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Abstract 

Purpose – To understand the meaning of a sentence, humans can focus on important words in the 

sentence, which reflects our eyes staying on each word in different gaze time or times. Thus, some 

studies utilize eye-tracking values to optimize the attention mechanism in deep learning models. 

But these studies lack to explain the rationality of this approach. Whether the attention mechanism 

possesses this feature of human reading needs to be explored.  

Design/methodology/approach – We conducted experiments on a sentiment classification task. 

Firstly, we obtained eye-tracking values from two open-source eye-tracking corpora to describe the 

feature of human reading. Then, the machine attention values of each sentence were learned from a 

sentiment classification model. Finally, a comparison was conducted to analyze machine attention 

values and eye-tracking values.  

Findings – Through experiments, we found the attention mechanism can focus on important words, 

such as adjectives, adverbs, and sentiment words, which are valuable for judging the sentiment of 

sentences on the sentiment classification task. It possesses the feature of human reading, focusing 

on important words in sentences when reading. Due to the insufficient learning of the attention 

mechanism, some words are wrongly focused. The eye-tracking values can help the attention 

mechanism correct this error and improve the model performance. 

Originality/value – Our research not only provides a reasonable explanation for the study of using 

eye-tracking values to optimize the attention mechanism, but also provides new inspiration for the 

interpretability of attention mechanism. 
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1. Introduction 

The rise of artificial intelligence (AI) has profoundly changed the way humans understand the world. 

Machines can make a series of responses similar to humans, becoming more intelligent and even 

far superior to humans. The AlphaGo defeating the world champion of Go is the best example. 

However, in the field of natural language processing (NLP), due to the complexity and diversity of 
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human languages, machines cannot fully understand human expressions in some tasks, e.g., machine 

translation (Läubli et al., 2020), summary generation (Sheela and Janet, 2021), keyphrase extraction 

(Zhang, Zhao, et al., 2022) and so on. Whether machines really possess a human-like way of 

thinking is worthy of in-depth exploration in this background. 

When we are reading a sentence, we can focus on some words that are useful for understanding 

the sentence. In other words, we do not pay the same attention to all words, which reflects our eyes 

staying on each word in different gaze time or times. The Eye-tracking corpus (ETC) is a record of 

this feature of human reading. It uses eye-trackers to capture the time or fixation times of eye gaze 

on each word (Rayner et al., 2012). ETCs have been applied to various NLP tasks, e.g., part-of-

speech tagging (Barrett et al., 2016), sentiment analysis (Mishra, Kanojia, Nagar, et al., 2016), 

multiword expression (Rohanian et al., 2017), keyphrase extraction (Zhang and Zhang, 2021), etc. 

These studies used eye-tracking values to optimize the attention mechanism, but they lack to explain 

the rationality of this approach. Therefore, it is essential to compare the machine attention values 

obtained by the model based on attention mechanism and the eye-tracking values, providing 

theoretical support for these studies. 

The study is in the line of interpretability research of the attention mechanism. Previous research 

had explored the relationship between machine attention and human attention, in which human 

attention is represented by the important degree of words manually annotated. Generally, the 

important degree is in a binary distribution, represented by 0-1 (Sen et al., 2020; Vashishth et al., 

2019), different from the continuous distribution of machine attention values. Since the binary 

distribution can only indicate which words are important in a sentence, but cannot compare the 

important degree between words, the analysis based on this cannot fully describe the relationship 

between machine attention and human attention. In contrast, eye-tracking values are a continuous 

distribution, and a larger eye-tracking value indicates that the word is more important in a sentence. 

Fig. 1 shows the attention distribution of machine attention values and eye-tracking values on a 

movie review randomly selected from ZuCo. In this example, both attention mechanism and human 

focus on the word “mesmerizing” in the sentence, which greatly affects judging the sentiment of 

this review as positive. This example shows a certain relationship between the machine attention 

values and the eye-tracking values.  

 

 (Note: There are four types of eye-tracking values, i.e., nFix, FFD, TRT, and RRT, introduced in 

Section 3.1. The darker the color, the higher attention to the word.) 

 

Figure 1. An example of the attention distribution of machine attention values and eye-tracking 

values on a movie review. 

 

The purpose of our study is to analyze whether the attention mechanism possesses the feature of 

human reading, focusing on the important words in sentences when reading. We conducted 

experiments on a sentiment classification task. The eye-tracking values were used to describe the 



feature of human reading, which are collected from two open-source ETCs, i.e., ZuCo (Hollenstein 

et al., 2018) and Eye-tracking and Sentiment Analysis-II (Mishra, Kanojia and Bhattacharyya, 

2016). They are sentiment classification task-driven corpora. The machine attention values for the 

two ETCs were learned from a sentiment classification model based on the attention mechanism. 

To compare the machine attention values and the eye-tracking values, we used Spearman correlation 

coefficient (Maritz, 1995), Jensen Shannon divergence (Lin, 1991) to analyze the correlation 

between them. Combining the characteristics of the sentiment classification task, we explored 

whether the attention mechanism and humans focus on the same words, and calculated the attention 

rate of specific part-of-speech words and sentiment words. Through experiments, we found the 

attention mechanism can focus on important words, such as adjectives, adverbs, and sentiment 

words, which are valuable for judging the sentiment of sentences on the sentiment classification 

task. It possesses the feature of human reading, focusing on important words in a sentence when 

reading. Due to the insufficient learning of the attention mechanism, some words are wrongly 

focused. The eye-tracking values can help the attention mechanism correct this error and improve 

the performance of the model. 

The contribution of the paper is three-fold. 

1) We found that on the task of sentiment classification, the attention mechanism can focus on 

the important words in sentences through the learning of samples, and give greater weights. 

It possesses the feature of human reading, focusing on the important words in sentences. 

This provides new inspiration for the interpretability of attention mechanism. 

2) The attention mechanism can make mistakes when assigning weights to words in a sentence. 

The eye-tracking values can help the attention mechanism correct this error and improve the 

model performance. This provides a reasonable explanation for the study of using eye-

tracking values to optimize the attention mechanism. 

3) We proposed to use eye-tracking values to explore the relationship between machine 

attention and human attention. This is different from previous work that required human 

attention to be collected for this study. The eye-tracking values can be a by-product of the 

sentiment annotation task. When annotating a sentence, the eye-tracking values can be 

collected at the same time. 

