A document expansion framework for tag-based image retrieval
Abstract
Purpose
The purpose of this paper is to utilize document expansion techniques for improving image representation and retrieval. This paper proposes a concise framework for tag-based image retrieval (TBIR).
Design/methodology/approach
The proposed approach includes three core components: a strategy of selecting expansion (similar) images from the whole corpus (e.g. cluster-based or nearest neighbor-based); a technique for assessing image similarity, which is adopted for selecting expansion images (text, image, or mixed); and a model for matching the expanded image representation with the search query (merging or separate).
Findings
The results show that applying the proposed method yields significant improvements in effectiveness, and the method obtains better performance on the top of the rank and makes a great improvement on some topics with zero score in baseline. Moreover, nearest neighbor-based expansion strategy outperforms the cluster-based expansion strategy, and using image features for selecting expansion images is better than using text features in most cases, and the separate method for calculating the augmented probability P(q|RD) is able to erase the negative influences of error images in RD.
Research limitations/implications
Despite these methods only outperform on the top of the rank instead of the entire rank list, TBIR on mobile platforms still can benefit from this approach.
Originality/value
Unlike former studies addressing the sparsity, vocabulary mismatch, and tag relatedness in TBIR individually, the approach proposed by this paper addresses all these issues with a single document expansion framework. It is a comprehensive investigation of document expansion techniques in TBIR.
Keywords
Citation
Lu, W., Ding, H. and Jiang, J. (2018), "A document expansion framework for tag-based image retrieval", Aslib Journal of Information Management, Vol. 70 No. 1, pp. 47-65. https://doi.org/10.1108/AJIM-05-2017-0133
Publisher
:Emerald Publishing Limited
Copyright © 2018, Emerald Publishing Limited