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Abstract—This paper surveys the developments of the last 20 years in the area of vision for mobile robot navigation. Two major

components of the paper deal with indoor navigation and outdoor navigation. For each component, we have further subdivided our

treatment of the subject on the basis of structured and unstructured environments. For indoor robots in structured environments, we

have dealt separately with the cases of geometrical and topological models of space. For unstructured environments, we have

discussed the cases of navigation using optical flows, using methods from the appearance-based paradigm, and by recognition of

specific objects in the environment.

Index Terms—Mobile robotics, navigation, computer vision, indoor navigation, outdoor navigation.
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1 INTRODUCTION

WRITING a survey paper on computer vision for mobile
robot navigation—a subject that was in high promi-

nence in the 1980s and the first half of the 1990s—is
daunting, if not actually hazardous to one’s career. A
survey paper cannot merely be a catalog of all the articles
published on a subject—the list would be much too long
and nothing substantive would be said about each
contribution. The alternative is to include in a survey only
those contributions that the authors deem interesting—
which is what we have done in this paper. We do realize
that the latter approach is asking for trouble, especially in
the light of the fact that the members of the research
community hold widely differing opinions on what
contributions were genuinely original and what merely
derivative.

Another challenge in writing a survey on computer
vision for mobile robot navigation is that even the
perception of what constitutes progress varies widely in
the research community. To us, for a mobile robot to engage
in vision-based hallway navigation in the kinds of environ-
ments shown in Fig. 1 represents significant progress for the
entire research community. But, others would pooh-pooh
such an accomplishment on various grounds. To the extent
that successful attempts at vision-based navigation in the
cluttered environments of the kind shown in the figure use
underlying models of space that are highly geometrical, the
“nonbelievers” could question the “nonhuman” nature of
these models. The nonbelievers would add—and do so
rightly—that such representations would be difficult to
extend to other scenarios where a robot may need to seek
out certain objects in the environment on the basis of their
semantic significance in the presence of competing clutter.

Despite these challenges, we will forge ahead in this
article and highlight some of the more interesting (and,
hopefully, important) experimental milestones.

The progress made in the last two decades has been on
two separate fronts: vision-based navigation for indoor
robots and vision-based navigation for outdoor robots. We
believe that the strides made in both these areas have been
significant. For example, 20 years ago it would have been
impossible for an indoor mobile robot to find its way in a
hallway as cluttered as the one shown in Fig. 1, but now it is
not much of a challenge. In the past, complex camera
images such as the one shown in the figure used to be
formidable to deal with because of an inordinate number of
features that would be output by any feature detector. This
difficulty was compounded by the subsequent need to
determine whether or not any subset of these features
matched robot expectations. But now, using a model-based
framework such as that of FINALE [75], a robot need only
examine those portions of the camera image that contain
low-level features in the “vicinity” of model features, the
extent of the “vicinity” being determined by the uncertainty
in the position of the robot. A system such as FINALE
requires a geometrical representation of space. One can now
also design a vision-based navigation system that uses a
topological representation of space and an ensemble of
neural networks to guide a robot through interior space, the
topological representation helping the robot figure out
which neural networks to use in what part of the space. This
can be done along the lines of NEURO-NAV [102], [103],
and FUZZY-NAV [121]. In its latest incarnation, FINALE
can navigate at an average speed of 17 m/min using an
ordinary PC-based architecture (Pentium II 450Mhz, with
no special signal processing hardware) and its self-localiza-
tion routine, which helps the robot figure out where it is
using vision, runs in less than 400 ms per image.

Equally impressive progress has been achieved in
computer vision for outdoor robotics, as represented by
the NAVLAB system [142], [143], [124], [146], [126], [128],
the work on vision-guided road-following for ”Autobahns”
[36], [37], [35], [34], and the Prometheus system [46], [47],
[48], [50], [49], [129]. One of the first systems developed for
NAVLAB [143] could analyze intensity images, such as the
one shown in Fig. 2, for ascertaining the position and the
boundaries of a roadway. Starting in 1986, when a Chevy
van was converted into NAVLAB 1, until today’s converted
metro buses known as Navlab 9 and 10, CMU and its
partners have developed a family of systems for automated
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navigation on highways. Four of these systems are: RALPH
(Rapidly Adapting Lateral Position Handler) [128],
ALVINN (Autonomous land vehicle in a neural network)
[124], [125], [126], [127], AURORA (Automotive Run-Off-
Road Avoidance) [21], and ALVINN-VC (for Virtual
Camera) [61], [63], etc. A measure of the success of
Navlab-based systems was the ”No hands across America”
test drive that consisted of a 2,849 mile trip from Pittsburgh,
Pennsylvania, to San Diego, California. In this trip, a
Navlab 5 vehicle was able to steer completely autono-
mously for more than 98 percent of the distance (a human
driver handled the throttle and brake). Equally noteworthy
has been the work carried out under the framework of the
EUREKA-project Prometheus that has focused on exploring
the potential of robot vision technology for improving
traffic safety.

In the rest of this paper, our goal is to survey what we
believe are the more important aspects of vision for mobile
robot navigation. Since there exist large differences in how
vision is used for indoor and outdoor robots, we have
divided the rest of this paper accordingly. Each of these two
categories is further subdivided on the basis of the mode in
which vision is used.

2 INDOOR NAVIGATION

From the pioneering robotic vehicle work by Giralt et al. in
1979, [44], and later by Moravec in 1980 and 1983, [107],
[108] and Nilsson in 1984, [114], it became clear that,
implicitly or explicitly, it was imperative for a vision system
meant for navigation to incorporate within it some knowl-
edge of what the computer was supposed to see. Some of
the first vision systems developed for mobile robot
navigation relied heavily on the geometry of space and
other metrical information for driving the vision processes
and performing self-localization. In particular, interior
space was represented by CAD models of varying complex-
ity. In some of the reported work [20], the CAD models
were replaced by simpler models, such as occupancy maps,
topological maps or even sequences of images. When
sequences of images were used to represent space, the
images taken during navigation were submitted to some
kind of appearance-based matching between the perception

(actual image) and expectation (goal image or goal images
stored in the database).

We believe all of these and subsequent efforts fall into
three broad groups:

. Map-Based Navigation. These are systems that depend
on user-created geometric models or topological
maps of the environment.

. Map-Building-Based Navigation. These are systems
that use sensors to construct their own geometric or
topological models of the environment and then use
these models for navigation.

. Mapless Navigation. These are systems that use no
explicit representation at all about the space in
which navigation is to take place, but rather resort to
recognizing objects found in the environment or to
tracking those objects by generating motions based
on visual observations.

2.1 Map-Based Approaches

Map-Based Navigation consists of providing the robot with
a model of the environment. These models may contain
different degrees of detail, varying from a complete
CAD model of the environment to a simple graph of
interconnections or interrelationships between the elements
in the environment. In some of the very first vision systems,
the knowledge of the environment consisted of a grid
representation in which each object in the environment was
represented by a 2D projection of its volume onto the
horizontal plane. Such a representation is usually referred
to as ”occupancy map” and it was formally introduced in
[109]. Later, the idea of occupancy maps was improved by
incorporating ”Virtual Force Fields” (VFF) [14]. The VFF is
an occupancy map where each occupied cell exerts a
repulsive force to the robot and the goal exerts an attracting
force. All forces are then combined using vector addition/
subtraction and this resultant force on used to indicate the
new heading for the robot. Occupancy-based representa-
tions are still used today in many research navigation
systems.

A more elaborate version of the occupancy map idea is
the S-Map [71], [72]—for ”Squeezing 3D space into 2D Map.”
It requires a spatial analysis of the three-dimensional
landmarks and the projection of their surfaces into a
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Fig. 1. Indoor robots can now localize themselves using computer vision
in scenes of the complexity depicted here. Reprinted with permission
from [75].

Fig. 2. NAVLAB 1 can analyze intensity images such as this and determine
the boundaries of a roadway. Reprinted with permission from [143].



2D map. Another elaboration consists of incorporating
uncertainty in an occupancy map to account for errors in
the measurement of the position coordinates associated with
the objects in space and in the quantization of those
coordinates into ”occupied/vacant” cells. Some of the
techniques that have been proposed for dealing with
uncertainties in occupancy maps are: 1) Histogram grids
or Vector Field Histogram [15], [16], where the detection of
an object or the detection of a vacancy leads to the
incrementing or decrementing, respectively, of the value of
the corresponding cell in the grid. The new heading of the
robot depends on the width of the ”valleys” found in the
histogram grid and the paths leading to the goal position.
2) Fuzzy operators [119] where each cell holds a fuzzy
value representing the occupancy or the vacancy of the
corresponding space. Also, sensor-fusion-based approaches
[20] have been proposed in which readings from cameras
and range finders are combined to produce occupancy-
based models of the environment, etc.

Since the central idea in any map-based navigation is
to provide to the robot, directly or indirectly, a sequence
of landmarks expected to be found during navigation, the
task of the vision system is then to search and identify the
landmarks observed in an image. Once they are identified,
the robot can use the provided map to estimate the
robot’s position (self-localization) by matching the ob-
servation (image) against the expectation (landmark
description in the database). The computations involved
in vision-based localization can be divided into the
following four steps [13]:

. Acquire sensory information. For vision-based
navigation, this means acquiring and digitizing
camera images.

. Detect landmarks. Usually this means extracting
edges, smoothing, filtering, and segmenting regions
on the basis of differences in gray levels, color,
depth, or motion.

. Establish matches between observation and expecta-
tion. In this step, the system tries to identify the
observed landmarks by searching in the database for
possible matches according to some measurement
criteria.

. Calculate position. Once a match (or a set of
matches) is obtained, the system needs to calculate
its position as a function of the observed landmarks
and their positions in the database.

As one would expect, the third step above—establishing
matches between observation and expectation—is the most
difficult. Often, this requires a search that can usually be
constrained by prior knowledge about the landmarks and
by any bounds that can be placed on the uncertainties in the
position of the robot. Various approaches to vision-based
localization of robots differ in how these constraints are
taken into account.

In 1988, Sugihara [138] presented one of the pioneering
studies in robot self-localization using single camera
images. In that work, some of the problems of localization
were first pointed out and since both the location of the
robot and the identity of the features extracted by the vision
system were assumed to be unknown, the problem was
reduced to a geometric constraint satisfaction problem.