In the rest of this paper, Section 2 summarizes the application of eye-tracking values in NLP tasks 

and the interpretability research of the attention mechanism. In Section 3, we describe the datasets, 

model structure and metrics used in the experiment. Section 4 analyzes the influencing factors of 

machine attention values and the comparison of them with the eye-tracking values. Sections 5 and 

6 are discussion and summary. 

2. Literature Review 

Eye-tracking values reflect human attention and have been widely used in various deep learning 

models. However, few studies use eye-tracking values to explain the role of the attention mechanism. 

This section mainly summarizes the application of eye-tracking values in NLP tasks and the 

interpretability research of the attention mechanism. 

2.1 Application of Eye-tracking Values in NLP Tasks 

In recent years, eye-tracking values, including total fixation time, fixation times, and first fixation 

time, have been used for part-of-speech tagging (Barrett et al., 2016), syntactic analysis (Agrawal 



and Rosa, 2020), sentence classification (Barrett et al., 2018; Long et al., 2017), information 

extraction (Barrett and Hollenstein, 2020; Hollenstein and Zhang, 2019; Zhang and Zhang, 2021) , 

and text understanding (Malmaud et al., 2020; Zheng et al., 2019), which has been proved to 

improve the performance of deep learning models. Besides, eye-tracking values are also widely 

used in behavioral sciences to analyze users’ behaviors, such as searching and querying information 

(Gwizdka et al., 2019; Sachse, 2019; Wu and Huang, 2018). 

Eye-tracking values are generally obtained from open-source ETCs, including ZuCo, DUNDEE, 

and GECO. At present, there are four methods to introduce eye-tracking values into deep learning 

models. The first reduces the difference between machine attention values and eye-tracking values 

through training. For example, Zhang and Zhang (2021) proposed a keyphrase extraction model and 

used eye-tracking values as ground truth to optimize machine attention values. The second uses eye-

tracking values as machine attention values, or uses multiplication or addition to combine eye-

tracking values with machine attention values. For example, Long et al. (2017) proposed a 

cognitive-based attention model. In this model, they first used eye-tracking values and local text 

features to establish a simple and effective regression model to predict reading time, and then used 

the predicted reading time to construct the attention layer in the neuro-sentiment analysis model. 

The third is to convert eye-tracking values into feature vectors and input them into models. For 

example, Hollenstein and Zhang (2019) embedded eye-tracking values into the vectorized 

representation of words for named entity recognition (NER) tasks. They found that the enhanced 

model was better than the baseline model. The last is to add an eye-tracking prediction module to 

deep learning models. For example, Sood et al. (2020) proposed a hybrid text saliency model (TSM), 

which can combine a cognitive model of reading with explicit human gaze supervision in a single 

machine learning framework. Besides, they further proposed a joint modeling approach to integrate 

TSM predictions into the attention layer of a network designed for a specific upstream NLP task 

without the need for any task-specific human gaze data. 

For the four methods mentioned above, the first method and the second method aim to use eye-

tracking values to optimize machine attention values. However, before using these methods, it is 

necessary to compare machine attention values and eye-tracking values to analyze whether machine 

attention is consistent with human attention, but previous studies lacked such analysis. 

2.2 Interpretability Research of Attention Mechanism 

Attention mechanism was first used in machine translation tasks (Bahdanau et al., 2015). 

Subsequently, since it helps to improve the performance of the model, it is widely used in various 

NLP tasks, such as text classification (Li et al., 2019; Liu and Guo, 2019), machine translation (Britz 

et al., 2017; Vaswani et al., 2017), recommendation (Wang et al., 2018) and so on. 

In recent years, the interpretability research of attention mechanism has attracted the attention of 

scholars (Jain and Wallace, 2019; Lei, 2017; Mullenbach et al., 2018; Sen et al., 2020; Wiegreffe 

and Pinter, 2020). For example, some studies focus on analyzing what self-attention and multi-head 

self-attention learn in pre-trained language models (Clark et al., 2019; Goldberg, 2019; Hoover et 

al., 2020; Htut et al., 2019). Other studies focus on analyzing what traditional attention mechanisms, 

such as additive attention learns (Jain and Wallace, 2019; Sen et al., 2020; Wiegreffe and Pinter, 

2020). By analyzing the methods they use, they can be roughly divided into two ways. The first is 

to change the attention value itself, such as replacing the highest value or randomly generating the 

attention value. The purpose is to analyze whether these changes affect the performance of the model, 

so as to analyze the usefulness of attention mechanism. For example, Jain and Wallace(2019) found 



that the learned attention values are usually not associated with the gradient-based feature 

importance measurement. They also found that very different attention values can bring the same 

prediction. Therefore, they believe that attention values basically cannot improve the interpretability 

of the model. Based on this research, Wiegreffe and Pinter (2019) refuted that the effect of fixed 

attention values are as good as the learned attention values on some datasets. They concluded that 

random values or anti-disturbance values cannot prove that attention mechanism cannot be used as 

an explanation for the prediction results. The second is to analyze whether machine attention pays 

attention to important parts by comparing human attention. In this way, the importance of words is 

generally annotated manually to quantify human attention. Then, by analyzing the correlation 

between machine attention and human attention, explore whether attention mechanism has the 

ability to simulate humans (Sen et al., 2020; Zhang, Sen, et al., 2022).  

Based on the previous studies, we proposed to use eye-tracking values to explore the relationship 

between machine attention and human attention. The eye-tracking values are a record of human 

gaze times and reading time on each word, which can reflect the feature of human reading, focusing 

on the important words in sentences. The more gaze times or reading time, the higher human 

attention on words. By comparing the machine attention values obtained by the model based on 

attention mechanism and the eye-tracking values, we explore whether the attention mechanism 

possessses this feature of human reading. 

3. Methodology 

 

Figure 2. Research Framework 
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To answer whether the attention mechanism possesses the feature of human reading, focusing on 

the important words in sentences when reading, we need to compare the machine attention values 

obtained by the model based on attention mechanism and the eye-tracking values. Specifically, we 

first obtain eye-tracking values from two open-source ETCs, which are a record of this feature of 

human reading. Then, the machine attention values for the two ETCs are learned from a sentiment 

classification model based on attention mechanism. Finally, five metrics are used to compare the 

machine attention values and the eye-tracking values. The framework of this study is shown in Fig. 

