrepeat(s(n), F, l) → hrepeat(ceilhalf (n), F,@(F, l))
tail(cons(n, l)) → l
head(cons(n, l)) → n

rshuffle(l) → hrepeat(head(l), λz.shuffle(z), tail(l))

In order to prove this example we need to solve, among others, the constraint
below
HREPEAT (s(n), F, l) > HREPEAT (ceilhalf (n), F,@(F, l))

app(nil, l) ≥ l app(cons(n, l), y) ≥ cons(n, app(l, y))
reverse(nil) ≥ nil reverse(cons(n, l)) ≥ app(reverse(l), cons(n, nil))
shuffle(nil) ≥ nil shuffle(cons(n, l)) ≥ cons(n, shuffle(reverse(l)))

43

ceilhalf (0) ≥ 0 ceilhalf (s(0)) ≥ s(0) ceilhalf (s(s(n))) ≥ s(ceilhalf (n))

hrepeat(0, F, l) ≥ l hrepeat(s(n), F, l) ≥ hrepeat(ceilhalf (n), F,@(F, l))
tail(cons(n, l)) ≥ l head(cons(n, l)) ≥ n
rshuffle(l) ≥ hrepeat(head(l), λz.shuffle(z), tail(l))

The system can be proved using HORPOLO where FRPO = {rshuffle,HREPEAT ,
hrepeat, head, tail} with rshuffle �F hrepeat, rshuffle �F head and rshuffle �F
tail and all having status lex, and FPOLO = {app, cons, nil, reverse, shuffle, s, ceilhalf }
with appI(x, y) = x + y, consI(x, y) = x + y + 1, nilI = 0, reverseI(x) = x,
shuffleI(x) = x, sI(x) = x+ 1 and ceilhalf I(x) = x. ut

The last example is somehow different, as the only strict literal of the gener-
ated constraint does not contain any application symbol.

Example 7. Let nat, natlist, plist and pair be data types, F = {0 : [] →
nat, s : [nat] → nat, nil : [] → natlist, pnil : [] → plist, app : [natlist ×
natlist] → natlist, cons : [nat × natlist] → natlist, p : [natlist × natlist] →
pair, pcons : [pair × plist] → plist, fst : [pair] → natlist, shuffle : [natlist] →
natlist, reverse : [natlist] → natlist, pshuffle : [natlist] → pair, prefixshuffle :
[pair × natlist] → plist, pps : [natlist] → plist apply2 : [(pair → nat →
pair) × pair × nat] → pair} and X = {n : nat, x : natlist, y : natlist, l :
natlist, z : pair, F : pair → nat → pair }. Consider the higher-order rewrite
system consisting of the rules in Example 6 for app, reverse and shuffle plus
these ones

fst(p(x, y)) → x

pshuffle(l) → p(l, shuffle(l))

prefixshuffle(z, nil) → pcons(z, pnil)
prefixshuffle(z, cons(n, l))→ pcons(z, prefixshuffle(apply2(λx.λy.

pshuffle(app(fst(x), cons(y, nil))), z, n), reverse(l)))

apply2(F, z, 0) → z
apply2(F, z, s(n)) → @(@(F, z), s(n))

pps(l) → prefixshuffle(p(nil, nil), l)

The constraint generated by the termination prover contains the following liter-
als:
Prefixshuffle(z, cons(n, l)) > Prefixshuffle(@(λx.λy.

pshuffle(app(fst(x), cons(y, nil))), z, n), reverse(l))

fst(p(x, y)) ≥ x
pshuffle(l) ≥ p(l, shuffle(l))
prefixshuffle(z, nil) ≥ pcons(z, pnil)
prefixshuffle(z, cons(n, l)) ≥ pcons(z, prefixshuffle(apply2(λx.λy.

pshuffle(app(fst(x), cons(y, nil))), z, n), reverse(l)))

apply2(F, z, 0) ≥ z
apply2(F, z, s(n)) ≥ @(@(F, z), s(n))

pps(l) ≥ prefixshuffle(p(nil, nil), l)