Later, in 1989, Krotkov [80] extended this work by
proposing a model where the effects of observation
uncertainty were also analyzed. A few years later, in 1993,
Atiya and Hager, [5], developed a real-time vision-based
algorithm for self-localization under the same assumptions.
In this paper, they mentioned both the lack of treatment of
observation error in [138] and the disregard with false
positives—detecting features that do not correspond to a
known landmark—in [80]. Atiya and Hager proposed that
the sensory error be represented by a tolerance, which led to
a set-based algorithm for solving the matching problem and
computing the absolute location of a mobile robot for
indoor navigation. We will refer to such approaches by
absolute or global localization.

Absolute localization is to be contrasted with incremental
localization in which it is assumed that the location of the robot
is known approximately at the beginning of a navigation
session and that the goal of the vision system is to refine the
location coordinates. In such cases, an expectation view can
be generated on the basis of the approximately known initial
location of the robot. When this expectation view is
reconciled with the camera perception, the result is a more
precise fix on the location of the robot. Examples of such
systems are [100] by Matthies and Shafer, where stereo vision
was used for error reduction; a system by Christensen et al.
[24], where stereo vision was used in conjunction with a
CAD model representation of the space; the PSEIKI system
described in [1], [69] which used evidential reasoning for
image interpretation; the system presented by Tsubouchi and
Yuta [147] that used color images and CAD models; the
FINALE system of Kosaka and Kak [75], and Kosaka et al. [76]
that used a geometric model and prediction of uncertainties
in the Hough space and its extended version [116], [117]
which incorporated vision-based obstacle avoidance for
stationary objects; the system of Kriegman et al. [79] that
used stereo vision for both navigation and map-building; the
NEURO-NAV system of Meng and Kak [102], [103] that used
a topological representation of space and neural networks to
extract features and detect landmarks; the FUZZY-NAV
system of Pan et al. [121] that extended NEURO-NAV by
incorporating fuzzy logic in a high-level rule-based controller
for controlling navigation behavior of the robot; the system of
[165], in which landmarks were exit signs, air intakes and
loudspeakers on the ceiling and that used a template
matching approach to recognize the landmarks; the system
of Horn and Schmidt [53], [54] that describes the localization
system of the mobile robot MACROBE—Mobile and Auton-
omous Computer-Controlled Robot Experiment—using a
3D-laser-range-camera, etc.

In yet another approach to localization in a map-based
navigation framework presented by Hashima et al. [52],
correlations are used to keep track of landmarks in the
consecutive images that are recorded as the robot moves.
We will refer to this type of localization as localization
derived from landmark tracking.

The three different approaches to vision-based localiza-
tion—Absolute (or Global) Localization, Incremental Loca-
lization, and Localization Derived from Landmark
Tracking—will be visited in greater detail in the next three
sections.
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2.1.1 Absolute Localization

Since in absolute localization the robot’s initial pose is
unknown, the navigation system must construct a match
between the observations and the expectations as derived
from the entire database. On account of the uncertainties
associated with the observations, it is possible for the same set
of observations to match multiple expectations. The resulting
ambiguities in localization may be resolved by methods such
as: Markov localization [145], partially observable Markov
processes [137], Monte Carlo localization [60], [32]), multiple-
hypothesis Kalman filtering based on a mixture of Gaussians
[27], using intervals for representing uncertainties [5], [80],
and by deterministic triangulation [138], etc.

Here, we will explain further the absolute localization
method advanced by Atiya and Hager [5]. The basic idea of
their approach is to recognize in the camera image those
entities that stay invariant with respect to the position and
orientation of the robot as it travels in its environment
(Fig. 4). For example, consider a triple of point landmarks
on a wall in the environment. If all three of these points
could be identified in each image of a stereo pair, then the
length of each side of the triangle and the angles between
the sides would stay invariant as the robot moves to
different positions with respect to these three points. So, the
length and the angle attributes associated with a triple of
landmark points would be sufficient to identify the triple
and to set up correspondences between the landmarks
points in the environment and the pixels in the camera
images. Once such correspondences are established, finding
the absolute position of the robot simply becomes an
exercise in triangulation. But, of course, in the real world,
the coordinates of the landmark points may not be known
exactly. Also, the pixel coordinates of the observed image
points may be subject to error. Additionally, given a
multiplicity of landmark points on a wall (or walls), there
may be ambiguity in establishing correspondences between
the landmark triples and the observed pixel triples.

Atiya and Hager have used a set-based approach for
dealing with the above mentioned uncertainties and have
cast the ambiguity issue in the form of the labeling
problem in computer vision. In the set-based approach,
the uncertainty is expressed in the form of intervals (sets). A
landmark j observed in the image plane is represented by a
pair of observation intervals—observation from the left and
right cameras, oj ¼ ðol; orÞ. The observation interval consists
of the coordinates of that landmark with respect to the
camera coordinate frame, plus or minus a certain tolerance
�, which represents the error in sensor measurement.
Similarly, a landmark location interval pj consists of the
coordinates of the landmark j with respect to the world
frame plus or minus a tolerance �. If the robot position p is
known, the landmark location interval pj can be projected
into the image plane using a known projection operator
Projðp; pjÞ, giving an ”expected observation interval” h.
Like o, h is a pair of coordinate intervals in the left and the
right image planes. In the ideal case, where observation and
landmark position are error free, o and h would coincide.
This matching between the observation interval oi and the
landmark position interval is a tuple � ¼< oi; pj > and a
labeling � ¼ f< oi; pj >g is a set of such matchings.

Therefore, in a set-based model of the uncertainty, each

new observation results in new intervals. The observations

are then combined by taking intersection of all such

intervals; this intersection should get smaller as more

observations are combined, giving a better estimate of the

uncertainty. If the error is not reduced to within the robot’s

mechanical tolerance, additional sensing (new observa-

tions) must be added to reduce the localization error.

Atiya and Hager solved the overall localization problem—

given a list of known landmarks and a list of visual

observations of some of those landmarks, find p ¼ ðx;y;�Þ,
the position and orientation of the robot—by decomposing it

into the following two subproblems:

Problem 1. Given n point location intervals p1; p2; . . . ; pn in a

world coordinate frame that represent the landmarks and

m pairs (stereo) of observation intervals o1; o2; . . . ; om in the

robot camera coordinate frame, determine a consistent labeling,

� ¼ f< oi; pj >g, such that

Projðp; pjÞ
\

oi 6¼ ;; 8 < oi; pj > 2 �:

Problem 2. Given the above labeling, find the set of robot
positions, P, consistent with that labeling. That is, find the set

P ¼ fp j Projðp; pjÞ
\

oi 6¼ ;g; 8 < oi; pj > 2 �:

In practice, the first problem, the labeling problem,

consists of finding not one, but all possible labelings

between pjs and ois and choosing the best labeling

according to some criterion. The authors suggest using that

labeling which contains the largest number of matches.

Another suggested criterion is to use all labelings with more

than four matches. A labeling is called “consistent” when

every oi participates only once in the labeling.

The labeling problem is solved by comparing all possible

triangles subject to heuristics discussed in [5], that can be

extracted from the image with all possible triangles that can

be formed by the landmark points. The two lists of three

lengths and three angles for each triangle, one describing

the observations and the other describing the landmark

positions, can now be searched and cross compared to form

the labelings f< oi; pj >g.

As we mentioned before, both the landmark position and

the observation are expressed by intervals. When convert-

ing to the triangular representation, the uncertainties

around pj and oi must also be transformed and expressed

in terms of intervals for the lengths and angles of the

triangles. Fig. 3 shows the differences between the max-

imum and the minimum lengths and the maximum and the

minimum angles associated with a triple of points in the

presence of uncertainties. We can see the largest and

smallest side lengths in Fig. 3a and the largest and smallest

angles in Fig. 3b that can be formed using the uncertainty

regions around pj or oi.
Once a consistent labeling � is found, the second

subproblem can be attacked. For that, the authors proposed
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an approach based on the analysis of geometrical constraints

involving landmarks in the form of triangles, the uncertainty

regions around the landmarks, and the need to rotate and

translate the observations in order to make the sides of the

two triangles given by < oi; pj > parallel. If the uncertainty

regions o1 and o2 represent two observations matched against

two landmark positions p1 and p2, the position of the robot

p ¼ ðx;y;�Þ would be given by:

�o ¼ atan
ty þ �sy
tx þ �sx

� �
; �d ¼ atan

ry
rx

� �

� ¼ �o ��d;

where t represents segments connecting two uncertainty

regions o1 and o2 ðt ¼ o1 � o2Þ, s represents segments inside

the regions ðs ¼ o2;k � o2;j, where k and j are two corners of

o2Þ, and r is the segments connecting the landmark locations

p1 and p2 ðr ¼ p1 � p2Þ. As happened when transforming

from location and observation intervals to triangular repre-

sentation, the uncertainty regions can yield many possible

values for �. These values are combined to form an interval

(set). The intersection of all computed intervals over the

matching < oi; pj > gives �
. Having computed �, the x and

the y coordinates of the robot’s position are given by

xi ¼ pi;x þ sinð�
Þti � cosð�
Þsi
yi ¼ pi;y � sinð�
Þsi � cosð�
Þti:

Again, the intersection of sets xi and yi computed for all

regions yields x
 and y
. As mentioned at the beginning of

this section, assuming independent observations, when

combining the observations through intersections, the size

of the intervals �
, x
, and y
 must tend to zero in the limit.

In practice, if the estimation is not accurate enough, new

observations would be needed. Fig. 5 should convey a sense

of how the computed positional uncertainty tends to zero as

the number of observations is increased.

2.1.2 Incremental Localization

Using Geometrical Representation of Space. In a large

number of practical situations, the initial position of the

robot is known at least approximately. In such cases, the

localization algorithm must simply keep track of the

uncertainties in the robot’s position as it executes motion

commands and, when the uncertainties exceed a bound, use

its sensors for a new fix on its position. By and large,

probabilistic techniques have evolved as the preferred

approach for the representation and the updating of the

positional uncertainties as the robot moves. One of these

approaches, which we will use to explain incremental

localization, is the FINALE system [75].

The FINALE system [75] achieves incremental localiza-

tion by using a geometrical representation of space and a

statistical model of uncertainty in the location of the robot.

The FINALE system consists of the following key elements:

. Representing the uncertainty in the position p ¼
ðx; y; �Þ of the robot (position and orientation on the
plane) by a Gaussian distribution and, thus,
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Fig. 3. (a) Largest (full line) and smallest (dotted line) sides. (b) Largest (full line) and smallest (dotted line) angles.

Fig. 4. A map of the environment with landmarks indicated by circles. Reprinted with permission from [5].



characterizing the uncertainty at each location of the
robot by the mean �p and the covariance �p.

