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AbstractÐIn robot navigation, one of the important and fundamental issues is to find positions of landmarks or vision sensors located

around the robot. This paper proposes a method for reconstructing qualitative positions of multiple vision sensors from qualitative

information observed by the vision sensors, i.e., motion directions of moving objects. In order to directly acquire the qualitative

positions of points, the method proposed in this paper iterates the following steps: 1) observing motion directions (left or right) of

moving objects with the vision sensors, 2) classifying the vision sensors into spatially classified pairs based on the motion directions,

3) acquiring three point constraints, and 4) propagating the constraints. Compared with the previous methods, which reconstruct the

environment structure from quantitative measurements and acquire qualitative representations by abstracting it, this paper focuses on

how to acquire qualitative positions of landmarks from low-level, simple, and reliable information (that is, ªqualitativeº). The method has

been evaluated with simulations and also verified with observation errors.

Index TermsÐQualitative spatial representation, qualitative observation, spatially classified pair, three point constraint, constraint

propagation, map building.

æ

1 INTRODUCTION

IN robotics and computer vision, acquisition of environ-
ment maps, which represent landmark positions and

sensor positions, and their utilization are important
research issues. Various quantitative and qualitative meth-
ods have been proposed so far. In general, quantitative
methods [1], which use triangulation, stereo techniques,
range sensors, etc., are based on the accumulation of precise
metrical information. Triangulation, for example, is gen-
erally sensitive against sensory noise and accumulates
errors, especially for some configurations of landmarks
[2], so that proper error models and noise filtering
techniques are necessary for quantitative methods [3], [4],
[5], [6]. In contrast, it is expected that qualitative methods
are not seriously affected by sensory noise and enable us to
navigate robots in a wide environment, for example.

Levitt and Lawton reported a qualitative method for

landmark-based robot navigation in an outdoor environ-

ment [7]. The robot observes the order of landmarks located

around it and refers to a map to identify its qualitative

location. The map indicates precise locations of the land-

marks and defines qualitative locations, as shown in Fig. 1a.

Besides this method, several works have been reported

which utilize predefined qualitative maps and qualitatively

utilize standard geometrical maps.

On the other hand, acquisition of the qualitative map itself
is also necessary. Most of the previous works acquire
qualitative landmark positions from observed quantitative
information in the same way as triangulation, for example.
However, the acquired map may not be consistent especially
in a large-scale environment since the sensory data is noisy. A
method which acquires qualitative landmark positions from
more low-level and reliable information would be useful for
robot navigation, etc., however, such a method has not been
proposed so far.

Several methods have been proposed which acquire
qualitative spatial representation by quantitative observa-
tion. Yeap developed a method for acquiring a cognitive
map based on 2 1

2 -D representation of local areas [8]. The
map is acquired with range sensors. Kuipers and Byun
proposed a method for acquiring qualitative representation
by exploration of a robot [9]. The representation consists of
corridors and intersections recognized from sensory input.
These methods deal with abstraction problems from
perceptual information of a real world into qualitative
representation and discuss how to integrate local represen-
tations into a global representation.

In this paper, we propose a method for reconstructing
qualitative positions of landmarks from qualitative informa-
tion acquired by visual observation [10]. The method
observes motion directions of moving objects in an
environment from several landmarks, as shown in Fig. 2a.
While the objects move around the environment, the
method acquires qualitative positions of the landmarks
with several rules based on geometrical constraints. Gen-
erally, we consider that qualitative information is abstracted
from quantitative information. However, the correctness of
the qualitative information obviously depends on measure-
ment methods. We use motion directions of moving objects
as qualitative information since they are stably obtained by
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tracking the objects for a sufficiently long time. Thus,

compared with the previous acquisition methods, this

paper focuses on how to acquire qualitative positions of

landmarks from low-level, simple, and reliable information.
As an application of the method proposed in this paper,

we consider a distributed vision system (DVS) [11], [12]. The

DVS consists of multiple vision sensors embedded in an

environment, as shown in Fig. 3, called vision agents, and

successfully navigates robots based on visual information.

Although the DVS does not use a geometrical map in robot

navigation, qualitative positions of the sensors may be

useful for coarse path planning of the robots. The proposed

method can be applied to acquisition of the qualitative

sensor positions in the DVS.
However, it is not only for the DVS. It can acquire

qualitative maps of landmarks in general robot navigation.