44

and the ones for app, reverse and shuffle given in the Example 6.
The system can be proved using HORPOLO where FPOLO = {shuffle, cons,

pcons, app, reverse, nil, pnil, fst} with shuffleI(x, y) = x + y, consI(x, y) = x +
y+ 1, pconsI(x, y) = y, appI(x, y) = x+ y, reverseI(x) = x, nilI = 0, pnilI = 0
and fstI(x) = x, and where FRPO = {pshuffle, p, prefixshuffle,Prefixshuffle, pps,
apply2}, with pps �F prefixshuffle �F pshuffle �F p, Prefixshuffle �F pshuffle
�F apply2 and all with status lex (right-to-left). ut

8 Implementation and experiments

HORPOLO has been implemented as base ordering in THOR-1.0 5, a higher-
order termination prover based on the monotonic higher-order semantic path
ordering [7].

The implementation of HORPOLO is done by translating the ordering con-
straints s > t and s ≥ t into problems in SAT modulo non-linear integer arith-
metic (NIA) which are handled by the Barcelogic [3,5] SMT-solver.

In order to perform an evaluation of the experiments we have used three new
different versions of our tool. The first one, called “DISJOINT” in Figure 3, can
use both HORPO and polynomial interpretations (POLO), but in a disjoint way.
Note that this version already properly extends the old version of THOR that
only uses HORPO. This way we have been able to check that the examples shown
in Section 7 (4, 5, 6 and 7) can only be proved using HORPOLO. The other two
are versions using HORPOLO. The first one, called “HORPOLO”, implements
the ordering using the context C(s) when comparing polynomial interpretations
while the second one, called “HORPOLO-NC”, implements the ordering without
the context. The first one is, in principle, more powerful. However, all examples
can also be proved with the second one, which is more efficient, as can be seen
in Figure 3. Note that, although the context is necessary to ensure monotonicity
and stability under substitutions of the ordering, the relation obtained from
removing the context is included in the original relation, which makes it suitable
for proving termination.

For our experiments, we are using the problem database TPDB8.1, which
is the one used in the recent 2011 Termination Competition. There are three
families in the Higher-Order category, which altogether include 156 problems.
We have also considered a fourth category called “HORPOLO-need” which has
got our four new examples.

We have performed the experiments in Figure 3 on a 2.4 GHz 2.9 GB Intel
Core Duo with a 32-bit architecture. Runtimes are given in seconds. The table
contains a row for each problem set, which displays for every tool version the
number of instances that can be proved terminating (YES) and the ones that
cannot (MAYBE) together with their respective solving times.

The analysis of the results on the considered benchmarks shows that the
time consumption using HORPOLO is comparable to all other variants. Al-
though most of the examples do not involve very complex constraints, there are

5 See http://www.lsi.upc.edu/~albert/term.html

45

http://www.lsi.upc.edu/~albert/term.html

DISJOINT HORPOLO HORPOLO-NC
YES MAYBE YES MAYBE YES MAYBE

Time # Time # Time # Time # Time # Time
Kop 11 2 0.325 4 0.110 2 0.326 4 0.123 2 0.314 4 0.112
Mixed HO 10 26 2.993 14 0.445 26 3.207 14 0.495 26 3.045 14 0.479
U A 11 67 26.246 43 5.801 67 28.610 43 6.289 67 26.253 43 5.885
HORPOLO-need 0 0 4 2.166 4 4.104 0 0 4 3.652 0 0

Fig. 3. Experimental results with THOR-1.0

enough instances to conclude that the implementation of HORPOLO is feasible
in practice.

Moreover, we have to mention that the reason why HORPOLO does not
improve the results on the already existing examples in the TPDB is due to
the fact that most of them contain many first-order rules combined with a small
higher-order part, which is mainly handled in the constraint generation and sim-
plification process. Therefore the constraints sent to HORPOLO do not require
the combined ordering. However, our four new examples show that it is not that
hard to find situations where the HORPOLO is needed, and hence probably in
the near future if the database is extended with more and larger examples some
more constraints needing HORPOLO will appear.

