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Figure 1: We present LMR, a new method for video human mesh recovery. Unlike existing work, LMR captures local
human part dynamics and interdependencies by learning multiple local recurrent models, resulting in notable performance
improvement over the state of the art. Here, we show a few qualitative results on the 3DPW dataset.

Abstract

We consider the problem of estimating frame-level full
human body meshes given a video of a person with natu-
ral motion dynamics. While much progress in this field has
been in single image-based mesh estimation, there has been
a recent uptick in efforts to infer mesh dynamics from video
given its role in alleviating issues such as depth ambigu-
ity and occlusions. However, a key limitation of existing
work is the assumption that all the observed motion dynam-
ics can be modeled using one dynamical/recurrent model.
While this may work well in cases with relatively simplistic
dynamics, inference with in-the-wild videos presents many
challenges. In particular, it is typically the case that differ-
ent body parts of a person undergo different dynamics in the
video, e.g., legs may move in a way that may be dynamically
different from hands (e.g., a person dancing). To address
these issues, we present a new method for video mesh re-
covery that divides the human mesh into several local parts
following the standard skeletal model. We then model the
dynamics of each local part with separate recurrent mod-
els, with each model conditioned appropriately based on

the known kinematic structure of the human body. This re-
sults in a structure-informed local recurrent learning archi-
tecture that can be trained in an end-to-end fashion with
available annotations. We conduct a variety of experiments
on standard video mesh recovery benchmark datasets such
as Human3.6M, MPI-INF-3DHP, and 3DPW, demonstrat-
ing the efficacy of our design of modeling local dynamics as
well as establishing state-of-the-art results based on stan-
dard evaluation metrics.

1. Introduction
We consider the problem of human mesh recovery in

videos, i.e., fitting a parametric 3D human mesh model to
each frame of the video. With many practical applications
[2, 3], including in healthcare for COVID-19 [4–6], there
has been much progress in this field in the last few years
[1, 7, 8]. In particular, most research effort has been ex-
pended in single image-based mesh estimation where one
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Figure 2: A qualitative comparison with VIBE [1], high-
lighting local regions (ellipses that show zoomed-in VIBE
results) where LMR gives better performance.

seeks to fit the human mesh model to a single image. How-
ever, such 3D model estimation from only a single 2D
projection (image) is a severely under-constrained problem
since multiple 3D configurations (in this case poses and
shapes of the mesh model) can project to the same image.
Such ambiguities can be addressed by utilizing an extra di-
mension that is typically associated with images- the tem-
poral dimension leading to video data and the problem of
video mesh recovery.

The currently dominant paradigm for video mesh recov-
ery involves the feature-temporal-regressor architecture. A
deep convolutional neural network (CNN) is used to extract
frame-level image feature vectors, which are then processed
by a temporal encoder to learn the motion dynamics in the
video. The representation from the temporal encoder is
then processed by a parameter regressor module that out-
puts frame-level mesh parameter vectors. While methods
vary in the specific implementation details, they mostly fol-
low this pipeline. For instance, while Kanazawa et al. [9]
implement the temporal encoder using a feed-forward fully
convolutional model, Kocabas et al. [1] uses a recurrent
model to encode motion dynamics. However, uniformly
across all these methods, the parameter regressor is imple-
mented using a “flat” regression architecture that takes in
feature vectors as input and directly regresses all the model
parameters, e.g., 85 values (pose, shape, and camera) for the
popularly used skinned multi-person linear (SMPL) model
[7, 10]. While this paradigm has produced impressive re-
cent results as evidenced by the mean per-joint position er-
rors on standard datasets (see Arnab et al. [11] and Kocabas
et al. [1] for a fairly recent benchmark), a number of is-
sues remain unaddressed that provide us with direction and
scope for further research and performance improvement.

First, the above architectures implicitly assume that all
motion dynamics can be captured using a single dynamical

system (e.g., a recurrent network). While this assumption
may be reasonable for fairly simplistic human motions, it is
not sufficient for more complex actions. For instance, while
dancing, the motion dynamics of a person vary from one
part of the body to the other. As a concrete example, the
legs may remain static while the hands move vigorously,
and these roles may be reversed after a certain period of time
(static hands and moving legs several frames later), leading
to more “locally” varying dynamics. Intuitively, this tells
us that the motion of each local body part should in itself be
modeled separately by a dynamical system, and that such a
design should help capture this local “part-level” dynamical
information more precisely as opposed to a single dynami-
cal system for the entire video snippet.