Suppose the robot has an omnidirectional vision sensor [13],

observes motion directions of landmarks in the omnidirec-

tional retina, as shown in Fig. 2b. If the robot can identify all

of the landmarks or keep track of them anywhere in the

environment, it can acquire the qualitative landmark

positions with this method by observing their motion

directions. In addition, the acquired map can be used for

map-based robot navigation [7]. Thus, the method solves

one of the general and fundamental problems in robot

navigation and map building. Furthermore, the method is

an algorithm for localizing multiple points based on

analysis of geometrical constraints and can be applied to

other domains as well as robotics. For example, it may be

used for coarse localization of sensors in surveillance

applications using multiple cameras, radars, and so on.
In the following sections, we first introduce qualitative

representation and qualitative observation in Section 2, then
provide the detailed process for acquiring qualitative
positions of landmarks in Section 3. Section 4 discusses
the sensitivity of quantitative methods and the advantages
of our method. Finally, we evaluate the proposed method
with simulations in Section 5.

2 QUALITATIVE REPRESENTATION AND

QUALITATIVE OBSERVATION

2.1 Qualitative Spatial Model

In our method, the positions of points (in the remaining
sections, we refer to landmarks as ªpointsº) are represented
with relative positions with respect to lines passing over
arbitrary two points, as shown in Fig. 1a. This is one of the
simplest representation and various methods have been
proposed in the field of qualitative spatial reasoning [14],
[15], [16], [17]. This representation can be used for map-
based robot navigation [7].

Fig. 1b, called a qualitative spatial model, is a formal
representation of the qualitative positions of the points
shown in Fig. 1a. The model consists of several components,
each of which represents positional relations among
arbitrary three points as follows [18] (see Fig. 4):

. pipjpk � � if pi ! pj ! pk lie in counterclockwise,

. pipjpk � ÿ if pi ! pj ! pk lie in clockwise,

where pi, pj, and pk are arbitrary three points. In the case of
six points, as shown in Fig. 1, these 6

3

ÿ � � 20 components are
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Fig. 1. Qualitative representation of positions. (a) An example config-

uration of points. (b) The corresponding qualitative spatial model.

Fig. 2. Observation for acquiring qualitative positions. (a) A sensor at
each landmark observes motion directions of moving objects in the
environment. (b) A moving robot observes motion directions of
landmarks.

Fig. 3. Distributed vision system. The vision agents embedded in the

environment navigate mobile robots.

Fig. 4. Qualitative representation of positional relations among three

points.



needed to represent all positional relations among the
points.

The purpose of this paper is to propose a method to
acquire the qualitative spatial model, as shown in Fig. 1b by
qualitative observation described in the following section.

2.2 Qualitative Observation

The qualitative spatial model is acquired by observing
motion directions of moving objects from each point. In the
case of Fig. 2a, for example, vision sensors at the points A
through D simultaneously observe instant motion direc-
tions of the object. When the projection of the moving object
moves clockwise in the omnidirectional retina of a vision
sensor, the motion is qualitatively represented as ªrightº
and when it moves counterclockwise, it is represented as
ªleft.º Note that the same information can also be obtained
by opposite observation, i.e., when a mobile robot observes
motion directions of points, as shown in Fig. 2b.

With the observed motion directions, the points are
classified into a spatially classified pair (SCP), which consists
of a pair of point sets labeled ªleftº and ªright.º In the case
of Fig. 2, an SCP ªfABDg, fCgº is acquired by observation,
which means that there is a straight line that classifies the
points into such a pair of point sets. By iterating the
observation while the object moves around the environ-
ment, various SCPs are acquired except inconsistent ones.
For example, an SCP ªfADg, fBCgº is inconsistent with the
configuration of the points shown in Fig. 2, since there is no
straight line which classifies the points into such a pair.

Note that if the sensor cannot determine the motion
direction of the object, the sensor (point) will not appear in the
SCP. This means that the SCP has no information with respect
to the point position. The qualitative spatial model is acquired
from the SCPs, as described in the next section, however, the
qualitative position of a point will not be acquired unless it
observes the motion direction of the object.