Finally, we have tried to prove termination of our four new examples using
WANDA [20]. In fact, we have tried with two different versions of it. The first
one is a release of 2010 and the second one is a release of 2011, both available
at the author’s web page. Both versions use different techniques described, for
instance, in [19], but finally rely on HORPO for solving the generated constraints
on higher-order terms. Both versions of WANDA fail to prove termination of all
four examples. However, we have been able to check that the constraints that
cause the failure of WANDA 2011 could be proved using HORPOLO, which
shows that the new ordering is not only useful in our tool.

9 Conclusions

In this paper we have shown a new way of combining polynomial interpretation
based orderings with RPO-like orderings. Terms that have to be compared with
RPO are abstracted and replaced by variables when the polynomial interpre-
tation is applied. The relations between the introduced variables are kept in a
context that is used when comparing the interpretations of the terms. This way
we can have monotonicity properties without needing any kind of interpretation
on symbols that are handled with RPO.

In the second part of the paper the ordering is extended to the higher-order
case. Polynomial interpretations in the higher-order case have only been success-
fully used in [23] and implemented in [10]. In our approach we combine polyno-
mial interpretations with HORPO, obtaining an automatable technique, which
has been successfully implemented within our tool THOR. Finally, in order to
avoid some weaknesses of the ordering in presence of functional type terms, we
have introduced an additional technique, called computability closure, which is

46

directly inherited from HORPO. Several examples illustrating the power of the
presented techniques have been given.

As future work, we plan to combine the polynomial interpretations consid-
ered in [23] and [10] with our combined method, since this would allow one to
decide whether the application symbol should be handled by the polynomial
interpretation or by the RPO part of the ordering, getting the best of both
methods.

Finally, it would be interesting to study whether our results can be extended
to handle matrix interpretations [16,9], which have recently been adopted in
automated tools as an alternative to RPO and polynomial interpretations for
solving ordering constraints.

Acknowledgments:
We would like to sincerely thank the referees for the very useful feedback we
have obtained in the revision process and especially to Cynthia Kop for her
outstanding revision effort which has definitely helped us to improve the quality
of the paper and to detect some problems in earlier versions.

References

1. T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs.
Theoretical Computer Science, 236(1-2):133-178, 2000.

2. F. Blanqui, J.-P. Jouannaud and A. Rubio. The Computability Path Ordering:
The End of a Quest. In Proceedings of the 22nd International Workshop Computer
Science Logic (CSL) and 17th Annual Conference of the EACSL, volume 5213 of
LNCS, pages 1–14, Bertinoro (Italy), September 2008. Springer.

3. M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell and A. Rubio.
The Barcelogic SMT Solver. In Proceedings of the 20th International Conference
on Computer Aided Verification (CAV), volume 5123 of LNCS, pages 294–298,
Princeton (USA), July 2008. Springer.

4. C. Borralleras, M. Ferreira and A. Rubio. Complete monotonic semantic path
orderings. In Proceedings of the 17th International Conference on Automated De-
duction (CADE), volume 1831 of LNAI, pages 346–364, Pittsburgh (USA), June
2000. Springer.

5. C. Borralleras, S. Lucas, E. Rodŕıguez-Carbonell, A. Oliveras and A. Rubio. SAT
Modulo Linear Arithmetic for Solving Polynomial Constraints. Journal of Auto-
mated Reasoning. To appear in print. Springer. Published on-line in September
2010.

6. C. Borralleras and A. Rubio. Orderings and Constraints: Theory and Practice
of Proving Termination. In Rewriting, Computation and Proof, Essays Dedicated
to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday, volume 4600 of
LNCS, pages 28–43, 2007. Springer.