2. In this section, we mainly introduce the two open-source ETCs, model structure, and five metrics 

used in the experiment. 

 

3.1 Eye-tracking Corpora 

Two open-source ETCs are used for obtaining eye-tracking values, i.e., task 1 subset from ZuCo 

(Hollenstein et al., 2018) and Eye-tracking and Sentiment Analysis-II (Mishra, Kanojia and 

Bhattacharyya, 2016). They are sentiment classification task-driven corpora, containing four eye-

tracking values. Table 1 describes the specific meanings of four types of eye-tracking values. The 

following is a brief introduction to the two ETCs. 

Table 1. Description of four types of eye-tracking values 

Name 
Unit of 

measure 
Description 

nFix times The total number of fixation times on the current word 

FFD ms The duration of the first fixation on the current word 

TRT ms The sum of all fixation durations on the current word 

RRT ms The lookback duration for the current word, equal to TRT – FFD 

Task 1 subdataset from ZuCo (ZuCo): The corpus consists of 400 sentences randomly selected 

from the movie reviews of Stanford sentiment treebank corpus (Socher et al., 2013), with three 

manually labeled sentiment tags, i.e., positive, neutral, and negative. Among them, 123 sentences 

are neutral, 137 sentences are negative, and 140 sentences are positive. In the experiment, 12 

subjects were presented with positive, negative or neutral sentences for normal reading. As the 

subjects read the sentences, the subjects' eye-tracking values were recorded. To control the quality 

of their reading behavior, the subjects had to rate the quality of the described movies in 47 of the 

400 sentences.  

Eye-tracking and Sentiment Analysis-II (ETSA-II): There are 392 sentences in the corpus, of 

which 247 sentences are labeled as a negative tag, and 145 sentences are labeled as a positive tag. 

In the experiment, 7 subjects were required to read one sentence at a time and annotate it with binary 

labels (i.e., positive and negative). To control the reading quality, the subjects must carefully read 

the sentences and provide correct annotations as much as possible. Meanwhile, the eye-tracking 

values of subjects were recorded. Different from the ZuCo corpus, the sentences in this corpus are 

selected from two satirical citation websites, i.e., the Amazon movie corpus and Twitter posts, but 

the process of recorded eye-tracking values is similar. Both include four types of eye-tracking values, 

i.e., nfix, FFD, TRT, and RRT, and the measurement units are the same (see Table 1). 

In the two ETCs, the same sentence has eye-tracking records of multiple subjects. Therefore, we 

performed summation and normalization operations to facilitate subsequent experiments. Table 2 

shows an example of four eye-tracking values after preprocessing from ZuCo.  

 



Table 2. An example of four eye-tracking values after preprocessing from ZuCo 

     Word 

Type 
The film Often achieves a mesmerizing poetry. 

nFix 0.02 0.06 0.17 0.24 0.03 0.32 0.15 

FFD 0.04 0.15 0.18 0.17 0.05 0.23 0.19 

TRT 0.02 0.07 0.16 0.23 0.02 0.33 0.16 

RRT 0.00 0.00 0.15 0.29 0.00 0.43 0.13 

3.2 Sentiment Classification Model and Training Dataset 

To learn the machine attention values for ZuCo and ETSA-II, we constructed a sentiment 

classification model based on attention mechanism. This section introduces the construction of the 

sentiment classification model based on attention mechanism and the dataset used for model training. 

3.2.1 Structure of Sentiment Classification Model Based on Attention Mechanism 

The attention mechanism produces a non-negative distribution with a sum of 1 based on the input 

representation (such as word embedding vector). Then, the distribution weights the original input to 

obtain contextual representations as input to downstream modules (Bahdanau et al., 2015). In NLP 

tasks, commonly used attention mechanisms are additive attention (Bahdanau et al., 2015) and self 

attention (Vaswani et al., 2017). The output of self attention is a word-to-word attention matrix, 

which is different from the one-dimensional vector representation of eye-tracking values. Therefore, 

we used the additive attention to construct a sentiment classification model, which calculated the 

attention value of each word in a sentence. The calculation formula of attention value is as follows: 

𝛼𝑖 =
exp⁡(𝑠(𝑥𝑖))

Σ𝑗=𝑖
𝑁 exp⁡(𝑠(𝑥𝑖))

                               (1) 

Where 𝛼𝑖  is the attention value that appears at the i-th position in a sentence, 𝑥𝑖 is the vector 

representation that appears at the i-th position in a sentence. 𝑠(𝑥𝑖) is the attention scoring function, 

and N is the number of words in a sentence. In order to reduce the learning parameters, we simplified 

the scoring function calculation formula, as follows: 

𝑠(𝑥𝑖) = 𝑉𝑇 ∗ 𝑇𝑎𝑛ℎ(𝑥𝑖)                           (2) 

Where vector V is a learnable model parameter. 

Fig. 3 is the framework of the sentiment classification model based on attention mechanism. We 

use three word vectors, i.e., Embedding, GloVe (Pennington et al., 2014), and fastText (Joulin et 

al., 2017), to train the model. The Embedding word vector is randomly initialized, which needs the 

model to adjust its value after learning. The GloVe① and fastText② pre-training word vectors are 

derived from the officially trained word vectors. For some out-of-vocabulary words in GloVe and 

fastText, we fill them with zero vectors, and optimize their vectorial representation through model 

learning. Besides, based on the best word vector, LSTM (long short term memory) (Hochreiter and 

Schmidhuber, 1997) and BiLSTM (bi-directional long short term memory) (Graves and 

Schmidhuber, 2005) are added to the model as coding layers. We also consider obtaining attention 

values in a clean environment without using any coding layer (None). Above the coding layer is the 

attention layer. We use formulas (1) and (2) to calculate the attention value of each word 

{𝛼1, 𝛼2, … , 𝛼𝑛−1, 𝛼𝑛} in a sentence {𝑤1, 𝑤2, … ,𝑤𝑛−1, 𝑤𝑛}, so as to be used for subsequent analysis. 