3 ACQUISITION OF THE QUALITATIVE SPATIAL

MODEL

3.1 Overview

SCPs represent geometrical constraints among positions of

points, as described in the previous section. The qualitative

spatial model, an example of which is shown in Fig. 1b, is

acquired from the SCPs by iterating the following steps (see

Fig. 5):

1. Acquire an SCP by qualitative observation (see
Section 2.2).

2. Acquire three point constraints (3PCs) from the SCP.
3. Classify the points into new SCPs based on the 3PCs,

and acquire new 3PCs (constraint propagation).
4. Transform the 3PCs into the qualitative spatial

model.

The following sections explain Steps 2, 3, and 4.

3.2 Acquisition of Three Point Constraints

In order to determine the qualitative positions of the points,

our method checks possible positions of the fourth point

with respect to a triangle consisting of three points. Since a

triangle is the minimum component to represent closed

regions, we can represent the qualitative positions of all

points by combining the triangles.
Let us consider four points A, B, C, and X. The

qualitative position of X with respect to A, B, and C is

represented with one of the seven regions defined with

three lines AB, AC, and BC, and encoded, as shown in

Fig. 6. Several constraints which limit possible regions of X

are acquired from SCPs based on geometrical constraints.

Suppose A, B, C, and X are classified into SCPs ªP, Qº in

various ways, as shown in Fig. 7. Considering positional

symmetry of the points, the geometrical constraints are

summarized into the following cases:

1. When P includes A, B, and C:
If P also includes X, there is no constraint on the

position of X. If Q includes X, which is the other set

to P, X is not located in the region 111 (see Fig. 7 (1)).
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Fig. 5. Process for acquiring the qualitative spatial model.

Fig. 6. Seven regions defined with three points.

Fig. 7. Three point constraints. The crosses represent regions where X

is not located.



2. When P includes A and Q includes B and C:
If P also includes X, it is not located in the region

011 (see Fig. 7 (2)). If Q includes X, it is not located in
the region 100 (see Fig. 7 (3)).

We call these constraints three point constraints (3PCs). In
general, there are six different SCPs with respect to
arbitrary four points, as shown in Fig. 8a. The six SCPs
are acquired by observation if motion directions of objects
are sufficiently observed from the points, and they are
transformed into six 3PCs with respect to each point's
position, as shown in Fig. 8b, which uniquely determine the
region of the point. In the same way, the qualitative
positions of all points are determined when all possible
SCPs are acquired by observation.

3.3 Constraint Propagation

Various SCPs and 3PCs are acquired by iterating observa-
tion of motion directions of objects, however, in practice
there are some limitations of observation. For example,
vision sensors cannot observe objects in distant locations
and behind walls. In this case, the observation will not
provide sufficient SCPs (and 3PCs) for reconstructing a
complete qualitative spatial model. However, the 3PCs
acquired from SCPs provide further 3PCs. This can be
considered as constraint propagation.

A simple example of the constraint propagation is as
follows: Let us consider five points A through E. When the
positions of D and E have been uniquely determined with
twelve 3PCs with respect to A,B, and C, as shown in Fig. 9a,
the points C, D, and E, for example, are classified into the
following SCP with the line AB:

fDg; fCEg: � � � �1�

Note that the notation of the qualitative positions in

Figs. 9, 10, 11, and 12 is different from that of 3PCs, as

shown in Fig. 7 and 8, for simple representation. That is,

3PCs originally represent regions where a point is not

located, however, these figures indicate regions where a

point is located.
Furthermore, there are four lines around the line AB

which classify the five points, including A and B, into the

following SCPs (the numbers correspond to those in Fig. 9a):

1:fADg; fBCEg
2:fBDg; fACEg
3:fABDg; fCEg
4:fDg; fABCEg:

� � � �2�

There are 5
2

ÿ � � 10 lines which pass over two points out

of A through E. Each line classifies the points into several
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Fig. 8. An example of possible (a) SCPs and (b) 3PCs. For general

configuration of four points, six SCPs are acquired by observation and

transformed into six 3PCs.

Fig. 9. An example of constraint propagation. (a) An example of

positions. (b) Propagated positions.

Fig. 10. Classifications for the constraint propagation.