Next, as noted above, the regressor in the feature-
temporal-regressor architecture involves computing all the
parameters of the SMPL model using a direct/flat regression
design without due consideration given to the interdepen-
dent nature of these parameters (i.e., SMPL joint rotations
are not independent but rather conditioned on other joints of
other parts such as the root [10]). It has been noted in prior
work [12] that such direct regression of rotation matrices,
which form a predominant part of the SMPL parameter set,
is challenging as is and only made further difficult due to
these interdependencies in the SMPL model. In addition to
direct rotation regression, the temporal module in the above
feature-temporal-regressor also does not consider any joint
and part interdependencies, i.e., modeling all motion dy-
namics using a single global dynamical system, thus only
further exacerbating this problem.

To address the aforementioned issues, we present a new
architecture for capturing the human motion dynamics for
estimating a parametric mesh model in videos. Please note
that while we use the SMPL model [10] in this work, our
method can be extensible to other kinds of hierarchical para-
metric human meshes as well. See Figure 1 for some qual-
itative results with our method on the 3DPW [13] dataset
and Figure 2 for a comparison with a current state-of-the-
art method. Our method, called local recurrent models for
mesh recovery (LMR), comprises several design considera-
tions. First, to capture the need for modeling locally varying
dynamics as noted above, LMR defines six local recurrent
models (root, head, left/right arms, left/right legs), one each
to capture the dynamics of each part. As we will describe
later, each “part” here refers to a chain of several joints de-
fined on the SMPL model. Note that such a part division is
not ad hoc but grounded in the hierarchical and part-based
design of the SMPL model itself, which divides the human
body into the six parts above following the standard skeletal
rigging procedure [10]. Next, to model the conditional in-
terdependence of local part dynamics, LMR first infers root
part dynamics (i.e., parameters of all joints in the root part).
LMR then uses these root part parameters to subsequently



infer the parameters of all other parts, with the output of
each part conditioned on the root output. For instance, the
recurrent model responsible for producing the parameters of
the left leg takes as input both frame-level feature vectors as
well as frame-level root-part parameters from the root-part
recurrent model.

Note the substantial differences between LMR’s design
and those of prior work- (a) we use multiple local recur-
rent models instead of one global recurrent model to cap-
ture motion dynamics, and (b) such local recurrent model-
ing enables LMR to explicitly capture local part dependen-
cies. Modeling these local dependencies enables LMR to
infer motion dynamics and frame-level video meshes in-
formed by the geometry of the problem, i.e., the SMPL
model, which, as noted in prior work [12], is an important
design consideration as we take a step towards accurate ro-
tation parameter regression architectures. We conduct ex-
tensive experiments on a number of standard video mesh
recovery benchmark datasets (Human3.6M [14], MPI-INF-
3DHP [15], and 3DPW [13]), demonstrating the efficacy of
such local dynamic modeling as well as establishing state-
of-the-art performance with respect to standard evaluation
metrics.

To summarize, the key contributions of our work are:

• We present LMR, the first local-dynamical-modeling
approach to video mesh recovery where unlike prior
work, we explicitly model the local dynamics of each
body part with separate recurrent networks.

• Unlike prior work that regresses mesh parameters in a
direct or “flat” fashion, our local recurrent design en-
ables LMR to explicitly consider human mesh interde-
pendencies in parameter inference, thereby resulting in
a structure-informed local recurrent architecture.

• We conduct extensive experiments on standard bench-
mark datasets and report competitive performance, es-
tablishing state-of-the-art results in many cases.

2. Related Work

There is much recent work in human pose estimation,
including estimating 2D keypoints [16–18], 3D keypoints
[19–23], and a full mesh [1, 7–9, 11, 24, 25]. Here, we
discuss methods that are relevant to our specific problem-
fitting 3D meshes to image and video data.