The last layer is the dense layer, which outputs the sentiment tag of the input text. It's worth noting 

that we do not employ pre-trained language model such as BERT (Devlin et al., 2019) as codding 

                         
① https://nlp.stanford.edu/data/glove.42B.300d.zip 
② https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip 



layer because a word will be split into multiple tokens, which makes it difficult to calculate the 

attention value of each word. 

 

Note: 𝑤𝑖 ⁡represents the word that appears at the i-th position in a sentence. 𝛼𝑖 ⁡represents the attention value at the 

i-th position in a sentence. 

Figure 3. The framework of sentiment classification model based on additive attention 

3.2.2 Construction of Model Training Dataset 

We use the Stanford sentiment treebank corpus (Socher et al., 2013) contains movie reviews as the 

training dataset for the sentiment classification model. The reasons for choosing this dataset are that 

ZuCo is a subset of it, and ETSA-II also consists of movie reviews (see Section 3.1). This corpus 

contains 11,855 sentences, and each sentence has a sentiment score. The value range is 0-1. If the 

value approaches 1, it’s biased towards positive sentiment, and vice versa. 

Since ZuCo and ETSA-II have three and two sentiment categories, respectively, we construct two 

training datasets with different sentiment tags based on sentiment score. Table 3 shows the number 

of samples in the training and test datasets corresponding to ZuCo and ETSA-II and the sentiment 

score interval of each category. It is worth noting that the test datasets are the two eye-tracking 

corpora themselves. In addition, in the ZuCo training dataset, we removed the same samples as the 

ZuCo test dataset. 

Table 3. Number of samples used for model training and testing 

         Dataset 

Sentiment 

ZuCo ETSA-II 

Train Test Train Test 

Negative / [0.0,0.4] 4446 137 4570 247 

Neutral / (0.4,0.6] 1990 123 - - 

Positive / (0.6,1.0] 4858 140 5001 145 

Total 11294 400 9571 392 
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3.3 Measurement between Machine Attention Values and Eye-tracking Values 

Machine attention values and eye-tracking values are continuous distribution and don’t follow any 

specific probabilistic distribution. According to this characteristic, we use five metrics to measure 

machine attention values and eye-tracking values, i.e., Spearman correlation coefficient (Maritz, 

1995), Jensen Shannon divergence (Lin, 1991), word attention overlap rate, part-of-speech attention 

rate, and sentiment word attention rate. The first two are used to investigate correlations. The last 

three are self-designed metrics for this study and are described in this section. 

3.3.1 Spearman Correlation Coefficient (SCC) 

Spearman correlation coefficient is derived from the concept of product-moment correlation by 

Spearman (Maritz, 1995). It is mainly used to solve the problems related to name data and order 

data. The calculation formula is shown in formula (3). 

𝑆𝐶𝐶 = 1 −
6∑(𝑑𝑖

2)

𝑛(𝑛2−1)
                               (3) 

The calculation process is as follows. First, sort the data of two variables (𝑥, 𝑦). Then, write 

down the position (𝑥′, 𝑦′) after sorting, and the value of (𝑥′, 𝑦′) is called rank. The difference of 

rank is 𝑑𝑖 in formula (1), and n is the number of components in the variable. Finally, bring it into 

the formula to get the result. 

3.3.2 Jensen Shannon Divergence (JSD) 

Kullback Leibler divergence (KL divergence) was proposed by kullback and Leibler in 1951 

(Kullback and Leibler, 1951). It is mainly used to measure the distance between two variables from 

the perspective of a probability distribution. The calculation formula is shown in formula (4). 

Because the KL divergence is asymmetric, Lin (1991) proposed a variant - Jensen Shannon 

divergence. The calculation formula is shown in formula (5). 

𝐾𝐿(𝑃||𝑄) = ∑ 𝑃𝑖log⁡(
𝑃𝑖

𝑄𝑖
)𝑛

𝑖=1                              (4) 

𝐽𝑆𝐷(𝑃||𝑄) =
1

2
𝐾𝐿(𝑃||

𝑃+𝑄

2
) +

1

2
𝐾𝐿(𝑄||

𝑃+𝑄

2
)                      (5) 

Where P and Q are the distributions of two variables, and n is the number of components in P 

and Q. 

3.3.3 Word Attention Overlap Rate (WAOR) 

To measure whether the attention mechanism and humans focus on the same words in the sentence, 

we designed a new metric - word attention overlap rate. Given two attention distributions P and Q, 

and a word window of N, the formula is: 

𝑊𝐴𝑂𝑅 =
𝑠𝑒𝑡(𝑠𝑜𝑟𝑡(𝑃,𝐷𝐸𝑆𝐶),𝑁)⁡∩⁡𝑠𝑒𝑡(𝑠𝑜𝑟𝑡(𝑄,DESC),𝑁)

𝑁
               (6) 

Where 𝑠𝑜𝑟𝑡(∗, 𝐷𝐸𝑆𝐶) is a sorting function, which is used to arrange words in descending order 

according to values, and 𝑠𝑒𝑡(∗,𝑁) is an interception function, which is used to intercept the first 

N words from the word list. The value range of WAOR is 0-1. When the value approaches 0, P and 

Q are not similar, and vice versa, and vice versa. 

3.3.4 Part-of-speech Attention Rate (POSAR) 



The part-of-speech attention rate calculates the attention degree to a part-of-speech in a word 

window. Given a sentence S and the corresponding attention distribution D, on the premise that the 

word window is n, the formula of attention rate to part-of-speech p is: 

𝑃𝑂𝑆𝐴𝑅𝑝 =
𝑟𝑎𝑡𝑒(𝑠𝑒𝑡(𝑠𝑜𝑟𝑡(𝐷,𝐷𝐸𝑆𝐶),𝑁),⁡⁡⁡𝑝)

𝑟𝑎𝑡𝑒(𝑆,𝑝)
                    (7) 

Where 𝑠𝑜𝑟𝑡(∗, 𝐷𝐸𝑆𝐶)  is a descending sorting function, and 𝑠𝑒𝑡(∗,𝑁)  is an interception 

function, which is the same as the function in formula (6). 𝑟𝑎𝑡𝑒(∗, 𝑝) is a proportional function to 

calculate the proportion of part-of-speech p in a word list or sentence. Its value range is greater than 

0. When the value is between (0, 1), the POSAR of p is low. When the value is greater than 1, the 

POSAR of p is high, and the larger the value, the higher the attention. 