. Characterization and parameterization of the motions
executed in response to translational and rotational
motion commands. In general, when a robot is asked
to execute a pure translation, it may actually rotate a
little on account of differential slippage in the wheels.
Since these rotations occur continuously as the robot
is translating, the rotations will be larger the longer
the commanded translation. At the end of a com-
manded pure translation, the robot may end up at a
location not on the axis along which it was asked to
translate. By the same token, when the robot is
commanded to execute a pure rotation, it may also
scoot a little on account of the differential slippage in
the wheels.

. A determination of how the uncertainty in the position
of the robot changes when translational and rotational
commands are executed. This involves figuring out
the dependency of the changes in �p and �p on the
parameters of translational and rotational com-
manded motions.

. Design of a model-based Kalman filter consisting of
the following components:

1. Derivation of a constraint equation that, taking
into account the camera calibration matrix,
relates the positional parameters of a landmark
in the environment to either the image space
parameters or the Hough space parameters.

2. Linearization of the constraint equation for the
derivation of the Kalman filter equations.

3. Projection of robot’s positional uncertainty into
the camera image (and into the Hough space) to
find the set of candidate image features for each
landmark in the environment.

4. Using the Kalman filter to update the mean and
the covariance matrix of the positional para-
meters of the robot as a landmark is matched
with an image feature.

Fig. 6 depicts pictorially the various steps of the FINALE’s

self-localization algorithm.
Propagation of Positional Uncertainty through Com-

manded Motions. The process of modeling the uncertainty

in FINALE starts by seeking a functional relationship

between the position p ¼ ðx; y; �Þ of the robot before a

commanded motion and its position p0 ¼ ðx0; y0; �0Þ after the

commanded motion has been completed. It is known that if

this relationship,

p0 ¼ hðpÞ ð1Þ

is linear, the uncertainty parameters ð�p;�pÞ and ð�p0;�0
pÞ

would be related by

�p0 ¼ hð�pÞ

�0
p ¼

�h

�p

� �
�p

�h

�p

� �T

;
ð2Þ

where �h
�p is the Jacobian of the transformation function h.

These two equations tell us how to transform the mean and

the covariance associated with the position of the robot

from just before a commanded motion to just after it,

provided we know the functional relationship given by

hðpÞ. To discover the form of the hðpÞ function for the case

when the robot executes a translational command, the

motion executed in response to such a command is

parameterized by d, �, and �, as shown in Fig. 7. In that

figure, the robot was commanded to execute a translational

motion through a distance d0 along its yr axis. But, because

of differential slippage in the wheels, the robot ends up at a

location given by the distance parameter d and the angle

parameters � and �. By using simple trigonometry, one
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Fig. 5. The evolution of the width of the x and y parameters intervals. Reprinted with permission from [5].

Fig. 6. Processing steps in FINALE’s self-locomotion algorithm.



arrives at the following functional relationship between p
and p0:

p0x
p0y
�0

2
4

3
5 ¼

px
py
�

2
4

3
5þ

�dsinð�þ �Þ
dcosð�þ �Þ

�

2
4

3
5: ð3Þ

One may think of d, �, and � as random variables with
mean values, �d, ��, and �� and covariance matrix

�T ðd; �; �Þ ¼
�2
d �d��d�� �d��d��

�d��d�� �2
� �������

�d��d�� ������� �2
�

2
4

3
5;

where �d�, �d� , and ��� are the correlation coefficients. The
work reported in [75] shows experimentally obtained
results on the d0 dependence of the mean values �d, ��, ��,
the standard deviations �d, ��, ��, and the correlations �d�,
�d� , and ���.

Similarly, when the robot is commanded to execute a
pure rotation through angle  0 in its own coordinate frame,
it ends up at a location given by the parameters  , u, and v
shown in Fig. 8. In this case, the relationship between p and
p0 is given by

p0x
p0y
�0

2
4

3
5 ¼

px
py
�

2
4

3
5þ

�ucos�� vsin�Þ
usin�þ vcos�Þ

 

2
4

3
5: ð4Þ

Also, as before, if the robot is commanded to make a
rotational motion of  0, one may think of u, v, and  as
random variables with mean values, �u, �v, and � and
covariance matrix

�Rðu; v;  Þ ¼
�2
u �uv�u�v �u �u� 

�uv�u�v �2
v �v �v� 

�u �u� �v �v� �2
 

2
4

3
5;

where �uv, �u , and �v are the correlation coefficients. The
work reported in [75] shows experimentally obtained
results on the  0 dependence of the mean values � , �u, �v,
the standard deviations � , �u, �v, and the correlations �uv,
�u , and �v .

The above equations show that the position of the robot
at the end of a commanded motion depends nonlinearly on
the previous position. The difficulty posed by the nonlinear
nature of the transformation equations is overcome by
using linear approximations to the equations and making

sure that the command motions are small in size so as not to
invalidate the approximations. Note that, as is clear from
(2), in the linear regime of operation, we only need to know
the Jacobian of the transformation from �p to �p0. This
Jacobian may be found by taking differentials of both sides
of (3) for the case of translational commands and of both
sides of (4) for the case of rotational commands to give us

�p0x
�p0y
��0

2
4

3
5 ¼ JT1

�px
�py
��

2
4
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�d
��
��
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��0

2
4

3
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�px
�py
��

2
4

3
5þ JR2

�u
�v
� 

2
4

3
5;

where JT1
, JT2

, JR1
, and JR2

are the Jacobians for the
translational and rotational cases as indicated by the indices
used. The detailed expressions for the Jacobians are
provided in [75]. We can now write down the following
equations for propagating the mean and the covariance of
the position vector p through translational commands:
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�p0y
��0

2
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�px
�py
��

2
4

3
5þ

��dsinð ��þ ��Þ
�dcosð ��þ ��Þ

��
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5

�0
pðp0x; p0y; �0Þ ¼ JT1

�pðpx; py; �ÞJT
T1
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�T ðd; �; �ÞJT
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ð5Þ

and rotational motion commands:
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��0

2
4

3
5 ¼
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��
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��ucos ��� �vsin ��Þ
�usin ��þ �vcos ��Þ
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�0
pðp0x; p0y; �0Þ ¼ JR1

�pðpx; py; �ÞJT
R1

þ JR2
�Rðu; v;  ÞJT

R2
: ð6Þ

Equations (5) and (6) tell us how to update the mean and
the covariance of the robot’s position after it has executed a
translational or a rotational motion command.

Projecting Robot’s Positional Uncertainty into Camera
Image. In order to determine where in the camera image
one should look for a given landmark in the environment,
we need to be able to project the uncertainty in the position
of the robot into the camera image. This can be done with
the help of the camera calibration matrix. To explain,
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Fig. 7. Initial and final position after a translation command. Reprinted
with permission from [75].

Fig. 8. Initial and final position after a rotation command. Reprinted with
permission from [75].



consider a single point at coordinates ðx; y; zÞ in the
environment of the robot. The image of this world point
will be at the pixel coordinates ðX;Y Þ, as given by

XW
YW
W

2
4

3
5 ¼ TH

x
y
z
1

2
664

3
775;

where we have used homogeneous coordinate representa-
tions for world point and the pixel, W being the perspective
factor. T is the camera calibration matrix and H the
transformation matrix that takes a point from the world
frame to the robot-centered frame.

The above vector-matrix equation can be reworked to
express directly the relationship between the pixel coordi-
nates ðX;Y Þand the position vectorp ¼ ðpx;py; �Þ for a given
world point. What we end up with is again a nonlinear
relationship. As before, we can choose to work with a
linearized version of this equation, the Jacobian yielded by
the linearized version being what we need to project robot
position covariance into the image. To obtain this Jacobian,
we differentiate both sides of the reworked equations to get

�I � �X
�Y


 �
¼ Jð�I; �pÞ

�px
�py
��

2
4

3
5; ð7Þ

where Jð�I; �pÞ is the Jacobian of I (the pixel coordinates
ðX;Y Þ) with respect to p in the vicinity of the mean values.
The mean of I and its covariance matrix—the covariance
matrix associated with the pixel coordinates of a single
point landmark in the scene—may now be written as

�I �W
�W


 �
¼ T �H

x
y
z
1

2
664

3
775

�I ¼ Jð�I; �pÞ�pJð�I; �pÞT : ð8Þ

Fig. 9 illustrates the utility of the covariance matrix �I as a
measure of the uncertainty associated with the location of a
pixel for an isolated point in the environment. In the left
panel of this figure, a wire-frame rendering of the hallway is
shown. This is an expectation map made based on the current
value of �p, in the sense that this is what the robot would see if
its actual position was at the center of the uncertainty region
associated with its position. For each end point of a vertical
edge in the expectation map, we have in the right panel an
uncertainty ellipse which should contain the pixel corre-
sponding to the end point with a probability of 86 percent.
The ellipse corresponds to one unit of Mahalanobis distance
as calculated from the covariance matrix �I using (8) and the
following statistical parameters of the robot’s position:

�p ¼
0:0 m

0:0 m

0:0o

2
64

3
75

�p ¼
ð0:5 mÞ2 0 0

0 ð0:5 mÞ2 0

0 0 ð10oÞ2

2
64

3
75:

An isolated point in the environment is obviously not a
perceptually interesting landmark. But, all of the above
discussion on projecting robot’s positional uncertainties
into the camera image can be extended easily to midlevel
features such as straight edges formed by the junctions of
walls, borders of doors, windows, bulletin boards, etc. As
shown in [75], this is best done in Hough space where each
straight line feature can be represented by a single point. So,
given a straight line feature in the environment, FINALE
would know where in the Hough space it should seek the
image of that straight line.

Kalman Filtering. So far, we have shown how the mean
value and covariance of the robot’s position can be updated
after each translational or rotational command is executed
by the robot. We have also shown how the uncertainty in
the robot’s position can be projected into the camera image
so as to obtain a better localization of a landmark feature in
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Fig. 9. Uncertainties around point landmarks. The Mahalanobis distance d = 1 was used to construct the uncertainty ellipses. Reprinted with
permission from [75].



the camera image. The next step consists of FINALE
updating the statistical parameters of the position of the
robot after a landmark (in the form of a straight line feature)
is matched with an image feature. This is done with the help
of a model-based Kalman filter that is derived from a
linearized version of a constraint equation that must be
satisfied by the parameters of a straight line in the
environment and the Hough space parameters of the
corresponding line in the camera image.