Single-image mesh fitting. Most recent progress in hu-
man mesh estimation has been in fitting parametric meshes
to single image inputs. In particular, following the avail-
ability of differentiable parametric models such as SMPL
[10], there has been an explosion in interest and activity
in this field. Kanazawa et al. [7] presented an end-to-end
trainable regression architecture for this problem that could

in principle be trained with 2D-only keypoint data. Subse-
quently, many improved models have been proposed. Kolo-
tourous et al. [25] and Georgakis et al. [8] extended this
architecture to include more SMPL-structure-informed de-
sign considerations using either graph-based or parameter
factorization-based approaches. There have also been at-
tempts at SMPL-agnostic modeling of joint interdependen-
cies, with Fang et al. [26] employing bidirectional recur-
rent networks and Isack et al. [27] learning priors between
joints using a pre-defined joint connectivity scheme. While
methods such as Georgakis et al. [8] and Zhou et al. [28]
also take a local part-based kinematic approach, their fo-
cus is on capturing inter-joint spatial dependencies. On the
other hand, LMR’s focus is on capturing inter-part temporal
dependencies which LMR models using separate recurrent
networks.

Video mesh fitting. Following the success of image-
based mesh fitting methods, there has been a recent uptick
in interest and published work in fitting human meshes to
videos. Arnab et al. [11] presented a two-step approach that
involved generating 2D keypoints and initial mesh fits us-
ing existing methods, and then using these initial estimates
to further refine the results using temporal consistency con-
straints, e.g., temporal smoothness and 3D priors. How-
ever, such a two-step approach is susceptible to errors in
either steps and our proposed LMR overcomes this issue
with an end-to-end trainable method that provides deeper
integration of the temporal data dimension both in training
and inference. On the other hand, Kanazawa et al. [9] and
Kocabas et al. [1] also presented end-to-end variants of the
feature-temporal-regressor where frame-level feature vec-
tors are first encoded using a temporal encoder (e.g., a sin-
gle recurrent network) and finally processed by a parameter
regressor to generate meshes. However, such a global ap-
proach to modeling motion dynamics (with only one RNN)
does not capture the disparities in locally varying dynamics
(e.g., hands vs. legs) which is typically the case in natural
human motion. LMR addresses this issue by design with
multiple local RNNs in its architecture, one for each pre-
defined part of the human body. Such a design also makes
mesh parameter regression more amenable by grounding
this task in the geometry of the problem, i.e., the SMPL
model itself.

3. Technical Approach

3.1. Parametric Mesh Representation

We use the Skinned Multi-Person Linear (SMPL) model
[10] to parameterize the human body. SMPL uses two
sets of parameter vectors to capture variations in the hu-
man body: shape and pose. The shape of the human body
is represented using a 10-dimensional vector β ∈ R10

whereas the pose of the body is represented using a 72-
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Figure 3: The proposed local recurrent modeling approach to human mesh recovery.

dimensional vector θ ∈ R72. While β corresponds to the
first ten dimensions of the PCA projection of a shape space,
θ captures, in axis-angle format [29], the global rotation
of the root joint (3 values) and relative (to the root) rota-
tions of 23 other body joints (69 values). Given β, θ, and
a learned model parameter set ψ, SMPL defines the map-
ping M(β,θ,ψ) : R82 → R3×N from the 82-dimensional
parametric space to a vertex space of N = 6890 3D mesh
vertices. One can then infer the 24 3D joints of interest
(e.g., hips, legs, etc.) X ∈ R3×K ,K = 24 using a pre-
learned joint regression matrix W as X = WJ . Using a
known camera model, e.g., a weak-perspective model as in
prior work [7], one can then obtain the corresponding 24 2D
image points x ∈ R2×K as:

x = sΠ(X(β,θ)) + t, (1)

where the scale s ∈ R and translation t ∈ R2 represent the
camera model, and Π is an orthographic projection. There-
fore, fitting 3D SMPL mesh to a single image involves es-
timating the parameter set Θ = {β,θ, s, t}. In video mesh
recovery, we take this a step forward by estimating Θ for
every frame in the video.

3.2. Learning Local Recurrent Models

As noted in Section 1, existing video mesh fitting meth-
ods formulate the problem in the feature-temporal-regressor
design where all motion dynamics in the video are captured
using a single RNN. We argue that this is insufficient for
mesh estimation due to the inherently complex nature of
human actions/motion, more so in challenging in-the-wild
scenarios. Our key insight is that natural human motion dy-
namics has a more locally varying characteristic that can

more precisely be captured using locally learned recurrent
networks. We then translate this idea into a conditional lo-
cal recurrent architecture, called LMR and visually summa-
rized in Figure 3, where we define multiple recurrent mod-
els, one each to capture the dynamics of the corresponding
local region in the human body. During training and in-
ference, LMR takes as input a segment of an input video
V = {I1, I2, . . . , It, t = 1, 2, . . . , T}, where T is a de-
sign parameter corresponding to the length of the input se-
quence. LMR first processes each frame with its feature
extraction module to produce frame-level feature vectors
Φ = {φ1,φ2, . . . ,φt} for each of the T frames. LMR
then processes Φ with its local part-level recurrent mod-
els and associated parameter regressors, and aggregates all
part-level outputs to obtain the mesh and camera parame-
ters Θt, t = 1, 2, . . . , T for each frame, finally producing
the output video mesh.