Fig. 11. SCPs including the points on the classifying line.



SCPs in the same way. Consequently, the following seven

different SCPs are acquired in the case of Fig. 9a:

fABCDg; fEg fACEg; fBDg
fABCEg; fDg fADg; fBCEg
fABDg; fCEg fAEg; fBCDg
fACDg; fBEg:

Then, these SCPs are transformed into several 3PCs, as

described in Section 3.2. Fig. 9b shows an example of

possible positions of B and C with respect to A, D, and E

acquired from these SCPs.

3.4 Formalization of the Constraint Propagation

The process for acquiring new SCPs described in the

previous section is as follows:

1. Acquire an SCP classified by a line passing over
arbitrary two points (an example is the SCP (1) in the
previous section).

2. Then, transform it into four SCPs including the two
points (an example is the SCPs (2)).

This process can be formally summarized as follows:
Let us suppose that positions of several points (i.e.,

regions where they are located) with respect to a triangle

ABC have been uniquely determined with 3PCs. Then, a

line is considered which passes over two of the points

and classifies the other points into an SCP. Considering

positional symmetry of the points, there are 15 kinds of

selection of two points which the classifying line passes

over, as shown in Fig. 10, where the circles indicate the

selected two points and the points in the regions X and

Y are classified into an SCP ªfXg, fYgº with the line.

Fig. 10 (1) corresponds to the case in which the selected

points are two of A, B, and C. Fig. 10 (2) through (6)

correspond to the case in which one of the selected points

are A, B, and C. Fig. 10 (7), (8), and (9) correspond to the

case in which the selected points are located in the same

region. Fig. 10 (10) through (15) correspond to the case in

which the selected points are located in different regions.

Note that no SCP is acquired in Fig. 10 (7), (8), (9), and

(13), and an SCP ªfXg, f;gº is acquired in Fig. 10 (10),

(11), and (14).
Then, SCPs, including the two points on the classifying

line, are considered. Suppose the line AB classifies the other

points into an SCP ªfXg, fYg.º Although A and B are not

included in the SCP in the above discussion, there are four

lines which classify A and B, as well as X and Y into the

following SCPs (see Fig. 11):

fAXg; fBYg fABXg; fYg
fBXg; fAYg fXg; fABYg:

Thus, new SCPs can be acquired from 3PCs, then the SCPs
are transformed into new 3PCs, as described in Section 3.2.

In the above discussion, the constraint propagation is
performed when the positions of the points have been
uniquely determined with 3PCs (i.e., each point is located in
one of the seven regions of a triangle). However, even if
they have not been uniquely determined, the constraint
propagation can be performed with respect to the points
each of which is located only in the region X or Y shown in
Fig. 10. In the experimentation of Section 5, the constraint
propagation is performed under such a situation.

3.5 Transforming into the Qualitative Spatial Model

The 3PCs are transformed into the qualitative spatial model
(see Fig. 1b) as follows: For example, if the position of X
with respect to A, B, and C has been determined with 3PCs,
as shown in Fig. 12, then the order of BCX (B! C ! X) is
determined to be opposite to that of ABC (A! B! C);
that is, BCX � ÿ if ABC � �, and BCX � � if ABC � ÿ.
If the order of ABC is given, the order of BCX is uniquely
determined. Consequently, all components of the qualita-
tive spatial model are uniquely determined when six 3PCs
with respect to each point's position have been acquired, as
shown in Fig. 8b.

3.6 Computational Costs

In this section, we discuss the computational costs of the
algorithm. Note that the discussion excludes the constraint
propagation since its behavior is complicated.

As discussed in Section 3.2, qualitative positions of all
points are determined when all possible SCPs are acquired
by observation (see Fig. 8). The k-sets theory [19] gives the
number of possible SCPs (i.e., the number of straight lines
which classify the points into different SCPs) as follows: In
the k-sets theory, it has been proved that the upper bound of
the number of point sets, which contain at most k points
and are cut off by straight lines from n points in a plane, is
kn (k < n=2). The case of the SCPs is considered as the same
problem for k � n=2 (i.e., we consider all of the straight
lines including those which classify the n points into exact
halves). It has not been proved for k � n=2 so far, however,
it is estimated to be O�n2� [20]. Thus, the number of possible
SCPs is O�n2�. In other words, our method has to observe
different motion directions of objects O�n2� times to acquire
the qualitative positions of n points.