Fig. 10 shows some of the more important intermediate
results when a robot localizes itself using the Kalman-filter
based approach. Shown in Fig. 10a is the camera image,
superimposed on which is the expectation map constructed
from a wire-frame model of the interior space. The white
edges in Fig. 10b represent the output of the edge detector. The
essential thing to realize here is that the edge detector ignores
most of the gray level changes in the camera image; it extracts
only those edges that in the Hough space are in the vicinity of
the model edges. Fig. 10c shows the unit-Mahalanobis
distance uncertainty ellipses for the ends of the model line
features. Finally, Fig. 10d shows those edges produced by the

edge detector that were matched with the model edges. It is
this match that results in the robot able to localize itself.

Our discussion on FINALE has shown the critical role
played by an empirically constructed model of the changes
in the positional uncertainty of a robot as it executes
translational and rotational motions. In general, also
important will be sensor uncertainties and the trade-offs
that exist between sensor uncertainties and decision making
for navigation. For those issues, the reader is referred to the
work of Miura and Shirai [104], [105], [106].

Using Topological Representation of Space. An entirely
different approach to incremental localization utilizes a
mostly topological representation of the environment. For
example, in the NEURO-NAV system [102], [103], a graph
topologically representing a layout of the hallways is used for
driving the vision processes. An example of this graph
representation is shown in Fig. 11 where the physical
structure of a hallway is shown on the left and its attributed-
graph representation on the right. For topological representa-
tions of space—in particular, large-scale space— the reader is
also referred to the pioneering work of Kuipers and Byun [87].
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Fig. 10. Some of the intermediate results in FINALE’s localization algorithm. (a) The camera image and the superimposed expectation map.

(b) Output of the model-guided edge detector. (c) Uncertainty regions associated with the ends of the model line features. (d) Matching after Kalman

filtering. Reprinted with permission from [75].



In the example shown in Fig. 11, the graph data structure
uses three different kinds of nodes—shown in the form of
squares, circles, and diamonds—for representing corridors,
junctions, and dead ends, respectively. Each node is
attributed. For example, node C2, which represents the main
central corridor in the hallway segment shown, has an
attribute named left landmarks that is a list of pointers to the
door d176, door d175, door d174, door d173, door d172 features of
corridor C2. The links of the graph, also attributed, contain
information regarding the physical distance between the
landmarks represented by the nodes at each end of the link.

The heart of NEURO-NAV consists of two modules,
Hallway Follower and Landmark Detector, each imple-
mented using an ensemble of neural networks. Those
modules allow the robot to execute motions at the same
time as it performs self-localization. Suppose, for example,
that the robot is at the lower end of corridor C2 (Fig. 11). If

the motion command is for the robot to follow that
corridor towards junction J2, turn left, and move down
corridor C3, the Hallway Follower module will be invoked
with the task of traversing corridor C2 keeping a parallel
path with respect to the walls (corridor following). At the
same time, Landmark Detector will perform a sequence of
searches for landmarks contained in the attributed node of
the graph corresponding to corridor C2, namely: door
d176, door d175, etc., until it finds a junction (J2). At that
point, Hallway Follower will be invoked again, this time to
perform a left turn and, later on, to perform a new
corridor following over corridor C3.

As was mentioned above, both the Hallway Follower
and the Landmark Detector consist of ensembles of neural
networks. Each network is trained to perform a specific sub-
task. For example, inside the Hallway Follower there is a
neural network called corridor_left, which is capable of
detecting, from the camera image, the edge of the floor
between the left side wall and the floor. This network
outputs the appropriate steering angles that keep the robot
approximately parallel with respect to the left wall. The
corridor_right network inside the Hallway Follower does the
same with respect to the right wall. A third network inside
the Hallway Follower combines the outputs of the
corridor_left and the corridor_right networks and provides
the steering commands needed by the robot (Fig. 12).

The neural networks in NEURO-NAV are driven by the
cells of the Hough transform of the edges in the camera
image. Different regions of the Hough space are fed into
different networks. To speed up the computations (since
each steering command must be generated in about a
second), the camera image is first down-sampled from a
512x480 matrix to a 64x60 matrix and then a Sobel operator
is applied for edge detection (Fig. 13).

Fig. 14a shows a typical example of an image of the hallway
as seen by the camera, in Fig. 14b the output of the edge
detector, in Fig. 14c the relevant floor edges, and in Fig. 14d
the Hough map. The image in Fig. 14a was taken when the
robot was pointed somewhat toward the left wall (as opposed
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Fig. 11. (a) Physical structure of a hallway segment showing the doors
and alcoves. (b) The topological representation of the hallway in (a).
Reprinted with permission from [103].

Fig. 12. Hierarchy of neural networks to perform corridor-following.
Reprinted with permission from [103].

Fig. 13. Image processing steps in NEURO-NAV. Reprinted with
permission from [103].



to straight down the center of the hallway). So, the image is
rich in edges that correspond to the junction between the left
wall and the floor. In the Hough map, these edges occupy cells
that are mostly in the left half of the map. It is observations
such as these that determine which regions of the
Hough space should go to what neural networks.

All neural networks in the different modules of NEURO-
NAV are simple three-layered feedforward networks trained
using a backpropagation algorithm. During the training
phase, a Human Supervisor module takes control of the
navigation. This module allows a human operator to specify
simple command motions while he/she starts digitization
routines that grab images that are used subsequently for
training. In the work reported in [103], NEURO-NAV was
able to generate correct steering commands 86 percent of the
time. It generated incorrect commands 10 percent of the time
and issued a “no decision” in the remaining 4 percent of the
cases. However, even when NEURO-NAV generates an
incorrect steering command in a specific instance, it can
correct itself at a later instant.

As was mentioned before, there are various neural
networks in NEURO-NAV. The invocation of each of these
networks is orchestrated by a Supervisory Rule-Based
Controller whose details are described in [102]. However,
we do want to mention here that most of the outputs from
these neural networks are fuzzy in nature. For example, the
output of the corridor_left network consists of steering
angles and they have labels such as left 40o, left 10o,
straightahead, right 30o, etc., (Fig. 12). Similarly, the output

of the junction_detection network consists of distances such

as: near, far, at, etc. Each of these labels corresponds to an

output node in a neural network. The value output at each

node, typically between 0 and 1, can be taken as the degree

of confidence to be placed in the motion directive

corresponding to that node. Since these output values can

be easily construed as corresponding to fuzzy membership

functions, Pan et al. developed a more sophisticated version

of NEURO-NAV and called it FUZZY-NAV [121] in which
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Fig. 14. Results after each step in Fig. 13. Reprinted with permission from [103].

Fig. 15. Software architecture of FUZZY-NAV. Reprinted with permis-
sion from [121].



the Rule-Based Supervisory Controller of NEURO-NAV was
replaced by a Fuzzy Supervisory Controller (Fig. 15).

The Fuzzy Supervisory Controller of FUZZY-NAV is a
real-time fuzzy expert system that takes in the outputs of all
the neural networks and decides what commands to issue
to the Robot Control Module (see Fig. 15). To accomplish
this, the Fuzzy Supervisory Controller uses three linguistic
variables, distance-to-junction, turn-angle, and distance-to-
travel. Associated with these linguistic variables are a total
of sixteen fuzzy terms, as shown in Fig. 16. The semantics of
the linguistic variables distance-to-junction and turn-angle
were covered before, when we explained NEURO-NAV,
and should be obvious to the reader. The linguistic variable
distance-to-travel stands for the current best estimate of how
far the robot should plan on traveling straight barring any

encounters with obstacles. While the value of the linguistic
variable distance-to-junction is derived from the vision data
by one of the neural networks, the linguistic variable
distance-to-travel is given a value by the firing of one or more
rules in the Supervisory Controller. As with all systems
using fuzzy logic, the membership functions for the terms
displayed in Fig. 16 were arrived at empirically. The Fuzzy
Supervisory Controller uses the Fuzzy-Shell [122] frame-
work for fuzzy inference.

2.1.3 Localization Derived from Landmark Tracking

One can do localization by landmark tracking when both the
approximate location of the robot and the identity of the
landmarks seen in the camera image are known and can be
tracked. The landmarks used may either be artificial ones,
such as those shown in Fig. 17, or natural ones, such as doors,
windows, etc. The artificial landmarks vary from circles with
a unique bar-code for each landmark [66] (same figure) to
reflecting tapes stretched along the robot path, as reported
by Tsumura in [149] (Fig. 18). In most cases, landmark
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Fig. 16. Linguistic variables and their associated fuzzy terms used in

FUZZY-NAV. Reprinted with permission from [121].

Fig. 17. Artificial landmarks used in [66].

Fig. 18. Reflecting tape guidance system. Reprinted with permission from [149].



tracking in these systems is carried out by using simple
template matching. The cameras are usually mounted on the
robot so that they look sideways at the walls where the
landmarks are mounted or down at the floor where a special
tape may be glued. When cameras are not mounted
sideways, as in [66], properties of the shapes used for the
artificial landmarks allow simple algorithms to be used for
the localization of the robot. While sideways-mounted
cameras simplify the problem of landmark detection (by
eliminating scale and perspective effects), they also constrain
the freedom regarding where the robot can move.

Another system that carries out landmark tracking in a
map-based approach is by Hashima et al. [52]. In this
system, however, the landmarks are natural. The system
uses the correlation technique to track consecutive land-
marks and to detect obstacles. For both landmark tracking
and obstacle detection, the system uses a dedicated piece of
hardware called TRV ([132]) that is capable of calculating
local correlations of 250 pairs of image regions at 30fps.
Localization is achieved by a multiple landmark detection
algorithm. This algorithm searches for multiple landmarks,
compares the landmarks with their prestored templates,
tracks the landmarks as the robot moves, and selects new
landmarks from the map to be tracked. As the landmarks
are matched with the templates, their 3D pose is calculated
using stereo vision. The position of the robot is estimated
through a comparison between the calculated landmark
position and the landmark position in the map. Obstacle
detection is also performed using the TRV. In order to
overcome problems with illumination, complementary
processing is performed using stereo vision.