3.2.1 LMR Architecture

As shown in Figure 3(a), our architecture comprises a fea-
ture extractor followed by our proposed LMR module. The
LMR module is responsible for processing the frame-level
representation Φ to output the per-frame parameter vec-
tors Θt. Following the design of the SMPL model and
prior work [8, 10], we divide the human body into six lo-
cal parts- root (4 joints in the root region), head (2 joints
in the head region), left arm (5 joints on left arm), right
arm (5 joints on right arm), left leg (4 joints on left leg),
and right leg (4 joints on right leg). Given this division,
the pose of local part pi, i = 1, . . . , 6 can be expressed as
θi = [r1, . . . , rni

], i = 1, . . . , 6, where rq (q = 1, . . . , ni)



is a rotation parameterization (e.g., rq ∈ R3 in case of axis
angle) of joint q and ni is the number of joints defined in
part i. The overall pose parameter vector θ can then be ag-
gregated as θ = [θ1, . . . ,θ6].

To capture locally varying dynamics across the video se-
quence, LMR defines one recurrent model for each of the
six parts defined above (see Figure 3(b)). The recurrent
model for part i is responsible for predicting its correspond-
ing θi. To capture the conditional dependence between
parts, the information propagation during training and in-
ference is defined as follows. Given the frame-level feature
representation Φ, the mean pose vector θmean, and the mean
shape vector βmean (note that it is common [1, 7, 9] to ini-
tialize mesh fitting with these mean values), the recurrent
model responsible for the root part (number 1) first predicts
its corresponding pose vector θ1t , t = 1, . . . , T for each of
the t frames using the concatenated vector [Φt,θ

1
mean,βmean]

as input for the current frame t. Note that Φt is the fea-
ture vector for frame t and θ1mean represents the mean pose
parameters of part p1. All other recurrent models (parts
2 through 6) then take in as input the concatenated vector
[Φt,θ

k
mean,βmean,θ

1
t ] in predicting their corresponding pose

vectors θkt , k = 2, . . . , 6 and t = 1, . . . , T , where θkmean rep-
resents the mean pose parameters of part pk. Note this ex-
plicit dependence of part k on the root (part 1) prediction θ1.
Given the aggregated (over all 6 parts) pose vector θt, LMR
has a fully-connected module that takes as input the con-
catenated vector [Φt,θt,βmean] for each frame t to predict
the per-frame shape vectors βt, t = 1, . . . , T . Finally, given
an initialization for the camera model cinit = [sinit, tinit],
LMR uses the concatenated vector [Φt,θt,βt, cinit] as part
of its camera recurrent model to predict the camera model
ct, t = 1, . . . , T for each frame. Note that while we have
simplified the discussion and notation here for clarity of ex-
position, LMR actually processes each batch of input in an
iterative fashion, which we next describe in more mathe-
matical detail.

3.2.2 Training an LMR model

As noted above and in Figure 3, the proposed LMR module
takes as input the video feature set Φ and the mean pose
and shape parameters θmean and βmean and produces the
set of parameter vectors Θt = [θt,βt, ct] for each frame
t. The LMR block processes each input set in an iterative
fashion, with the output after each iteration being used as a
new initialization point to further refine the result. The final
output Θt is then obtained at the end of L such iterations.
Here, we provide further details of this training strategy.

Let each iteration step above be denoted by the letter v.
At step v = 0, the initial pose and shape values for frame
t will then be θt,v = θmean and βt,v = βmean. The t, v
notation refers to the vth iterative step of LMR for frame

number t. So, given Φ, βt,v , and the root pose θ1t,v (re-
call root is part number 1 from above), the input to the root
RNN will be the set of t vectors [Φt,θ

1
t,v,βt,v] for each of

the t frames. The root RNN then estimates an intermediate
residual pose ∆θ1t,v , which is added to the input θ1t,v to give
the root RNN output θ1t,v = θ1t,v + ∆θ1t,v .