3.3.5 Sentiment Word Attention Rate (SWAR) 

When we judge the sentiment of a sentence, we usually focus on the sentiment words. To quantify 

it, we proposed the sentiment word attention rate. Given a sentence S and the corresponding 

attention distribution D, we first need to label the sentiment words according to a sentiment 

dictionary. Here we use HowNet sentiment dictionary③. Assuming that there are m sentiment words 

in sentence S, the formula is: 

𝑆𝑊𝐴𝑅 =
𝑠𝑤(𝑠𝑒𝑡(𝑠𝑜𝑟𝑡(𝐷,𝐷𝐸𝑆𝐶),𝑚))

𝑚
                        (8) 

Where 𝑠𝑜𝑟𝑡(∗, 𝐷𝐸𝑆𝐶)  is a descending sorting function, and 𝑠𝑒𝑡(∗,𝑁) is an interception 

function, which is the same as the function in formula (6). 𝑠𝑤(∗) counts the number of sentiment 

words in the word list. Its value range is 0-1. When the value approaches 1, the higher attention to 

sentiment words, and vice versa. 

The above metrics are calculated for a single sentence, but different corpora contain multiple 

sentences. For comparison, we first calculate the metric value of each sentence, and then calculate 

the average value. For Spearman correlation coefficient, we only pay attention to correlation value. 

Therefore, when calculating this metric, we calculate the absolute value. 

4. Experiment and Result Analysis 

We conducted experiments on ZuCo and ETSA-II corpora. First, we analyzed the performance of 

the sentiment classification model based on additive attention. Then, we analyzed the effect of 

adding LSTM and BiLSTM to the model on machine attention values. Besides, the model also made 

mistakes in judging the sentiment of sentences. In order to avoid the influence of wrong prediction 

on subsequent experiments, the difference of machine attention values under correct and wrong 

prediction is analyzed. Next, a comparison was conducted to analyze machine attention values and 

eye-tracking values. Finally, we used the eye-tracking values to fine-tune the machine attention 

values in the model, and observe the effect of the eye-tracking values on the model performance 

and the machine attention values. 

4.1 Performance of Sentiment Classification Model 

The primary concern is whether our sentiment classification model has good learning ability and 

whether the learned machine attention values can be used for subsequent analysis. Therefore, on the 

                         
③ https://github.com/thunlp/OpenHowNet/blob/master/HowNet_Dict.zip 



two test datasets of ZuCo and ETSA-II, we used the macro average of accuracy, recall, and F1 value 

to evaluate the performance of the sentiment classification model without or with the attention 

mechanism. To compare the performance between models, we used Support Vector Machine (SVM) 

(Vapnik and Chervonenkis, 1964) and BERT (Devlin et al., 2019) as baseline models. The results 

are shown in Table 4. 

It can be seen from Table 4 that the performance of the models on ZuCo test dataset is generally 

low, and the F1 value of BERT model can only reach 72.54%, while the performance of the models 

on ETSA-II test dataset is better. This may be caused by the different difficulties of the two tasks. 

Compared with randomly initialized word vector Embedding, the use of pre-trained word vectors 

GloVe and fastText can improve the performance of the models. On the ZuCo and ETSA-II test 

datasets, the models using fastText and GloVe have the best performance, respectively. Adding 

LSTM and BiLSTM to the models can further improve the performance, especially on the ETSA-

II test dataset. Introducing attention mechanism can improve the performance of the models. 

Specifically, the F1 value of the models has increased, with a minimum increase of 0.1% and a 

maximum increase of 3.59%.  

Through analysis, we found that our sentiment classification model has good learning ability. 

This further shows that our model can learn the relative importance of words in a sentence, and the 

machine attention values obtained on this model are valuable for subsequent analysis. 

 

Table 4. The performance of sentiment classification models (%) 

Baseline Model 
ZuCo ETSA-II 

P R F1 P R F1 

SVM 55.33  54.56  54.59  68.45  68.18  68.30  

BERT 73.46  74.10  72.54  84.56  86.75  84.99  

Experimental model 
W/O W W/O W 

P R F1 P R F1 P R F1 P R F1 

Embedding_None 66.27  66.04  63.13  63.18  63.75  61.31  71.96  72.97  72.26  75.51  76.88  75.85  

GloVe_None 66.65  66.83  64.04  69.33  67.33  64.30  77.05 77.87  77.38  78.68  80.31  79.08  

FastText_None 67.60  67.03  64.63  68.18  67.89  65.92  79.16  79.77  79.43  77.65  79.44  77.91  

BW_LSTM 67.08  67.72  66.91  67.13  66.98  67.01  79.72  81.87  79.47  80.86  82.27  81.33  

BW_BiLSTM 67.37  67.61  67.27  67.49  68.30  67.55  80.30  82.09  80.71  81.79  83.59  82.26  

Note: "W/O" means that the model doesn’t add attention mechanism, "W" means that the model adds attention 

mechanism, and "BW" means that a word vector that makes the model perform best. Specifically, on the ZuCo and 

ETSA-II test datasets, the models using fastText and GloVe have the best performance, respectively. 

4.2 Factors Affecting Machine Attention Values 

In section 4.1, we found that adding LSTM and BiLSTM can improve the performance of the models. 

Does adding LSTM and BiLSTM to the models affect machine attention? After adding LSTM and 

BiLSTM, can the machine attention values obtained from the models be used for subsequent 

analysis? The models may make mistakes in judging the sentiment of sentences, so is there a 

difference of machine attention values under correct and wrong prediction? This section mainly 

answers these questions. 

4.2.1 Influence of LSTM and BiLSTM on Machine Attention Values 



For the same sentence, different models can generate different machine attention values. To study 

whether adding LSTM and BiLSTM to the models can affect the machine attention values, we 

calculated six statistics describing the distribution characteristics, i.e., range (R), interquartile 

distance (IQR), standard deviation (STD), coefficient of variation (CV), skew and kurt. One-way 

ANOVA is used to test whether there is a significant difference in the machine attention values 

obtained with and without LSTM, BiLSTM. The results are shown in Fig. 4. 

 

Note：***. Significant at α=0.001. 