Next, the number of 3PCs which the method needs to
check in order to acquire the qualitative spatial model is
considered. If motion directions of objects are observed
from all of n points, every SCP obtained by the observation
contains all of the n points. Then, the algorithm chooses
arbitrary three points out of n points in the acquired SCP
and checks 3PCs with respect to remaining �nÿ 3� points,
as described in Section 3.2. Consequently, the algorithm
checks f n

3

ÿ ��nÿ 3�g � O�n4� 3PCs for every SCP. Since the
number of SCPs needed to acquire the positions of n points
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Fig. 12. Transformation into the qualitative spatial model.



is O�n2� as described above, the method checks O�n6� 3PCs
to acquire the qualitative spatial model.

However, the number of 3PCs needed to represent the
qualitative positions of points is far less than that. As
described in Section 3.2, the qualitative position of a point
with respect to arbitrary three points out of �nÿ 1� is
uniquely determined with six 3PCs, as shown in Fig. 8.
Therefore, fn � nÿ1

3

ÿ � � 6g � O�n4� 3PCs are needed to repre-
sent the qualitative positions of n points. Since the number
of 3PCs the method checks is O�n6� as described above, it
redundantly checks many 3PCs.

3.7 Distributed Computation

As described above, the computational costs of the
proposed method are rather high. However, for practical
implementation, we can expect to employ parallel compu-
tation using distributed computing resources. Let us
suppose that each sensor has computational ability. The
qualitative spatial model can be acquired in a distributed
manner as follows:

1. Observe motion directions of objects simultaneously.
2. Exchange the motion directions with other sensors

which observed the same object and acquire an SCP.
3. At each sensor, independently compute 3PCs and

the components of the qualitative spatial model
related to the sensor position.

In the distributed computation, it is expected that the
method can acquire the qualitative spatial model even if the
number of the sensors increases since, in practice, vision
sensors do not observe objects in distant locations, and the
computation of SCPs and 3PCs is performed only at the
sensors which observed objects. However, the message
exchange costs among the sensors may increase. In future
work, problems in the distributed computation should be
considered in more detail.

4 ADVANTAGES OF THE QUALITATIVE METHOD

Theoretically, the qualitative spatial model can be also
acquired by quantitative methods which transform metrical
positions of points into qualitative positions. This section
considers quantitative methods which directly acquire
metrical positions of sensors from visual information
without any other sensory information and discusses the
advantages of the proposed method.

4.1 Quantitative Method

Let us consider the same scenario as the qualitative method,
that is, multiple vision sensors measure their own metrical
positions by observing azimuth angles without reference
points of known positions, as shown in Fig. 13a. In the
following discussion, we suppose that the positions of the
sensors are directly measured from the azimuth angles.

The following equation represents the constraints among
the sensor positions:

cos �ijk �
�pi ÿ pj� � �pk ÿ pj�
jpi ÿ pjjjpk ÿ pjj

; �1�

where pi, pj, and pk represent the positions of arbitrary
three sensors on a 2D plane and �ijk is given by observing

the angle between pi and pk from pj. If the sensors are very
small and cannot observe each other, they observe objects in
the environment instead, as shown in Fig. 13b. In this case,
pj represents the positions of the sensors, and pi and pk
represent those of the objects.

Let us suppose that there are 10 sensors of unknown

positions observing moving objects. In order to compute the

metrical positions, the sensors have to measure azimuth

angles to four objects, from which we obtain 30 equations

based on (1). These nonlinear simultaneous equations are

generally solved by numerical methods which compute

approximate solutions using proper initial estimates [3]. This

process is a kind of triangulation, which can be in general

very sensitive against observation errors for some config-

urations of reference points (i.e., the objects) [2]. Therefore,

proper error models are necessary for acquiring better

solutions [4], [5]. Note that, in our scenario, the equations

representing the sensor and object positions are more

sensitive than those of conventional triangulation, since the

positions of the reference points (objects) are also unknown.