Given the root prediction θ1t,v at iteration v, each of the
other dependent part RNNs then use this information to pro-
duce their corresponding pose outputs. Specifically, for part
RNN k, the input vector set (across the t frames) will be
[Φt,θ

k
t,v,βt,v,θ

1
t,v] for k = 2, . . . , 6. Each part RNN first

gives its corresponding intermediate residual pose ∆θkt,v .
This is then added to its corresponding input part pose, giv-
ing the outputs θkt,v = θkt,v + ∆θkt,v for k = 2, . . . , 6.

After producing all the updated pose values at iteration
v = 0, LMR then updates the shape values. Recall that
the shape initialization used at v = 0 is βt,v = βmean.
Given Φ, the updated and aggregated pose vector set θt,v =
[θ1t,v, . . . ,θ

6
t,v], and the shape vector set βmean, LMR then

uses the input vector set [Φt,θt,v,βmean] as part of the shape
update module to produce the new shape vector set βt,v for
each frame t during the iteration v.

Given these updated θt,v andβt,v , LMR then updates the
camera model parameters (used for image projection) with
a camera model RNN. We use an RNN to model the cam-
era dynamics to cover scenarios where the camera might
be moving, although a non-dynamical fully-connected neu-
ral network can also be used in cases where the camera is
known to be static. Given an initialization for the camera
model ct,v = cinit at iteration v = 0, the camera RNN pro-
cesses the input vector set [Φt,θt,v,βt,v, cinit] to produce
the new camera model set ct,v for each frame t.

After going through one round of pose update, shape
update, and camera update as noted above, LMR then re-
initializes this prediction process with the updated pose
and shape vectors from the previous iteration. Specifically,
given the updated θt,v and βt,v at the end of iteration v = 0,
the root RNN at iteration v = 1 then takes as input the set
[Φt,θ

1
t,v,βt,v], where the pose and shape values are not the

mean vectors (as in iteration v = 0) but the updated vec-
tors from iteration v = 0. LMR repeats this process for
a total of V iterations, finally producing the parameter set
Θt = [θt,βt, ct] for each frame t. Note that this iterative
strategy is similar in spirit to the iterative error feedback
strategies commonly used in pose estimators [7, 30–32].

All the predictions above are supervised using several
cost functions. First, if ground-truth SMPL model parame-
ters Θgt

t are available, we enforce a Euclidean loss between
the predicted and the ground-truth set:

Lsmpl =
1

T

T∑
t=1

‖Θgt
t −Θt‖2 (2)

where the summation is over the t = T input frames in the



current batch of data.
Next, if ground-truth 3D joints Xgt

t ∈ R3×K (recall
K=24 from Section 3.1) are available, we enforce a mean
per-joint L1 loss between the prediction 3D joints Xt ∈
R3×K and Xgt

t . To compute Xt, we use the predicted
parameter set Θt and the SMPL vertex mapping function
M(β,θ,ψ) : R82 → R3×N and the joint regression matrix
W (see Section 3.1). The loss then is:

L3D =
1

T

1

K

T∑
t=1

K∑
k=1

‖Xgt
k,t −Xk,t‖1 (3)

where each column of Xgt
k,t ∈ R3 and Xk,t ∈ R3 is one

of K joints in three dimensions and the outer summation is
over t = T frames as above.

Finally, to provide supervision for camera prediction, we
also enforce a mean per-joint L1 loss between the prediction
2D joints xt ∈ R2×K and the ground-truth 2D joints xgt

t .
To compute xt, we use the 3D joints prediction Xt and the
camera prediction ct to perform an orthographic projection
following Equation 1. The loss then is:

L2D =
1

T

1

K

T∑
t=1

K∑
k=1

‖xgt
k,t − xk,t‖1 (4)

where each column xgt
k,t ∈ R2 and xk,t ∈ R2 of xgt

t and xt

respectively is one of K joints on the image and the outer
summation is over t = T frames as above.

The overall LMR training objective then is:

LLMR = wsmplLsmpl + w3DL3D + w2DL2D (5)

where wsmpl, w3D, and w2D are the corresponding loss
weights.