Figure 4. The one-way ANOVA test results of machine attention values obtained  

with and without LSTM and BiLSTM 

There is a significant differences in the machine attention values obtained with and without 

LSTM, BiLSTM. As shown from Fig. 4 (a) ~ (l), when the significance level α is 0.001, the p-values 

of all statistics are less than 0.001. The results show significant differences in the machine attention 

values obtained with and without LSTM, BiLSTM in the models. In particular, the machine 

attention values obtained without adding LSTM and BiLSTM is significantly different from the 

other two cases in six statistics. It further shows that adding LSTM and BiLSTM impacts the 

machine attention values. 



Sen et al. (2020) pointed out that bi-Directional RNNs with additive attention demonstrate strong 

similarities to human attention, while uni-directional RNNs with attention differ from human 

attention significantly. This indicates that the RNNs can affect the machine attention. LSTMs is a 

variant of RNNs. Therefore, we used the attention values obtained from the model without any 

coding layer for the analysis between the attention values and eye-tracking values. The aim is to 

analyze how the attention mechanism performs in a clean environment. Specifically, the machine 

attention values obtained by the fastText_None model and the GloVe_None model are used on 

ZuCo and ETSA-II, respectively. 

4.2.2 Influence of Prediction Results on Machine Attention Values 

Since the performance of the sentiment classification model is limited, the sentiment tag of each 

review cannot be predicted correctly. It is necessary to consider whether there is a difference 

between the machine attention values under the correct and wrong prediction results, which may 

affect the subsequent experimental analysis. 

 

Note：***. Significant at α=0.001.  

Figure 5. The one-way ANOVA test results of machine attention values under different prediction 

results 



There is not a difference between the machine attention values under the correct and wrong 

prediction results. We grouped the correct and wrong prediction results, and used one-way ANOVA 

to investigate whether the distribution characteristics of machine attention values: range (R), 

interquartile distance (IQR), standard deviation (STD), coefficient of variation (CV), skew and kurt 

have significant differences. The results are shown in Fig. 5. The significance level α is 0.001. 

Except that the p-value of CV is less than 0.001 in Fig. 5(J). The p-values of other statistics are all 

greater than 0.001 in the other sub-figures of Fig. 5. This shows that the machine attention values 

does not show significant difference whether the prediction result is correct or wrong. Therefore, in 

the subsequent analysis, we do not distinguish whether the prediction result is correct when we 

analyze the machine attention values and eye-tracking values. 

 

4.3 Comparison between Machine Attention values and Eye-tracking Values 

The Eye-tracking values are a record of the feature of human reading, focusing on the important 

words in sentences when reading. So we assume that the attention mechanism can focus on 

important words. To verify this hypothesis, we compared the machine attention values and the eye-

tracking values. Besides, to analyze whether the attention mechanism and humans really focus on 

the important words in sentences, we also introduced the random attention values corresponding to 

each sentence. 

Based on the above research, we compared the machine attention values (MA), random attention 

values (RAN), and four eye-tracking values (ETs), i.e., nFix, FFD, TRT, and RRT. The metrics 

used include Spearman correlation coefficient (SCC), JS divergence (JSD), word attention overlap 

rate (WAOR), part-of-speech attention rate (POSAR), and sentiment word attention rate (SWAR), 

which performed fine-grained analysis from global to local. 

4.3.1 Correlation Analysis Based on Spearman Correlation Coefficient and JS Divergence 

Fig. 6 shows the results of Spearman correlation coefficient and JS divergence among machine 

attention values, eye-tracking values and random attention values. We have following findings. 

Machine attention values are not generated randomly. Compared with RAN, it can be seen from 

Fig. 6 (a) and (b) that the SCC and JSD between MA and RAN are 0.22 and 0.15 on ZuCo, 

respectively. From Fig. 6 (c) and (d), the SCC and JSD between MA and RAN are 0.2 and 0.07 on 

ESAII, respectively. It indicates that the machine attention values are different from random 

attention values. Previous study found that attention mechanism learns meaningful relationship 

between inputs and outputs (Wiegreffe and Pinter, 2020). This paper further proves that machine 

attention values are generated by learning rather than random. Likewise, eye-tracking values are 

less correlated with random attention values. 

There is a correlation between machine attention values and eye-tracking values. As shown 

from Fig. 6 (a) and (b), the machine attention values have a high correlation with the four eye-

tracking values on ZuCo, especially the highest correlation with nFix and TRT, and the lowest 

correlation with RRT. The above findings are valid on ETSA-II, see Fig. 6 (c) and (d). It is worth 

noting that the SCCs of MA and ETs on ETSA-II is lower than that on ZuCo. The JSDs between 

MA and ETs on ETSA-II is smaller than that on ZuCo, except RRT. Our interpretation is that on 

ZuCo, MA and ETs can match better in word ranking but differ widely in numerical distribution, 

whereas the opposite is true on ETSA-II. Although there is no strong correlation between them, this 

cannot be ignored and deserves further analysis. 



 

Figure 6. The heatmap of the correlation between different attention values 

4.3.2 Whether the Attention Mechanism and Humans Focus on the Same Word 

To explore whether the attention mechanism and humans focus on the same words in sentences, we 

used word attention overlap rate to analyze the machine attention values and the eye-tracking values. 

The results are shown in Fig. 7. 

 

Figure 7. The trend of word attention overlap rates of different attention values 



The attention mechanism and humans can focus on the same words in sentences. It can be seen 

from Fig. 7 (a) and (b) that the WAORs between MA and ETs is higher than that between MA and 

RAN. When the word window is 4, the attention mechanism and humans can jointly focus on about 

50% of the same words on ZuCo, and about 40% of the same words on ETSA-II. It indicates that 

the attention mechanism and humans can focus on the same words in sentences. Specifically, in the 

same word window, the words considered important by the attention mechanism are within the 

range of words considered important by humans.  

 

4.3.3 Whether the Attention Mechanism and Humans Focus on Specific Words 

Based on the research in Section 4.3.2, we investigated what kind of words the attention mechanism 

and humans focus on. Specifically, we analyzed the attention rate of the four parts-of-speech that 

are valuable for expressing sentence sentiment, i.e., noun (NN), Verb (VB), adjective (JJ) and 

adverb (RB) (K and Devi, 2012). Besides, we used the HowNet sentiment dictionary
③

 to label the 

sentiment words in each sentence, and calculated the attention rates of machine attention values, 

four eye-tracking values and random attention values on positive words (Pos) and negative words 

(Neg), respectively. When calculating the Part-of-speech attention rate, we set the word window to 

3-5. The results are shown in Table 5 and Fig. 8.  