In addition, if the objects are not small points and have

complex shapes, the measurements of azimuth angles to the

objects may be noisy in practice. Therefore, iterative ob-

servation and noise filtering techniques are necessary [3], [6].
The qualitative spatial model can be obtained from the

metrical positions of the sensors. However, the sensitive

nonlinear equations and observation errors may yield

wrong qualitative positions of the sensors in the model.

4.2 Qualitative Method

In the qualitative method, the acquisition process described
in Section 3 itself is sensitive against errors of motion
directions so that even a few errors may cause wrong
qualitative positions in the qualitative spatial model. More
specifically, observation errors may yield wrong SCPs and
3PCs as follows: If the observation error yields an
inconsistent SCP (inconsistent classification, such as
ªfADg, fBCgº in the case of Fig. 2), wrong 3PCs are
acquired, which mistakenly determine the qualitative
positions of points. In addition, only six kinds of 3PCs
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Fig. 13. Acquisition of quantitative sensor positions. (a) Each sensor

observes other sensors. (b) Each sensor observes objects in the

environment instead of sensors.



should be acquired with respect to arbitrary four points, as

shown in Fig. 8, however, inconsistent SCPs may give all of

the seven 3PCs, from which correct qualitative positions

cannot be acquired. For this problem, Section 5.3 provides a

simple method which statistically eliminates wrong 3PCs.
Thus, the algorithm itself is sensitive against observation

errors. However, observation of motion directions of

moving objects is fairly stable in practice. Let us suppose

the following method for detecting motion directions of a

robot with multiple vision sensors:

1. Detect the robot by background subtraction.
2. Find several small regions, such as vertical edges

which can be used for template matching (indicated
with the white rectangles in Fig. 14).

3. Compute optical flows by template matching (the
horizontal lines in the white rectangles indicate the
optical flows).

4. Check the direction of each flow and determine the
motion direction of the robot based on majority rule.

We have verified the above method with a model town

made for the distributed vision system (see Fig. 3). There are

five vision sensors, which observe a robot at a distance

between 50cm and 150cm and take images of 160� 120 pixels

whenever the robot moves approximately 5cm. In this

experimentation, we have taken 250 images in total and

determined the motion direction D 2 fL;R;N; ?g (left, right,

no motion, and unknown, respectively) based on the number

of the templates as follows:

. D � L if nL � 3 and nL � 2�nR � nN�,

. D � R if nR � 3 and nR � 2�nL � nN�,

. D � N if nN � 3 and nN � 2�nL � nR�,

. otherwise D � ?,

where nL and nR are the number of templates which moved

left and right, respectively, and nN is that of no motion. A

threshold for detecting the motion directions of the

templates is 1 pixel.

Fig. 14 shows part of the experimental results, where five

successive images taken with each vision sensor and

estimated motion directions are shown. The above method

correctly determined 113 motion directions (L* and R* in

Fig. 14) out of 250 and could not determine 137 motion

directions (21 of which are no motion (N) and 116 are

unknown (?)). This means that the optical flow estimation

by template matching provides correct motion directions if

we refer to an enough number of templates. Furthermore,

the intervals for taking images and the threshold for motion

detection are fixed in this experimentation, however, if we

dynamically adjust them according to the motion of the

robot and use high-resolution vision sensors, the above

method for detecting motion directions will provide better

results. Note that the latter 137 results do not affect the

correctness of the qualitative spatial model, as described in

Section 2.2.
The method is the simplest one and there exist more

sophisticated methods. We can expect that, in general,

correct motion directions of objects are obtained if they are

tracked for a sufficiently long time. Thus, it is possible to

stably acquire qualitative motion directions by image

processing and the qualitative method proposed in this

paper is considered as an alternative to quantitative

methods for acquiring qualitative positions of points by

visual observation in a simple and stable manner.

5 EXPERIMENTAL RESULTS

5.1 Verification with a Simple Environment

We have acquired the qualitative spatial model represent-

ing qualitative positions of vision sensors by the proposed

method with simulations. First, we have verified the

method with a simple environment. In the environment,

there are 20 vision sensors and a moving object in a

20m x 20m space, as shown in Fig. 15 The vision sensors

have omnidirectional views and observe motion directions

of the object in all directions whenever it randomly moves
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Fig. 14. Motion directions detected by background subtraction and template matching. Five successive images taken with each vision sensor are

shown. The numbers in parentheses indicate nL=nR=nN , and L, R, N, and ª?º indicate the detected motion directions.ª*º indicates that the detected

motion direction (L or R) is correct.