7. C. Borralleras and A. Rubio. A Monotonic Higher-Order Semantic Path Order-
ing. In Proceedings of the 8th International Conference on Logic for Programming,
Artificial Intelligence (LPAR), volume 2250 of LNAI, pages 531–547, La Havana
(Cuba), December 2001. Springer.

8. E. Contejean, C. Marché, B. Monate and X. Urbain. Proving termination of rewrit-
ing with CiME. In Proceedings of the 6th International Workshop on Termination
(WST), Technical Report DSIC II/15/03, pages 71–73, Valencia (Spain), June
2003.

47

9. J. Endrullis, J. Waldmann and H. Zantema. Matrix interpretations for proving
termination of term rewriting. Journal of Automated Reasoning, 40(23):195220,
2008.

10. C. Fuhs and C. Kop. Polynomial Interpretations for Higher-Order Rewriting.
In Proceedings of the 23rd International Conference on Rewriting Techniques and
Applications (RTA), volume 15 of LIPIcs, Nagoya (Japan), May 2012. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

11. J. Gallier. On Girard’s “candidats de reductibilité”. In Logic and Computer Sci-
ence, pages 123–203. Academic Press, 1990.

12. J. Giesl, R. Thiemann and P. Schneider-Kamp. The Dependency Pair Framework:
Combining Techniques for Automated Termination Proofs. In Proceedings of the
11th International Conference on Logic for Programming, Artificial Intelligence
(LPAR), volume 3452 of LNAI, pages 301–331, Montevideo (Uruguay), March
2005. Springer.

13. J. Giesl, P. Schneider-Kamp and R. Thiemann. AProVE 1.2: Automatic Termina-
tion Proofs in the Dependency Pair Framework. In Proceedings of the 3rd Interna-
tional Joint Conference on Automated Reasoning (IJCAR), volume 4130 of LNAI,
pages 281–286, Seattle (USA), August 2006. Springer.

14. J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

15. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474-511, 2007.

16. D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix inter-
pretations. In Proc. 17th International Conference on Rewriting Techniques and
Applications (RTA 2006), LNCS 4098, pp. 328–342, 2006.

17. J.-P. Jouannaud and M. Okada. A computation model for executable higher-
order algebraic specification languages. In Proceedings of the 6th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 350–361, Amsterdam
(Netherlands), July 1991. IEEE Computer Society Press.

18. J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings.
Journal of the ACM, 54(1):1-48, 2007.

19. C. Kop and F. van Raamsdonk. Higher Order Dynamic Dependency Pairs for
Algebraic Functional Systems. In Proceedings of the 22nd International Confer-
ence on Rewriting Techniques and Applications (RTA), volume 10 of LIPIcs, pages
203–218, Novi Sad (Serbia), May 2011. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

20. C. Kop. WANDA, a higher order termination tool. http://www.few.vu.nl/~kop/
code.html.

21. S. Lucas. MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewrit-
ing. In Proceedings of 15h International Conference on Rewriting Techniques and
Applications (RTA), volume 3091 of LNCS, pages 200-209, Aachen (Germany),
June 2004. Springer. http://zenon.dsic.upv.es/muterm.

22. J. van de Pol. Termination proofs for higher-order rewrite systems. In Proceed-
ings of First Int. Workshop Higher-Order Algebra, Logic, and Term Rewriting
(HOA’93), volume 816 of LNCS, pages 305-325, 1994. Springer.

23. J. van de Pol. Termination of Higher-order Rewrite Systems. PhD. Thesis, Utrecht
University, 1996.

24. S. Suzuki, K. Kusakari and F. Blanqui. Argument filterings and usable rules in
higher-order rewrite systems. IPSJ Transactions on Programming, 4(2):1-12, 2011.

48

http://www.few.vu.nl/~kop/code.html
http://www.few.vu.nl/~kop/code.html
http://zenon.dsic.upv.es/muterm

	The recursive path and polynomial ordering for first-order and higher-order terms