2.2 Map-Building

The vision-based navigation approaches discussed so far
have all required the robot to possess a map (or a model) of the
environment. But model descriptions are not always easy to
generate, especially if one also has to provide metrical
information. Therefore, many researchers have proposed
automated or semiautomated robots that could explore their
environment and build an internal representation of it. The
first attempt at robotic map-building was the Stanford Cart by
Moravec [107], [108]. The Stanford Cart used a single camera
to take nine images spaced along a 50 cm slider. Next, an
interest operator (now known as Moravec’s interest operator,
which was later improved by Thorpe [140] for FIDO [141])
was applied to extract distinctive features in the images.
These features were then correlated to generate their
3D coordinates. All this processing was done remotely and
took five hours to traverse 20 meters. The “world” was
represented by the 3D coordinates of the features plotted in a
grid of two square meter cells. The features were tracked at
each iteration of the program and marked in the grid and in
the image plane. Although this grid indirectly represented
the position of obstacles in the world and was useful for path
planning, it did not provide a meaningful model of the
environment. For that reason, in 1985, Moravec and Elfes
proposed a data structure, known as occupancy grid ([109]),
that is used for accumulating data from ultrasonic sensors.
Each cell in an occupancy grid has attached with it a
probability value that is a measure of the belief that the cell
is occupied. The data is projected onto the plane of the floor

and each square of the occupancy grid represents the
probability of occupancy of the corresponding square in the
world by an object. In today’s robots, occupancy grids allow
measurements from multiple sensors to be incorporated
into a single perceived map of the environment and
even uncertainties can be embedded in the map, e.g.,
Histogram grids or Vector Field Histogram [15], [16].

While occupancy-grid-based approaches are capable of
generating maps that are rich in geometrical detail, the
extent to which the resulting geometry can be relied upon
for subsequent navigation depends naturally on the
accuracy of robot odometry and sensor uncertainties during
map construction. Additionally, for large-scale and complex
spaces, the resulting representations may not be computa-
tionally efficient for path planning, localization, etc. Such
shortcomings also apply to nonoccupancy grid-based
approaches to map learning, such as those proposed by
Chatila and Laumond [20] and Cox [27].

The occupancy-grid approach to map learning is to be
contrasted with the approaches that create topological
representations of space [22], [23], [39], [74], [87], [97],
[123], [161], [164]. These representations often have local
metrical information embedded for node recognition and to
facilitate navigational decision making after a map is
constructed. The various proposed approaches differ with
respect to what constitutes a node in a graph-based
description of the space, how a node may be distinguished
from other neighboring nodes, the effect of sensor
uncertainty, the compactness of the representations
achieved, etc. One of the major difficulties of topological
approaches is the recognition of nodes previously visited.
(In metrical approaches on the other hand, if the odometry
and the sensors are sufficiently accurate, the computed
distances between the different features of space help
establish identify places previously visited.)

In a recent contribution [144], Thrun has proposed an
integrated approach that seeks to combine the best of the
occupancy-grid-based and the topology-based approaches.
The system first learns a grid-based representation using
neural networks and Bayesian integration. The grid-based
representation is then transformed into a topological
representation.

Other notable contributions related to map building are by
Ayache and Faugeras [7], [6] using trinocular vision and
Kalman filtering, by Zhang and Faugeras [162] using
3D reconstruction from image sequences, by Giralt et al. [44]
using sensor fusion techniques, and by Zheng et al. [163], and
Yagi et al. [159] using panoramic views.

2.3 Mapless Navigation

In this category, we include all systems in which navigation
is achieved without any prior description of the environ-
ment. It is, of course, true that in the approaches that build
maps automatically, there is no prior description of the
environment either; but, before any navigation can be
carried out, the system must create a map. In the systems
surveyed in this section, no maps are ever created. The
needed robot motions are determined by observing and
extracting relevant information about the elements in the
environment. These elements can be the walls, objects such
as desks, doorways, etc. It is not necessary that absolute (or
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even relative) positions of these elements of the environ-
ment be known. However, navigation can only be carried
out with respect to these elements. Of the techniques that
have been tried for this, the prominent ones are: optical-
flow-based and appearance-based. The reader is also
referred to attempts at behavior-based approaches to
vision-based navigation in mapless spaces [111], [112], [56].

2.3.1 Navigation Using Optical Flow

Santos-Victor et al. [133] have developed an optical-flow-
based system that mimics the visual behavior of bees. It is
believed that the predominantly lateral position of the eyes
in insects favors a navigation mechanism using motion-
derived features rather than using depth information. In
insects, the depth information that can be extracted is
minimal due to the extremely narrow binocular field they
possess. On the other hand, motion parallax can be much
more useful especially when the insect is in relative motion
with respect to the environment. Also, the accuracy and the
range of operation can be altered by changing the relative
speed. For example, features such as ”time-to-crash” (which
is dependent on the speed) are more relevant than distance
when it is necessary to, say, jump over an obstacle.

In robee, as the robot in [133] is called, a divergent stereo
approach was employed to mimic the centering reflex of a
bee. If the robot is in the center of a corridor, the difference
between the velocity of the image seen with the left eye and
the velocity of the image seen with the right eye is
approximately zero, and the robot stays in the middle of
the corridor. However, if the velocities are different, the
robot moves toward the side whose image changes with
smaller velocity. With regard to the robotic implementation,
the basic idea is to measure the difference between image
velocities computed over a lateral portion of the left and the
right images and use this information to guide the robot.
For this, the authors computed the average of the optical
flows on each side. From the fundamental optical flow
constraint, we have:

�I

�x
uþ �I

�y
vþ �I

�t
¼ 0;

where u and v are the horizontal and the vertical flow
components. Since the robot moves on a flat ground plane,
the flow along the vertical direction is regarded as zero and
the expression above reduces to:

u ¼ � It
Ix

;

where It and Ix are the time and x-spatial derivatives of the
image, respectively. The images are smoothed, with respect

to both space and time prior to the computation of any
derivatives. The time derivative is computed simply by
subtracting two consecutive smoothed images. At each
iteration of the control loop, five 256x256 stereo images are
grabbed at video rate and used to compute the time-
smoothed images. Then, the last two images on each side
are used to compute the average optical-flow vectors. This
average is calculated over a subwindow of 32x64 pixels on
each side (Fig. 19.)

Finally, by observing that the left and right flows have
opposite directions, the comparison of those two flows can
be written as

e ¼ uL þ uR

¼ TM
1

ZR
� 1

ZL

� �
;

where TM is the robot forward motion speed, and ZR, ZL

provide the horizontal projections of these motions into the
right and the left images. To keep the robot centered in a
hallway, a PID controller is used (Fig. 20). The input to this
controller is the difference between the average optical
flows from the left and the right cameras according to the
equation above.

The above equations are somewhat oversimplified in the
sense that they apply only when the two cameras are pointing
in symmetrically divergent directions with respect to the
direction of motion. Besides that, strictly speaking, the
equations, do not permit the direction of motion to be
changed, a condition that cannot be satisfied during
rotational motions. However, the authors have shown
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Fig. 19. Sample of the computed optical flows. Reprinted with permission
from [133].

Fig. 20. The PID controller used in [133].



analytically that the equation can be used provided the

following conditions are satisfied: 1) The rotational speed is

not larger than a certain factor times the translational speed.

This factor is a function of the relative position of the cameras

in polar representation with respect to the robot coordinate

frame. 2) The cameras are mounted as close as possible to the

robot rotation center. And, that 3) a calibration procedure is

performed in order to compensate for an independent term

that appears in the equation for rotational motion.
The technique also runs into difficulties if there is

insufficient texture on the walls of a corridor. Since the

optical flow calculation depends on the existence of some

texture, it is desirable that when the robot runs into a section

of the corridor deficit in wall texture, the robot exhibit what

the authors have referred to as sustained behavior. In the

implementation reported in [133], if texture can be extracted

from one of the two walls, the robot maintains its velocity and

direction as it begins to follow the wall with the texture. If

texture disappears from both sides, the robot halts. The

sustained behavior was obtained by monitoring the “amount

of flow” on both sides. When the flow on one side is not

significant, the system uses a reference flow that must be

sustained in the other image (Fig. 21).
In a more recent work, [10], Bernardino and Santos-

Victor have included two visual behaviors, vergence and

pursuit, to design a control strategy for fixating and

tracking objects using a stereo head with pan, tilt, and

vergence control. Also mimicking bees, Rizzi et al. [131],

have developed a homing method based on an affine

motion model, which requires no object recognition or

3D information from the scene. The rectified image

obtained by applying the affine model to the current image

is compared to the goal image and a vector indicating the

movement is estimated.
Again, using the optical-flow technique, Dev et al. [33]

have implemented wall following navigation by extracting

depth information from optical flow.

2.3.2 Navigation Using Appearance-Based Matching

Another way of achieving autonomous navigation in a
mapless environment is by “memorizing” this environment.
The idea is to store images or templates of the environment
and associate those images with commands or controls that
will lead the robot to its final destination.

Gaussier et al. [43] and Joulian et al. [65] developed an
appearance-based approach using neural networks to map
perception into action. The robot camera captures a
270-degree image of the environment by combining a series
of images, each with 70 degrees of field of view. This
panoramic image is processed and a vector of maximum
intensity averages along x (the horizontal axis) is obtained.
For each maximum value in this vector, a “local view” is
defined. This local view is a 32x32 subwindow extracted from
the panoramic window (Fig. 22). The set of all local views for a
given panoramic image defines a “place” in the environment.
Each place is associated with a direction (azimuth) to the goal.
Finally, a neural network (Fig. 23) is used to learn this
association and, during actual navigation, it provides the
controls that take the robot to its final destination.

Using appearance-based navigation, Matsumoto et al. [98]
extended the place recognition idea in Horswill’s mobile
robot Polly [55] by using a sequence of images and a template
matching procedure to guide robot navigation. Subwindows
extracted from down-sampled versions of camera images are
used to form a sequence of images (Fig. 24) that works as a
“memory” of all the images observed during navigation.
Each image in this sequence is associated with the motions
required to move from the current position to the final
destination—this is referred to as VSRR (View-Sequenced
Route Representation). After a sequence of images is stored
and the robot is required to repeat the same trajectory, the
system compares the currently observed image with the
images in the sequence database using correlation processing
running on a dedicated processor. Once an image is selected
as being the image representing that “place,” the system
computes the displacement in pixels between the view image
and the template image. This displacement is then used in a
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Fig. 21. Examples with (center and right) and without (left) the sustained behavior. Reprinted with permission from [133].



table to provide real-world displacements and angles to be

used in the steering commands.
Another system built around Matsumoto’s VSRR concept

is reported by Jones et al. [64]. There, the robot is given a

sequence of images and associated actions (motion com-

mands). Using zero-energy normalized cross-correlation, the

robot retrieves the image from the database that best matches

the view image. If the match is above a certain threshold, the

robot performs the commands associated with that image,

otherwise it halts.