4. Experiments and Results
4.1. Datasets and Evaluation

Following Kocabas et al. [1], we use a mixture of both
datasets with both 2D (e.g., keypoints) as well as 3D (e.g.,
mesh parameters) annotations. For 2D datasets, we use Pen-
nAction [36], PoseTrack [37], and InstaVariety [9], whereas
for 3D datasets, we use Human3.6M [14], MPI-INF-3DHP
[15], and 3DPW [13]. In all our experiments, we use ex-
actly the same settings as Kocabas et al. [1] for a fair bench-
marking of the results. To report quantitative performance,
we use evaluation metrics that are now standard in the hu-
man mesh research community. On all the test datasets, we
report both mean-per-joint position error (MPJPE) as well
as Procrustes-aligned mean-per-joint position error (PA-
MPJPE). Additionally, following Kanazawa et al. [9] and
Kocabas et al. [1], on the 3DPW test set, we also report the
acceleration error (“Accel.”), which is the average (across

all keypoints) difference between the ground truth and pre-
dicted acceleration of keypoints, and the per-vertex error
(PVE).

4.2. Ablation Results

We first present results of an ablation experiment con-
ducted to study the efficacy of the proposed design of LMR,
i.e., the use of multiple local recurrent models as opposed to
a single recurrent model as is done in prior work [1]. Here,
we follow the same pipeline as Figure 3 in spirit, with the
only difference being the use of only one RNN to infer all
the pose parameters θ instead of the six RNNs depicted in
Figure 3(b). All other design choices, e.g., for the shape
model or the camera model, remain the same as LMR. We
show qualitative results of this experiment in Figure 4 and
quantitative results in Table 1. In Figure 4, we show two
frames from two different video sequences in (a) and (b).
The first row shows results with this single RNN baseline
and the second row shows corresponding results with our
full model, i.e., LMR. One can note that LMR results in
better mesh fits, with more accurate Θ-inference in regions
such as hands and legs. We further substantiate this perfor-
mance gap quantitatively in Table 1, where one can note the
proposed LMR gives consistently better performance than
its baseline single RNN counterpart across all datasets as
well as evaluation metrics.

4.3. Comparison with the state-of-the-art results

We compare the performance of LMR with a wide vari-
ety of state-of-the-art image-based and video-based meth-
ods. We first begin with a discussion on relative quali-
tative performance. In Figure 5, we show three frames
from two different video sequences in (a) and (b) compar-
ing the performance of the image-based HMR method [7]
(first row) and our proposed LMR. Since LMR is a video-
based method, one would expect substantially better perfor-
mance, including in cases where there are self-occlusions.
From Figure 5, one can note this is indeed the case. In the
first column of Figure 5, HMR is unable to infer the correct
head pose (it infers front facing when the person is actually
back back facing), whereas LMR is able to use the video in-
formation from prior to this frame to infer the head pose cor-
rectly. Note also HMR’s incorrect inference in other local
regions, e.g., legs, in the subsequent frames in Figure 5(a).
This aspect of self-occlusions (i.e., invisible face keypoints)
is further demonstrated in Figure 5(b), where HMR is unsta-
ble (front facing on a few and back facing on a few frames),
whereas LMR consistently infers the correct pose.

Next, we compare the performance of LMR with the
state-of-the-art video-based VIBE method [1]. In Figure 6,
we show three frames from two different video sequences
in (a) and (b). One can note substantial performance im-
provement in several local regions from these results. In
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Figure 4: Two sets of qualitative results comparing LMR with a single-RNN baseline model.

Methods Human3.6M MPI-INF-3DHP 3DPW
MPJPE↓ Rec. Error↓ MPJPE↓ Rec. Error↓ MPJPE↓ Rec. Error↓ PVE↓ Accel↓

Single RNN 69.2 45.6 100.0 66.7 87.7 55.3 101.0 19.0
LMR no root dependencies 66.7 43.5 97.1 64 86.3 55.1 98.9 17.6

LMR 61.9 42.5 94.6 62.4 81.7 51.2 93.6 15.6

Table 1: Results of an ablation study comparing LMR with a single RNN baseline.

H
M
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R

(a) (b)

Figure 5: Two sets of qualitative results comparing the performance of LMR with the image-based HMR [7] method.

particular, LMR infers more accurate hand pose and camera
model parameters in Figure 6(a) when compared to VIBE.
The results in Figure 6(b), a more challenging scenario, best
illustrates the benefits offered by proposed local design of
LMR. Given the variety of body movements in this set of

frames, one can note the improved performance of LMR in
several regions- hands and legs in the first column, head in
the second column, and hands and legs again in the third
column. These results are further substantiated in the quan-
titative comparison we discuss next.
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Figure 6: Two sets of qualitative results comparing the performance of LMR with the video-based VIBE [1] method.