1m on the light gray region in Fig. 15. However, they cannot

observe the object at a distance of more than 10m or behind

walls (indicated with the white lines in Fig. 15). In this

experiment, the number of components of the qualitative

spatial model (represented with ª�º and ªÿ,º as shown in

Fig. 1b) is 20
3

ÿ � � 1;140. However, the proposed method

cannot acquire all of the components since the sensors

cannot observe sufficient motion directions of the object. It

is estimated from the configuration of the sensors that about

560 components will be acquired without constraint

propagation.
Fig. 16 shows the average number of acquired compo-

nents over five runs. With 5,000 observations, the method

has determined the directions (ª�º or ªÿº) of 490 compo-

nents without constraint propagation. On the other hand, it

has determined the directions of 969 components with

constraint propagation, which are twice as many as those

acquired without constraint propagation, and 85 percent of

all components.

5.2 Application to a Complex and Realistic
Environment

Next, we have evaluated the method with a complex and

realistic environment. The purpose of this experimentation

is to evaluate practicality of the method.
There are 35 vision sensors and eight moving objects in a

30m x 30m space, as shown in Fig. 17 (this is similar to the

real environment, as shown in Fig. 3). The objects are
identified by their color. In this environment, the number of

the components is 35
3

ÿ � � 6;545 and it is estimated that about

540 components will be acquired without constraint

propagation.
Fig. 18 shows the average number of acquired compo-

nents over five runs. Note that the acquisition of the

components is accelerated to eight times faster than that in
the experiment of Section 5.1, since there are eight moving

objects. With 2,000 observations, the method has deter-

mined the directions of 513 components without constraint
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Fig. 15. Simple environment with 20 vision sensors and a moving object.

The walls in the center of the environment obstruct the views of the

sensors.

Fig. 16. The number of components acquired with 20 vision sensors in

the simple environment.

Fig. 17. Complex environment with 35 vision sensors and eight moving

objects. The white lines indicate walls.

Fig. 18. The number of components acquired with 35 vision sensors in

the complex environment.



propagation, which is almost equal to the estimated number

of 540. With constraint propagation, it has determined the

directions of 707 components. In other words, the constraint

propagation has acquired about 200 components, which

represent the positions of the sensors in distant locations.

However, the method could not determine the other

components on account of the limitations of observation.
Figs. 19a and 19b show the qualitative positions of the

sensors depicted based on the 3PCs acquired in the

environments Fig. 15 and 17, respectively. The reason we

have used the 3PCs in spite of the components of the

qualitative spatial model is that all of the 3PCs cannot be

transformed into the components, and they include more

constraints than the components. For obtaining Fig. 19, we

first located the sensors randomly, then dynamically

adjusted the positions by iterating the following steps for

arbitrary points, so as to satisfy the constraints of the

acquired 3PCs:

1. Compute the force F (/ exp�d�) with respect to an
arbitrary triangle ABC, which moves a point X into
a correct region. d is a distance between the current
position of X and the correct region (see Fig. 20).

2. Gradually move X based on the resultant of F.

By comparing Fig. 19a with Fig. 15, and Fig. 19b with
Fig. 17, we can find that the acquired positions are
topologically correct, that is, the order of connections
among the sensors is correct. Although the method could
not acquire all of the components, these qualitative maps
are sufficient for map-based robot navigation, as shown in
Fig. 1a [7], since the qualitative positions of neighboring
sensors have been acquired. It can also be used for coarse
path planning in the distributed vision system: If we
suppose that the sensors (i.e., vision agents) observe the
size of the robot, they know which sensor is nearest to the
robot, and can determine the order in which they navigate
the robot to its destination.

5.3 Observation Errors

As described in Section 4.2, observation of motion direc-
tions is stable against sensory noise. The proposed method
can acquire correct positions of points as long as observed
motion directions are correct, however, once a wrong
direction is observed, several wrong SCPs and 3PCs may
be acquired, which causes inconsistency in the qualitative
spatial model. In this section, we consider the observation
errors to verify the sensitivity of the acquisition algorithm
itself.