In 1996, Ohno et al. ([115]) proposed a similar but faster
implementation also using sequences of images. But since
their system (Fig. 25) uses only vertical hallway lines, it
needs less memory and can operate faster. The work of
Ohno et al. also includes extensive experimentation that
shows how to construct association lists of the changes in
the position and the orientation of the robot, on the one
hand, and the changes in what the robot sees. For another
appearance-based approach that uses elastic template
matching—a template is a set of features, each extracted
from a 7x7 window in the image and their relative positions
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Fig. 23. Navigation neural network. Reprinted with permission from [43].

Fig. 24. Outline of navigation using the view-sequenced route representation. Reprinted with permission from [98].

Fig. 22. Panoramic view of a place and the corresponding vector of maximum intensities. Reprinted with permission from [43].



within the entire image—see the work of Balkenius [9].
Martı́nez and Vitrià [94] have also proposed an appearance-
based approach using mixture models learned by the
expectation maximization algorithm.

2.3.3 Navigation Using Object Recognition

While in map-based systems it is easy to establish meaningful
navigational goals for the robot, most robotic systems are
limited to essentially just roaming in mapless systems. The
reason for that is that a human operator can use the internal
map representation of a structured environment to
conveniently specify different destination points for the
robot. But, for the mapless case, using the appearance-based
approaches mentioned so far, in most cases the robot only has
access to a few sequences of images that help it to get to its
destination, or a few predefined images of target goals that it
can use to track and pursue. Kim and Nevatia [72], [73] have
proposed a different approach for mapless navigation.
Instead of using appearance-based approaches to memorize
and recall locations, a symbolic navigation approach is used.
In this case, the robot takes commands such as “go to the door”
or “go to the desk in front of you” etc., and uses the symbolic
information contained in these commands to establish the
landmarks it needs to recognize and the path it needs to take
to reach the goal. For example, a command such as “go to the
desk in front” tells the robot that the landmark is the desk and
the path should point straight ahead. The robot builds what
the authors call a ”squeezed 3D space into 2D space map” or
“s-map” which is a 2D grid that stores the projections of the
observed landmarks as they are recognized using a trinocular
vision system. Once the target landmark (e.g., desk) is
recognized and its location is projected into the s-map, the
robot plots a path using a GPS-like path planner and
deadreckoning to approach the target.

3 OUTDOOR NAVIGATION

As with indoor navigation, outdoor navigation usually
involves obstacle-avoidance, landmark detection, map build-
ing/updating, and position estimation. However, at least in
the research reported so far in outdoor navigation, a complete
map of the environment is hardly ever known a priori and the
system has to cope with the objects as they appear in the scene,
without prior information about their expected position.

Nevertheless, outdoor navigation can still be divided into two
classes according to the level of structure of the environment:
outdoor navigation in structured environments and in
unstructured environments.

3.1 Outdoor Navigation in Structured Environments

One of the first outdoor navigation systems reported in the
literature is by Tsugawa et. al. [148] for a car that could
drive autonomously, albeit under a highly constrained set
of conditions, at 30 km/hr. This system used a pair of stereo
cameras mounted vertically to detect expected obstacles.
The navigation relied mostly on obstacle avoidance.

In general, outdoor navigation in structured environ-
ments requires some sort of road-following. Road-following
means an ability to recognize the lines that separate the
lanes or separate the road from the berm, the texture of the
road surface, and the adjoining surfaces, etc. In systems that
carry out road following, the models of the environment are
usually simple, containing only information such as
vanishing points, road and lane widths, etc. Road-following
for outdoor robots can be like hallway-following for indoor
robots, except for the problems caused by shadows,
changing illumination conditions, changing colors, etc.

One of the most prominent pieces of work in outdoor
navigation is the Navlab project and its various incarnations.
Navlab, initially developed by Thorpe et al. [142], has now
gone through 10 implementations [124], [142], [143], [61], [63]
based on vehicles ranging from minivans to metro buses and
equipped with computing hardware ranging from super-
computers (Navlab 1) to laptops (Navlab 5 and later).

In its first implementation [142], [143], Navlab used color
vision for road following and 3D vision for obstacle
detection and avoidance. The R, G, and B images were
stored in a pyramid of decreasing resolutions. The images
start with 480x512 pixels and end with 30x32 pixels (Fig. 26).
The higher resolution images are used for texture classifica-
tion, while the lower resolution images are used for color
classification. The algorithm for road following consists of
three stages: pixel classification, best-fit road position vote,
and color update.

Pixel classification in Navlab 1 is performed by combin-
ing two separate approaches: color classification and texture
classification. During color classification, each pixel is
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Fig. 25. (a) Recording the image sequence (top) and comparing the current image with the recorded sequence (bottom). (b) The image processing

steps for trajectroy correction. Reprinted with permission from [115].



assigned a class depending on the color distributions. The
road pixels are represented by four separate Gaussian
clusters to account for changes in illumination, road surface
properties, etc. Similarly, the nonroad pixels are also
represented by four separate Gaussian clusters. Each
Gaussian distribution is represented by a three-dimensional
mean vector (mean R, G, and B), by a three-by-three
covariance matrix, and by the fraction of pixels expected a
priori to be represented by that distribution. The probability
that a pixel with color vector X belongs to the distribution i,
PC
i , is computed using the Mahalanobis distance:

ðX �miÞT��1ðX �miÞ. The classification is carried out
using the standard maximum-likelihood ratio test. The
result is shown in Fig. 26b.

Navlab 1 bases texture classification on the observation
that road regions tend to appear much smoother in an
image compared to nonroad regions. Smoothness is
measured via a normalized gradient index that uses a
high-resolution gradient (at 240x256 pixels) divided by a
weighted sum of a low-resolution gradient (at 60x64 pixels)
and the mean pixel value per region. The gradients are
calculated using the Robert’s operator. The smoothness
indices are thresholded to produce a counter of “micro-
edges” per 8x8 block of pixels. The result is a 30x32 texture
image with values between 0 and 255 representing the
number of microedge pixels in the corresponding 8x8 block
of the full-resolution image. Finally, the texture classifica-
tion itself is done using a probability PT

i that depends on
the microedge count (Fig. 26c).

As mentioned before, the final classification of a pixel is

carried out by combining the results obtained from color

and texture. This combination is simply a weighted sum of

the two probabilities:

Pi ¼ ð1� �ÞPT
i þ �PC

i :

Since color classification proved to be more reliable than

texture, the value chosen for � reflects that fact. The final

result, shown in Fig. 26d, is the classification of the pixels into

road and nonroad with a confidence value calculated by:

C ¼maxfPi; i is a road classg
�maxfPi; i is a nonroad classg:

ð9Þ

Once the pixels are classified, a Hough-like transform is

applied to the road pixels to obtain the two parameters that

specify the road vanishing point and orientation: intercept,

P , and orientation,  (Fig. 27). As in a Hough transform,

each pixel votes for the points in the (P ,  ) space to which it

could belong. The point in the (P ,  ) space with the most

votes is the one that represents the parameters of the road.
Finally, once the position of the road and its edges leading

to a vanishing point are determined using the above voting

procedure, the pixels are reclassified taking into account the

determined road edges. The new parameters (mean and

variance) from this new classification are then used to classify
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Fig. 26. Pixel classification: “road” and “nonroad” classes. (a) Original image. (b) Color classification. (c) Texture classification. (d) Final classification.

Reprinted with permission from [143].



the pixels in the next image. This allows the system to adapt to

gradual changes in the conditions of the road.
The NAVLAB 1 vehicle was also equipped with a neural-

network based navigational system, called ALVINN [124],

[125], [126], [127]. The ALVINN system (Autonomous Land

Vehicle In A Neural Network) was first reported in 1989

[124]. Its later versions came with additional capabilities

with regard to robust road detection and confidence

estimation. One of the later versions is called ALVINN-

VC, where VC stands for Virtual Camera [61], [63]. In the

following paragraphs, we will first summarize the key ideas

of the core ALVINN system and then briefly mention the

added capabilities of ALVINN-VC.
The key idea of ALVINN, as reported in [125], consists of

watching a human driver for a few minutes in order to learn

his/her reactions when driving on roads of varying proper-

ties. The neural network in ALVINN has an input layer

consisting of 30x32 nodes, onto which the video camera

image is projected (Fig. 28). This input layer is fully

connected to a 5-node hidden layer1 which, in turn, is fully

connected to the output layer consisting of 30 nodes that

represent each of the possible steering angles that the

vehicle must follow in order to keep traveling in the middle

of the road.

The neural network is trained using a standard back-

propagation algorithm. However, during the learning

stage, instead of assuming that only a single output node

should be activated for a given orientation of the road, a

Gaussian distribution of activations (centered around the
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Fig. 27. Road Transform. (a) Road description using P and  . (b) Possible orientations of the road passing thru one point. (c) Best road orientation

and intercept (dark square) in the ðP;  Þ space. (d) Detected road using dark point in (c). Reprinted with permission from [143].

1. In [127], a slightly different neural network with a 4-node hidden layer
is employed.

Fig. 28. Architecture of the neural network in ALVINN. Reprinted with
permission from [125].



node that corresponds to the correct road orientation) is

assumed. The training-phase activation level for each

output node is given by

xi ¼ eð�di
2=10Þ;

where xi represents the activation level for the output node
i and di represents the distance between the ith node and
the node corresponding to the correct steering angle for the
road image fed into the input layer. The constant 10 is
empirically chosen so that the activation level for the
10th node to the left or right of the correct steering direction
is made very small.

Using Gaussian-distributed activations during the train-
ing phase produces a finer steering angle during actual
navigation because the center of mass of the Gaussian
function may lie between two output nodes, instead of
corresponding to one or the other node. Moreover, as
reported in [125], this results in a kind of “continuous”
output function for the neural network, in the sense that
small changes in the orientations of the road result in small
changes in the activation levels of the outputs. On the other
hand, in a more traditional “one of N” classifier output
from a neural network, it is required that the network
exhibit a nonlinear behavior in its output, the nonlinearity
arising from the fact that a slight change in the road
orientation could cause an output node to change abruptly
from zero to one or the other way around.