Methods Human3.6M MPI-INF-3DHP 3DPW
MPJPE ↓ Rec. Error ↓ MPJPE ↓ Rec. Error ↓ MPJPE ↓ Rec. Error ↓ PVE ↓ Accel ↓

Im
ag

e-
ba

se
d Kanazawa et al. [7] 88.0 56.8 124.2 89.8 130 76.7 - 37.4

Omran et al. [33] - 59.9 - - - - - -
Pavlakos et al. [24] - 75.9 - - - - - -

Kolotouros et al. [25] - 50.1 - - - 70.2 - -
Georgakis et al. [8] 67.7 50.1 - - - - - -

Extra-fitting Kolotouros et al. [34] 62.2 41.1 105.2 67.5 96.9 59.2 116.4 29.8

V
id

eo
-b

as
ed Kanazawa et al. [9] - 56.9 - - 116.5 72.6 139.3 15.2

Arnab et al. [11] 77.8 54.3 - - - 72.2 - -
Doersch et al. [35] - - - - - 74.7 - -
Kocabas et al. [1] 65.6 41.4 96.6 64.6 82.9 51.9 99.1 23.4

LMR 61.9 42.5 94.6 62.4 81.7 51.2 93.6 15.6

Table 2: Comparing LMR to the state of the art (“-”: unavailable result in the corresponding paper).

We provide a quantitative comparison of the perfor-
mance of LMR to various state-of-the-art image- and video-
based methods in Table 2. We make several observa-
tions. First, as expected, LMR gives substantially better
performance when compared to the image-based method
of Kanazawa et al. [7] (MPJPE of 61.9 mm for LMR vs.
88.0 mm for HMR on Human3.6M, 94.6 mm for LMR vs.
124.2 mm for HMR on MPI-INF-3DHP, and 81.7 mm for
LMR vs. 130.0 mm for HMR on 3DPW). This holds with
other image-based methods as well (first half of Table 2).
Next, LMR gives competitive performance when compared
to state-of-the-art video-based methods as well. In particu-
lar, further substantiating the discussion above, LMR gen-
erally outperforms Kocabas et al. [1] with margins that are
higher on the “in-the-wild” datasets (MPJPE of 94.6 mm
for LMR vs. 96.6 mm for Kocabas et al. [1] on MPI-INF-
3DHP, Accel. of 15.6 mm/s2 for LMR vs. 23.4 mm/s2 for
Kocabas et al. [1] on 3DPW), further highlighting the effi-
cacy of LMR’s local dynamic modeling.

Finally, in Table 2, we also compare our results with

those of Kolotouros et al. [34] that uses an additional step
of in-the-loop model fitting. Note that despite our pro-
posed LMR not doing this extra model fitting, it outper-
forms Kolotouros et al. [34] in most cases, with particularly
substantial performance improvements on MPI-INF-3DHP
(MPJPE of 94.6 mm for LMR vs. 105.2 mm for Kolotouros
et al. [34]) and 3DPW (MPJPE of 81.7 mm for LMR vs.
96.9 mm for Kolotouros et al. [34]).

5. Conclusions

We considered the problem of video human mesh recov-
ery and noted that the currently dominant design paradigm
of using a single dynamical system to model all motion
dynamics, in conjunction with a “flat” parameter regres-
sor is insufficient to tackle challenging in-the-wild scenar-
ios. We presented an alternative design based on local re-
current modeling, resulting in a structure-informed learning
architecture where the output of each local recurrent model
(representing the corresponding body part) is appropriately
conditioned based on the known human kinematic structure.



We presented results of an extensive set of experiments on
various challenging benchmark datasets to demonstrate the
efficacy of the proposed local recurrent modeling approach
to video human mesh recovery.

References
[1] Muhammed Kocabas, Nikos Athanasiou, and Michael J.

Black. VIBE: Video inference for human body pose and
shape estimation. In CVPR, 2020. 1, 2, 3, 5, 6, 8

[2] Vivek Singh, Kai Ma, Birgi Tamersoy, Yao-Jen Chang, An-
dreas Wimmer, Thomas O’Donnell, and Terrence Chen.
DARWIN: Deformable patient avatar representation with
deep image network. In MICCAI, 2017. 1

[3] Angel Martı́nez-González, Michael Villamizar, Olivier
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