First, we have verified the method in a noisy environ-
ment, where the configuration of the sensors is the same as
Fig. 17, however, approximately 16 percent of motion
directions of the objects are mistakenly determined. Fig. 21
shows the average number of acquired components and
that of wrong components (i.e., components whose direc-
tions (ª�º or ªÿº) are mistakenly determined) over five
runs. With 2;000 observations, the method has acquired 795
components including 234 wrong components. Note that
the number of the acquired components is more than that of
the experiments in Section 5.2 since various SCPs have been
acquired on account of observation errors.

In order to eliminate wrong 3PCs, we consider the
following statistical method. As described in Section 4.2, not
all of the seven 3PCs with respect to arbitrary four points
should be acquired with observation. If we suppose that the
objects randomly move around and various SCPs and 3PCs
are equally acquired multiple times by observation, a
considerable number of wrong 3PCs can be eliminated by
checking the 3PCs acquired relatively less times than others.
With this error elimination, the proposed method has
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Fig. 19. Qualitative positions of the vision sensors depicted based on

the acquired 3PCs. (a) 20 vision sensors with 5,000 observations.

(b) 35 vision sensors with 2,000 observations.

Fig. 20. Force F which acts on X with respect to a triangle ABC.



determined 499 components as indicated with ªerror

eliminationº in Fig. 21, and reduced the number of wrong

components to 32. In other words, the error elimination
method could reduce the ratio of wrong components from

29 percent to 6 percent, though it also reduced the total

number of acquired components. However, more sophisti-

cated error elimination methods will be necessary since the

above method could not eliminate all of the wrong 3PCs.

5.4 Discussion

In the experimentation, the proposed method could not

acquire the components representing positional relations of

sensors 1) in distant locations, 2) behind walls, and 3) in a

straight line (e.g., in Fig. 15, sensors 13-15-18, 1-3-4, etc.). It
is not easy to acquire all of the components with respect to

1) and 2) on account of the limitations of observation. In

addition, if there are concavities in the environment (e.g.,

several sensors may be surrounded with walls), it will be

also difficult to acquire the components. In future work, it

should be analyzed how the acquisition process is affected
by the structure of the environment. With respect to 3), the

qualitative spatial model cannot originally represent such a

positional relation, however, it will be estimated from

acquired 3PCs that several sensors are located in a straight

line.
With respect to observation errors, the statistical method

cannot eliminate all of the wrong 3PCs. In addition, it does

not check inconsistency among acquired 3PCs, that is,
whether the points can be localized so as to satisfy all of the

acquired 3PCs. In fact, the positional relations cannot be

depicted in the experiment of Section 5.3 on account of

inconsistency in the acquired model. Therefore, geometrical

approaches, such as triangle constraints [21], should be

developed for more effective error elimination. In such

methods, backtracking will be necessary in the same way as
constraint satisfaction problems [17]. Especially with dis-

tributed computing resources, as discussed in Section 3.7,

distributed constraint satisfaction problems [22], [23] can be

applied to the error elimination.

6 CONCLUSION

This paper has proposed a method for acquiring a

qualitative spatial representation from qualitative motion

information of moving objects. Key points of this paper are:

. Qualitative positions of landmarks are acquired
from motion directions of objects, which are purely
qualitative information and obtained with stable
observation.

. With constraint propagation, the positions of land-
marks in distant locations can be acquired if sensors
are partially observable.

We have presented with simulations that the method is

valid for acquiring the qualitative positions of multiple

vision sensors.
Finally, we discuss the remaining problems. In the

simulations, we shave proposed using omnidirectional

vision sensors. If normal vision sensors are used instead

of them, there will be some ªblind spotsº where they cannot

simultaneously observe an object, which makes it difficult

to acquire the qualitative spatial model with the proposed

method on account of insufficient observation. However,

the method can acquire the qualitative positions as long as

the sensors simultaneously observe motion directions of the

object somewhere in the environment. In future work, the

condition of visual angles of sensors needed to acquire the

qualitative spatial model should be clarified.
The correspondence problem of multiple objects should

also be addressed. In a real environment, it is difficult to

identify many objects, especially when the positions of the

sensors are unknown. Therefore, the correspondence errors

should also be checked with the elimination method of

observation errors.
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