The first training scheme for ALVINN used synthetic
images. As one would expect, the effort required for
generating these images proved too onerous. Besides, when
the differences between real images and the synthetic
images were significant, the performance of the system in
actual driving situations was poor. These problems were
circumvented by an “on-the-fly” training scheme in which
the neural network is trained for actual driving situations
performed by humans. In this scheme, the training is
performed online, using data that is collected at the same
time as a human performs the steering of the vehicle. A
major disadvantage of this approach comes from the fact
that since a human driver tends to keep a vehicle
consistently in the center of the road, the neural network
may not “experience” situations that require correction

from a misaligned trajectory. Another related problem is
caused by the fact that actual driving situations involve
long straight stretches of roads. This causes “on-the-fly”
training schemes to overtrain the neural network to straight
roads, in the sense that the neural network can forget what
it learned earlier about driving on curved roads. Both these
problems stem from the following need of a backpropaga-
tion algorithm: The training data must adequately represent
all possible input conditions. The authors of ALVINN have
tried to get around these problems with training by
transforming each actual road image into 14 “distorted”
images that correspond to the road curving to the left and to
the right (Fig. 29). These additional images are then added
to the pool used for training.

The overall result of this first implementation of
ALVINN was a system capable of driving Navlab 1 at its
maximum speed of 20 miles per hour. Later, in [127],
ALVINN was reported to perform well at speeds of up to
55 miles per hour using a second version of the testbed
vehicle called Navlab 2.

An improved version of ALVINN is the ALVINN-VC
system [61], [63]; the latter system is better at detecting
roads and intersections. In the VC (for Virtual Camera)
version, virtual images are constructed from the actual
camera image, the virtual images corresponding to different
viewpoints at different distances from the actual camera.
The neural networks are trained on these virtual images
(Fig. 30). Since the virtual images are obtained by projecting
the actual image pixels representing road segments farther
away from the vehicle, instead of immediately in front of it
(Figs. 31 and 32), this technique allows the system to detect
road changes and intersections before they get too close to
the vehicle. Another important feature in ALVINN-VC is its
capability of measuring its confidence in detecting a road
through an idea called Input Reconstruction Reliability
Estimation (IRRE). It consists of using the neural network’s
internal representation to reconstruct the original image
and comparing it to the actual original image. Both images,
the reconstructed and the observed, are correlated and an
index measuring their similarity is calculated and used as
the IRRE metric. The justification for the usefulness of this
metric comes from the fact that the more closely both
images match each other, the more familiar to the neural
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Fig. 29. The original and the 14 “distored” images used to train the NN. Reprinted with permission from [125].



network is the input image and, hence, the more reliable is
the network’s response.

Another pioneering development in road-following was
VITS (Vision Task Sequencer) by Turk et al. [151]. VITS was a
system developed for Alvin, the eight-wheeled Autonomous
Land Vehicle at Martin Marietta Denver Aerospace. VITS is a
general framework for vision for outdoor road-following
together with obstacle detection and avoidance [38], [150].
The primary vision sensor used by VITS is a fixed-focus
CCD color camera that provides 480x512 RGB images, with
eight bits of intensity for each color component. The camera is

mounted on a pan/tilt unit that is under the direct control of
the vision subsystem. The other sensor used by VITS is a laser
range scanner, developed by ERIM. The sensor determines
range by measuring the phase shift of a reflected modulated
laser beam. The laser is continuously scanned over a field that
is 30 degrees vertical and 80 degrees horizontal. The output of
the scanner is a digital image consisting of a 64x256 array of
pixels with eight bits of range resolution.

To fully grasp the functionality of VITS, it has to be seen
as a part of the larger reasoning and control framework for
Alvin (Fig. 33). The vision system produces a description of

DESOUZA AND KAK: VISION FOR MOBILE ROBOT NAVIGATION: A SURVEY 257

Fig. 30. Virtual images obtained from the actual camera field of view. Reprinted with permission from [61].

Fig. 31. Virtual camera for detecting roads. Reprinted with permission
from [63].

Fig. 32. Virtual camera for detecting intersections. Reprinted with
permission from [63].



the road, in a vehicle-centered coordinate frame, in front of
the vehicle from either the video data or the range images or
both. To this description is added information such as the
current position, speed, heading, etc., (this additional
information is supplied by the Reasoning Module to help
the Vision Module decide where to sample the image for
road pixels) to form a scene model—a data structure where
all this information is stored.

An example of a hypothetical scene model is shown in
Fig. 34. The scene model, as determined from each image
frame is shipped off to the Reasoning module where the
road description is transformed into a fixed world
coordinate frame for the calculation of a trajectory for
Alvin. This trajectory is then supplied to the Pilot whose job
is to actually drive the vehicle by issuing commands to the
vehicle controllers. The Vision Module also receives from
the Reasoning Module any relevant visual cues, these being
features significant for vision processing, features such as
intersections, sharp curves, etc. The overall site map and the
visual cues are stored in the Knowledge Base module. In
addition to computing the trajectory for Alvin to follow, the
Reasoning module also carries out an evaluation of the
scene models generated from successive camera images for
the smoothness and continuity of the road edges.

So far, we have discussed the architectural context for the
vision module. Evidently, the most significant duty
assigned to the Vision module is the construction of a scene
model from the sensor data. We will now describe briefly
the algorithmic steps that extract a description of the road
from a camera image. Basic to road-description construction
is the segmentation of a camera image into road pixels and
nonroad pixels. Because environmental conditions, such as
the presence or the absence of shadows caused by trees and

other artifacts, fresh tarmac, presence of dirt on the road,
brightness of sun, presence of water or snow on the ground,
etc., can wreak havoc with fixed thresholding of images,
robust extraction of the road pixels from camera images was
a major challenge faced by the designers of VITS. VITS uses
dynamic thresholding that calculates the decision threshold
for separating road pixels from nonroad pixels by project-
ing into the image a sampling window for road pixels by
projecting into the world coordinates the road boundaries
found in the previous frame and then reprojecting into the
current frame a trapezoid formed by those road boundaries
(Fig. 35b).

A predictive sampling window formed in this manner is
then used to calculate the color properties of the road pixels
and a threshold on these properties used to separate the road
pixels from the nonroad pixels in the current frame. This is
done by first clustering the pixels in the RGB color space. A
cluster is formed for the pixels within the sampling window
and the rest of the pixels allowed to group into one or more
clusters. Ideally, a projection of these clusters into the
important Red-Blue plane will look like what is shown in
Fig. 36. (The Red-Blue plane is important for road-following
algorithms because the spectral composition of the road
pixels tends to be predominantly blue and that of the shoulder
pixels predominantly red.) When road and nonpixels cluster
as neatly as what is shown in Fig. 36, one can easily construct a
linear discriminant function to separate the color space into
two halves, one half corresponding to the road pixels and the
other half corresponding to the nonroad pixels. But,
unfortunately, in actual imagery, the clusters in the RGB
can also look like what is shown in Fig. 37. Now, it would not
be possible to construct a linear discriminant function to
separate the road pixel cluster from the nonroad pixel
clusters, the problem being caused by the space occupied
by the shaded nonroad pixels. In general, this would call for
using nonlinear discriminant functions. The authors of VITS
have proposed a solution by constructing bounding rectan-
gles for the road pixel clusters in the color space. The
bounding boxes allow them to carry out fast image
segmentation by using two global lookup table operations
per boxed region. The road segmentations thus obtained are
followed by an edge-tracking algorithm for the extraction of
road boundaries needed for the scene model.

Another success story in outdoor navigation is the
research in road-following carried out for “Autobahns”
[36], [37] and all the derived work that came from that [35],
[34], including the EUREKA-project “Prometheus” [46],
[47], [48], [50], [49], [129]. Investigation in Prometheus
centered on the potential of robot vision technology to
improve traffic safety and to alleviate fatigue for car and
truck drivers. The goal was the development of a technol-
ogy for an automatic copilot intended to warn the driver of
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Fig. 33. Alvin system configuration. Reprinted with permission from [151].

Fig. 34. Example of a road scene and its corresponding model.
Reprinted with permission from [151].



imminent danger or even to drive automatically during
monotonous periods [47], [48], [49]. This effort resulted in
driving speeds of 96 km/h on a highway and 40 km/h on
unmarked roads using a method of feature extraction called
controlled correlation [85], [86]. In this method, the first step
of image processing, the feature extraction, is performed by
correlation processing of only selected relevant sections of
the image. The methods developed allow dynamic scenes to
be analyzed in real time using standard microprocessors.

Other pioneering research contributions on computer
vision for road following include those of Waxman’s et al.
[154], [155],Wallaceetal. [152]andWallace[153],Lawtonetal.
[88], Goto and Stentz [45], Kuan et al. [83] and Kuan and
Sharma [84], and others.

We should also mention that underwater pipe inspection
is an example of a class of problems that bears many
similarities with vision for road-following. Extracting the
contours of a pipe is equivalent to extracting and following
the road contours. In [130], for example, Rives and Borrelly
took a visual servoing approach and devised a controller
that takes as inputs the lines extracted from the image of a
pipe and uses this information to generate steering
commands for the ROV Vortex vehicle.

Speed is evidently an important issue for outdoor
navigation. In order to achieve high speeds, the throughput
of the vision system must be maximized. Kelly and Stentz
[70] have proposed an adaptive approach based on the
active vision paradigm that can be used to increase the
throughput of perception and, thus, to increase the
maximum speed of a mobile robot. This idea, called
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Fig. 35. The segmentation results for different thresholding values. Reprinted with permission from [151].

Fig. 36. (a) Original road image. (b) Red/Blue clusters. Reprinted with
permission from [151].



Adaptive Perception, can be implemented by keeping the
focus of attention restricted to only the region of interest.
The system is adaptive with respect to three parameters:
lookahead, sweep, and scan. These parameters control,
respectively, the distance to the region of interest in front of
the vehicle, the size of the region of interest, and the
scanning resolution.

3.2 Unstructured Outdoor Navigation

An outdoor environment with no regular properties that
could be perceived and tracked for navigation may be
referred to as unstructured environment. In such cases, the
vision system can make use of at most a generic
characterization of the possible obstacles in the environ-
ment, as in [120] (Fig. 38).

Unstructured environments arise in cross-country navi-
gation as, for example, in planetary (lunar/martian-like)
terrain navigation (Fig. 39) [157], [158], [12], [81], [99].
Sometimes in these sorts of applications, the robot is
supposed to just wander around, exploring the vicinity of
the robot without a clearcut goal [91], [136]. However, in
other applications, the task to be performed requires that
the robot follow a specific path to a goal position. In those
cases, a map of the traversed areas has to be created and a

localization algorithm has to be implemented in order to
carry out goal-driven navigation. When maps need to be
built by a robot, they may be created in either a vehicle-
centered coordinate frame vehicle [81] (and updated [82] as
the vehicle moves) or with respect to some external
reference, such as an external camera attached to a
companion device [99] (as in Mars Pathfinder and Lander),
or a virtual viewpoint with respect to which range data is
projected to form a Cartesian Elevation Map [30] or a global
positioning reference such as the sun [29].