  Adjectives are attended by the attention mechanism and humans. From the Table 5, both the 

attention mechanism and humans pay more attention to adjectives in sentences on ZuCo and ETSA-

II. The reason is that adjectives can usually reflect the sentiment of a sentence. On ZuCo, the ability 

of the attention mechanism to recognize adjectives is lower than that of humans, and the opposite is 

true on ETSA-II. Furthermore, on ZuCo, the attention mechanism also focuses on nouns and verbs, 

while on ETSA-II, the attention mechanism also focuses on adverbs. In addition to focusing on 

adjectives, humans also focus on nouns and adverbs on both datasets. The POSARs of RAN are 

obviously different from that of MA and ETs. Specifically, random attention focuses on adverbs 

and adjectives in sentences, but the attention to adverbs and adjectives changes dynamically under 

different word windows. 

Table 5. The Part-of-speech attention rates of different attention values 

WIN POS 
ZuCo ETSA-II 

MA RAN nFix FFD TRT RRT MA RAN nFix FFD TRT RRT 

3 

NN 1.61  0.98  1.43  1.56  1.50  1.47  1.13  0.98  1.33  1.32  1.31  1.29  

VB 1.41  1.01  1.27  1.18  1.17  1.16  1.11  0.90  1.29  1.24  1.31  1.29  

JJ 1.67  1.13  2.04  1.83  2.07  2.07  2.87  1.10  1.78  1.79  1.76  1.66  

RB 1.11  1.11  1.53  1.40  1.49  1.47  1.97  1.16  1.32  1.19  1.35  1.44  

4 

NN 1.59  1.01  1.45  1.53  1.48  1.45  1.23  0.95  1.33  1.28  1.35  1.27  

VB 1.43  1.00  1.25  1.23  1.21  1.15  1.13  0.94  1.30  1.26  1.28  1.28  

JJ 1.66  1.03  1.92  1.73  1.94  1.93  2.51  1.10  1.57  1.68  1.66  1.50  

RB 1.05  1.09  1.47  1.41  1.47  1.49  1.90  1.09  1.30  1.26  1.27  1.35  

5 

NN 1.57  1.03  1.46  1.49  1.49  1.44  1.26  1.00  1.29  1.28  1.30  1.23  

VB 1.37  0.98  1.23  1.22  1.21  1.18  1.16  0.93  1.24  1.20  1.27  1.27  

JJ 1.69  1.03  1.80  1.68  1.81  1.80  2.27  1.02  1.56  1.63  1.58  1.48  

RB 1.14  1.09  1.46  1.40  1.39  1.41  1.85  1.02  1.32  1.25  1.31  1.35  



The attention mechanism can recognize sentiment words. From Fig. 8, we found that under 

different sentiment tags, the proportion of positive words and negative words in sentences are 

different, as shown in the “all” item in the figure. For example, in Fig. 8 (a), when the sentiment tag 

is negative, the negative words in sentences account for a large proportion. In Fig.8 (c), the positive 

words in sentences account for a large proportion when the sentiment tag is positive. On ETSA-II, 

we found that when the sentiment tag is negative, the attention mechanism pays more attention to 

negative words than humans. When the sentiment tag is positive, the attention mechanism pays 

more attention to positive words than humans, as shown in Fig. 8 (d) and (e). On ZuCo, the SWARs 

of MA is equivalent to that of ETs. However, when the sentiment tags are neutral and positive, 

human attention is better than machine attention, as shown in Fig. 8 (a), (b) and (c). Compared with 

random attention, we found that machine attention performed better than random attention on ZuCo 

and ETSA-II. 

 

Figure 8. The sentiment word attention rates of different attention values 

4.4 The Effect of Eye-tracking Values on the Model 

By analyzing eye-tracking values and machine attention values, we found that the attention 

mechanism possesses the feature of human reading, focusing on important words in sentences when 

reading. To further reveal whether there is a correlation between machine attention and human 

attention, we introduced eye-tracking values into the model to enable fine-tuning of machine 

attention values. 

The eye-tracking values can improve model performance. Referring to the model proposed by 

Mishra et al. (2018), we also constructed a multi-task network model, as shown in Fig. 9. The model 

takes the sentiment classification as the primary task and eye-tracking prediction as the auxiliary 

task to fine-tune the machine attention values. We conducted experiments on ZuCo and ETSA-II, 

and the results are shown in Table 6. We can see that the performance of the model has been 

improved after adding the auxiliary task. Especially, the improvement has increased significantly 

on ZuCo. We believed that although the attention mechanism can focus on the important words in 



sentences, it also has the wrong attention due to the insufficient learning. However, eye-tracking 

values can provide corrections for this error. 

 

Figure 9. A multi-task model with sentiment classification as the primary task and eye-tracking 

prediction as the auxiliary task 

Table 6. The model performance after adding eye-tracking prediction auxiliary task 

 
ZUCO ETSA-II 

P R F1 P R F1 

Baseline 68.18  67.89  65.92  78.68  80.31  79.08  

+nFix 70.06  70.45  68.71  79.61  81.12  80.06  

+FFD 68.25  68.41  66.69  79.95  81.60  80.39  

+TRT 69.33  69.75  68.57  79.56  81.34  79.94  

+RRT 68.18  68.46  66.65  79.57  80.97  80.01  

The eye-tracking values can optimize machine attention. Fig. 10 shows the correlation changes 

between machine attention values and eye-tracking values before and after adding eye-tracking 

prediction auxiliary task (MA_* represents the machine attention values obtained after adding eye-

tracking prediction auxiliary task). It can be seen that the correlation between the machine attention 

values and the eye-tracking values is improved after adding eye-tracking prediction auxiliary task. 