The techniques that have been developed for localization
in unstructured environments include: external camera
observation [99], far-point (mountain peaks) landmark
triangulation [139], global positioning [29], etc. For localiza-
tion by global positioning, presented in [29] is an approach
for measuring the position of the sun using a digital
inclinometer, a camera with neutral density filters, and an
adjustable platform. The system first determines the circles
of equal altitude corresponding to each image in a time-
indexed sequence of images of the sun and then calculates
the final position using a least-squares estimate.

Krotkov and Hebert [81] have presented a mapping and
positioning systems for RATLER—Robotic All-Terrain Lunar
Explorer Rover. For mapping, they present a correlation
matcher that intelligently selects parts of the left and the right
images to be processed and subsamples the intensities
without subsampling the disparities. By doing so, they save
processing time without compromising the accuracy of the
depth map or without resorting to special hardware. The
positioning system uses traditional sensors such as encoders,
inclinometers, a compass, etc. Also using the RATLER
vehicle, the work reported in [136] implements a system that
uses stereo vision to build a map that represents the terrain up
to seven meters in front of the rover.

A highly noted accomplishment in vision-based naviga-
tion in unstructured environments is the Mars Pathfinder
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Fig. 37. (a) Original road image with shadows. (b) Red/Blue clusters. Reprinted with permission from [151].

Fig. 38. Characterization of terrains in [120].
Fig. 39. Martian terrain. This can be found at the Jet Propulsion
Laboratory (JPL) Web site http://mpfwww.jpl.nasa.gov/MPF/index0.html.



project [158], [99], [101]. The Mars Pathfinder mission was
launched in December 1996 and landed in July 1997. The
mission was performed by two devices: the lander and the
rover (Fig. 40). The lander is a 1.5 m wide and 1.0 m high
tetrahedron with a mass of 264 kg. It is composed of a VME-
based, RAD 6000 computer with 128Mb of memory, a
multispectral stereo camera pair with a pan/tilt base
mounted on a mast 1.5 m above the ground. The cameras
have a baseline of 15 cm and resolution of 256x256 pilxels
with an angular resolution of 0.001 radians per pixel. The
rover, Fig. 40b, is 65 cm long, 48 cm wide, and 30 cm high. It
is equipped with an Intel 8085 processor and 500Kb of
memory. The navigation by the rover, carried out in
cooperation with the lander, consists of four different
functions:

1. goal designation,
2. path selection,
3. rover localization, and
4. hazard detection.

In goal designation, human operators at the mission control
used a Web-based tool [8] to specify waypoints in 3D views
of the landing site that were generated from images
obtained using the stereo cameras on the lander. This
required that a map of the landing site, centered at the
lander, be maintained by the mission control and the
images recorded by the lander be used for tracking and
locating the rover (Fig. 41). Waypoint coordinates were
extracted from the 3D views by pointing to pixels in a
stereographic display using a special device called the
spaceball. Once the 3D coordinates were extracted, the

rover could be commanded to move towards those
coordinates using a simple path selection algorithm:

IF there is no hazard,
move forward and turn toward the goal,

ELSE IF there is a hazard on the left,
turn in place to the right until no hazard is detected;

ELSE IF there is a hazard on the right,
turn in place to the left until no hazard is detected.

The mission-controlled supplied localization of the rover
was transmitted to the lander once a day. During the rest of
the day, the rover would be on its own, using deadreckoning
to figure out its position. Because the deadreckoning-based
positional errors tend to accumulate, it was determined by
simulation of typical navigation scenarios that the rover
would be allowed to travel at most 10 m/day [99]. Once the
rover was commanded to move, a hazard detection algo-
rithm was started. The rover moved at speeds of 15 cm/s and
stopped for hazard detection every 6.5 cm (one wheel
radius). The hazard detection algorithm used two cameras
and five laser diode-based light stripe emitters (Fig. 42). The
stripes extended in front of the vehicle for about 30 cm and to
the left or right for 13 cm. The hazard detection algorithm
searched for four points along each stripe and assumed the
presence of a hazard if: 1) either of the nearest two points for
any stripe was not detected or 2) the elevation difference
between any two 8-connected neighbors in the 4x5 measure-
ment array exceeded a threshold or 3) the difference between
the highest and the lowest elevation of the whole area
exceeded another threshold. The shortcomings of the rover
navigation system, especially those related to localization,
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Fig. 40. (a) Pathfinder lander and (b) rover. This can be found at the JPL Web site http://mpfwww.jpl.nasa.gov/MPF/index0.html.



are expected to be alleviated in future missions by using new
approaches, such as using the maximum-likelihood
approach for matching range maps [118].

3.3 Illumination and Outdoor Navigation

A common problem in all outdoor navigation systems is
that caused by variations in illumination. The differences in
contrast and texture in an image as a function of the time of
the day, time of the year, weather conditions, etc., can
impose serious limitations on the performance of a
navigation system. The use of color to compensate for these
differences in illumination conditions has been explored in
many outdoor navigation systems. Some of the earliest
systems to use color to distinguish shadows from obstacles
are by Thorpe et al. [143] and Turk et al. [151]. Another
more recent example of this is in [91], where the authors

have addressed the problem of vision-guided obstacle
avoidance using three redundant vision modules, one for
intensity (BW), one for RGB, and one for HSV. The goal is to
figure out the position of obstacles in the scene while the
robot wanders and explores the environment. Each module
output (image) is scanned using a small subwindow (20x10)
that is shifted vertically pixel by pixel. That process defines
a vertical slice of the original image that is represented (and
indexed) by its central value of x. Inside this slice, for each
window is computed a histogram of its intensity values, red
values, green values, etc., depending on the module (RGB,
HSV, or BW). The areas of these histograms are subtracted
from the area of the histogram for the “safe window”
(lowest window in the slice, which is assumed to have no
obstacles Fig. 43). When the difference is above a certain
threshold, the height of the window (y-coordinate) is used
to estimate the height of the object in the scene. Each
module then outputs a value for the height of the obstacle.
Those outputs are averaged to produce steering and
acceleration commands for the robot. One advantage of
the system is its relative adaptability to different environ-
mental conditions. This adaptability is gained by using the
“safe window” as a basis for analyzing other windows for
the presence of obstacles.

Another system that uses color to overcome lighting
problems has been developed by Mori et al. [110]. In a
manner similar to [151], Mori uses what is referred to as the
color impression factor—Red minus Blue—to compensate
for hue shifts due to variations in sunlight conditions,
weather, season, view position, etc. However, instead of
storing models of “sunny road” and “shaded road,” as in
Navlab and VITS [143], [151] (which are useful only when
the robot is in completely sunny or completely shady
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Fig. 41. Tracked positions of the rover. This can be found at the JPL Web site http://mpfwww.jpl.nasa.gov/MPF/index0.html.

Fig. 42. Rover’s hazard sensors: camera fields of view in solid lines and

light stripes in dotted lines. Reprinted with permission from [99].



regions), the system presented by Mori uses three windows
positioned in the image to correspond to three regions
ahead of the robot: far (4 meters), middle (3 meters), and
near (2 meters). The windows are analyzed and the
computed color impression factor is used to facilitate
transitions from/to sunny to/from shaded regions.

We should also mention the work of Fernández and
Casals [41]. They set the value of a pixel to H (hue) unless the
average value of the RGB components is less than 15 or their
differences are less than 10. In those cases, the pixel is
represented by its intensity value. The image thus repre-
sented is divided into six regions that describe the expected-
structure of the road, berms, etc. The obstacles within the
“road region” are detected using a simplified form of the
structure-from-motion approach, which the authors called
height-from-motion. The authors claim that their new
H/I (Hue/Intensity) representation is less sensitive to
illumination conditions than the normal RGB representation.

4 THE FUTURE

As our survey shows, much has already been accomplished
in computer vision for mobile robot navigation. If the goal is
to send a mobile robot from one coordinate location to
another coordinate location, we believe there is sufficient
accumulated expertise in the research community today to
design a mobile robot that could do that in a typical
building (barring for electromechanical abilities needed for
tasks such as opening doors, calling elevators, climbing
steps, etc.).

But, if the goal is to carry out function-driven navigation
—an example being to fetch a fire-extinguisher that is
somewhere in a given hallway or to stop at a stop sign
under varying illumination and background conditions—
we are still eons away. Useful navigation where a robot
must be aware of the meaning of the objects encountered in
the environment is beset with a harder-to-solve version of
the central problem of general computer vision—automatic
scene interpretation. Scene interpretation for mobile robots

is a harder problem than for stationary arm robots because,
in the mobile context, there is much less control over
illumination and background scene clutter.

It’s probably safe to predict that the near future will
witness progress in task and environment specific mobile
robots. We should see vision-equipped versions of robots
that have already been deployed on experimental basis in
patient-care, building security, hazardous-site inspection,
etc. With vision, such robots would conceivably engage in
smarter navigation and smarter interaction with people and
objects in the environment.

Progress will also surely be made, on the one hand, in
more efficient ways of representing the metrical and
topological properties of the environment and, on the other,
in more efficient ways of representing the uncertainties in a
robot’s knowledge of its environment and its own position
relative to the environment. While the incorporation of
uncertainties in purely geometrical representations is well
understood from related problem domains, less well
understood today is the incorporation of uncertainties in
representations that are primarily topological but contain
locally metric attributes. What is also not well understood
today is how precisely a robot should take into account the
various uncertainties when it makes navigational or task-
oriented decisions. Recent work on partially observable
Markov decision processes (POMDP) that allows a robot to
maintain a probability distribution over all possible states
and to update this distribution using perceptual data gives
us a powerful formalism for dealing with this issue [67].
The next few years will surely shed more light on the power
of this approach for mobile robots engaged in nontrivial
navigational tasks.

5 CONCLUSIONS

Compared to 20 years ago, we have a much better sense today
of the problems we face as we try to endow mobile robots with
sensory intelligence. We are much more cognizant of the
importance of prior knowledge and the various forms in
which it can be modeled. The models can be geometrical,
topological, appearance-based, etc. Different representation
schemes vary with respect to the degree of metrical knowl-
edge contained, exhibiting different degrees of robustness
with regard to illumination variations, etc. This paper has
surveyed these various aspects of the progress made so far in
vision for mobile robot navigation.
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