It is worth noting that the SCCs of the fine-tuned machine attention values and eye-tracking values 

improved on ETSA-II, while the JSDs did not change significantly. Our interpretation is that the 

machine attention values before fine-tuned and ETs match better the numerical distribution, but 

differ greatly in word ranking, which has been explained in Section 4.3.1. However, the fine-tuned 

machine attention values were able to make up for this shortcoming, narrowing the difference in 

word ranking, and promoted the SCCs to rise, while the JSDs remains unchanged. To be more 

convincing, we enumerate three examples from ETSA-II, as shown in Fig. 11. We can see that the 

JSDs of MA and nFix, MA_nFix and nFix are equal, and the SCCs of MA_nFix and nFix is larger 
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…… 
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than that of MA and nFix. The eye-tracking values did help the attention mechanism to optimize 

the attention on some words weights. For example, the eye-tracking values help the attention 

mechanism improve the attention to the words "best" and "television" in Example 1. This 

improvement can also be seen in two other examples. 

 

Figure 10. The correlation changes between machine attention values and eye-tracking values 

before and after adding the eye-tracking prediction auxiliary task 

 

 Figure 11. Three examples of eye-tracking values fine-tuning machine attention values from 

ETSA-II 

5. Discussion 



This study is in the line of interpretability research of the attention mechanism. We proposed to use 

eye-tracking values to explore the relationship between machine attention and human attention. The 

eye-tracking values are a record of the feature of human reading, focusing on the important words 

in sentences when reading. Therefore, we demonstrated that the machine attention mechanism 

possesses this feature of human reading. Besides, after adding the auxiliary task of eye-tracking 

prediction to the model, the effect of the eye-tracking values on the machine attention values is 

analyzed. The following will discuss whether the attention mechanism is interpretable from a 

human-like perspective and the value of eye-tracking values to deep learning models.  

5.1 Human-like Interpretation of Attention Mechanism 

In recent years, many studies have explored the interpretability of attention mechanism, but no 

unified consensus has been reached (Jain and Wallace, 2019; Lei, 2017; Mullenbach et al., 2018; 

Sen et al., 2020; Wiegreffe and Pinter, 2020). Especially, the studies of Jain and Wallace (2019) 

and Wiegreffe and Pinter (2020) came to opposite conclusions. By analyzing their methods, we 

found that by modifying the machine attention value to observe its impact on the model performance, 

some unforeseen errors may occur. Because it is difficult to directly observe what the attention 

mechanism actually learns in the model, some small changes can affect the model outputs. This has 

prompted some scholars to explain the role of the attention mechanism from a human-like 

perspective, using human attention to explain the rationality of machine attention (Sen et al., 2020; 

Zhang, Sen, et al., 2022). 

Our study also explored what the attention mechanism is from a human-like perspective. We 

proposed to use eye-tracking values to explore the relationship between machine attention and 

human attention. The eye-tracking values can be regarded as a representation of human attention, 

as it records how long and how many times a human looks at a word in a sentence while reading. 

We conducted experiments on a sentiment classification task. The machine attention values were 

obtained form the model based on the additive attention mechanism. The reason why we use the 

additive attention mechanism is determined by our experimental datas. We found that the attention 

mechanism can focus on the important words considered by humans, and has a high degree of 

overlap. For a sentence, the attention mechanism can recognize adjectives and sentiment words, and 

even surpass human recognition ability. This indicates that the attention mechanism possesses the 

feature of human reading, focusing on the important words in sentences. Therefore, we believe that 

the attention mechanism can be explained from the human-like perspective. Although we only 

experiment with additive attention mechanism, we believe that more advanced attention 

mechanisms also possess these features. For example, Clark et al. (2019) claimed that the BERT's 

attention captures a lot of grammatical information, and can focus on the direct objects of verbs, 

determiners of nouns, objects of prepositions, and coreferent mentions. Htut et al. (2019) found that 

some specialist attention heads track individual dependency types in BERT and RoBERTa. 

Goldberg (2019) found that the attention-based BERT model can capture syntactic regularities in 

sentences. These studies also confirmed this conclusion. 

5.2 The Value of Eye-tracking values to Deep Learning Models 

To improve the performance of deep learning models, the study of adding eye-tracking values to 

the models has attracted the attention of many scholars (Agrawal and Rosa, 2020; Barrett et al., 

2016, 2018; Long et al., 2017; Zhang and Zhang, 2021). It is generally believed that human attention 

can help the models correct some wrong attention, so that they can learn the features of samples 



better to output more accurate results (Rong et al., 2021). Therefore, in our study, we also integrated 

the eye-tracking values into the sentiment classification model, expecting to fine-tune the machine 

attention values and improve the model performance. 

In Section 4.4, we designed a multi-task network model, as shown in Fig. 9. The model takes the 

sentiment classification as the primary task and eye-tracking prediction as the auxiliary task to fine-

tune the machine attention values. Through experiments, we found that the model performance was 

improved after adding the eye-tracking prediction task. The eye-tracking values can fine-tuning the 

machine attention values so that it can correctly capture important words in sentences. The 

correlation between the fine-tuned machine attention values and eye-tracking value is also improved. 

This indicates that eye-tracking values can indeed optimize machine attention. Our study provides 

a rationale for the studies using eye-tracking values to improve model performance. How to use the 

eye-tracking values in models, we have summarized in Section 2.1, and will not repeat it here. 

6. Conclusion and Future Works 

To explore the attention mechanism possesses the feature of human reading, focusing on the 

important words in sentences when reading, we compared the machine attention values obtained by 

the sentiment classification model based on additive attention mechanism and the eye-tracking 

values obtained by two open-source ETCs, i.e, ZuCo and ETSA-II. Through experiments, we found 

the attention mechanism can focus on important words, such as adjectives, adverbs, and sentiment 

words, which are valuable for judging the sentiment of sentences on the sentiment classification 

task. It indicates that the attention mechanism possesses the feature of human reading, focusing on 

important words in sentences when reading. Due to the insufficient learning of the attention 

mechanism, some words are wrongly focused. The eye-tracking values can help the attention 

mechanism correct this error and improve the performance of the model. 

Our research yielded some interesting conclusions in simple models, and some more advanced 

models were dropped here. The reason is that some encoding layers affect the distribution of 

machine attention values, so we only consider obtaining machine attention values in a clean 

environment to perform the comparison with eye-tracking values. In future work, we will consider 

the machine attention values obtained after adding various coding layers, and analyze their 

comparative analysis with eye-tracking values. Besides, the current study is only designed for a 

sentiment classification task, and we can consider more tasks in the future to analyze the relationship 

between machine attention and human attention. 
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