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Modeling the Haemodynamic Response in fMRI
Using Smooth FIR Filters

Cyril Goutte*, Finn Arup Nielsen, and Lars Kai Hanséviember, IEEE

Abstract—Modeling the haemodynamic response in functional ~ The haemodynamic response is usually, as a first approxima-
magnetic resonance (fMRI) experiments is an important aspect of tion, modeled as a convolution of the experimental paradigm by
the analysis of functional neuroimages. This has been done in the 4 |ineay filter, and implemented as a linear time-invariant (LTI)
past using parametric response function, from a limited family. . S L .

In this contribution, we adopt a semi-parametric approach based systerrll..T.h|s- assumption ',S usually JUS.tIer.d by th? obseryatlon
on finite impulse response (FIR) filters. In order to cope with Of additivity in the fMRI signal [4], which is consistent with
the increase in the number of degrees of freedom, we introduce the linear hypothesis. Although several groups have since re-
a Gaussian process prior on the filter parameters. We show ported small to strong departures from normality in a number of
how to carry on the analysis by incorporating prior knowledge — ¢niexts [5]-[8], it is still believed that the linearity assumption

on the filters, optimizing hyper-parameters using the evidence . . . o
framework, or sampling using a Markov Chain Monte Carlo holds in a wide range of experimental conditions [8]. The LTI

(MCMC) approach. We present a comparison of our model with approach has been pursued using several types of parametric
standard haemodynamic response kernels on simulated data, and models of the filter, for example using a Poisson filter [9], a

perform a full analysis of data acquired during an experiment Gamma filter [4], [10], a Gaussian filter [11], or a simple delay
involving visual stimulation. [12]. In addition, a number of investigators have used linear fil-
Index Terms—Evidence, FIR filters, fMRI, haemodynamic re- ters to model the haemodynamic response, but astitand do
sponse, Markov Chain Monte Carlo, neuroimaging, smoothness notfit the parameters, they are somewnhat out of the scope of this
prior, Tikhonov regularization. study (see, e.qg., [6], [13]). In these models, the few parameters
have a specific interpretation, measuring, e.g., delay, strength of
I. INTRODUCTION activation, etc.

Inthis contribution, we use a different standpoint, where we do
Yot impose a specific shape on the linear filter coefficients. The
h emodynamic response is modeled as an FIR function, a partic-
: X . Qfar case of autoregressive with exogenous input (ARX) model.
of functional magnetic resonance (fMRI) images [as compar is approach has been pioneered by [14]. Though itis undoubt-

tp p95|tron emission tomograp.hy (PET)]’ a blnar'y_basellne-aé:aly parametric in the sense that it fits a number of parameters,
tivation description of the data is insufficient and it is necessa.g)}{“1

. R ese do notreally have a physical or physiological meaning. We
to take into account the temporal pattern of activation due to tj¢ |, therefore, refertoitasasemi-parametriodelingapproach
haemod)_/ngmlc response to the act!vat|on: A second réasohtigg approach is much more flexible than the use of a parametric
the possibility of performing simulations with the model. Th

dicted behavior obtained f imulati b q f(?iltershape.ln particular, it can model reliably the early decrease
predicted behavior obtained from simulation can be used to ?ﬁ'signal (initial dip, see, e.g., [15], [16]) or the post-activation

mulate more explicit hypotheses about the fMRI signal, and PQ¥dershoot [17], whereas, e.g., the Poisson, Gamma or Gaussian
sibly optimize the design and acquisition [1]. Alast reasonis the . - intrinsic'allyunablt,eto d;) o '

possibility, for some models, to give a physiological interpreta- As the number of parameters increases, there is a risk that

tion of the model parameters and, thus, better understand EHS model will overfit or that parameters become ill determined.

neurophysiology [2], [3]. We deal with this problem by placing a Gaussian Process prior
on the filter coefficients, forcing the filter to be smooth. The
resulting model is determined by the data and three hyper-pa-
Manuscri . , L , {(ameters which can be set beforehand or again fitted on the data
pt received April 10, 2000; revised August 21, 2000. This wor
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ODELING the haemodynamic response is important f
several reasons. First, an appropriate modeling lead
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that the smooth FIR f_ilter is able to implement additional fea- _ (27r0_2)—T/2 exp —L(Xw —Y)? ©)
tures that these classical models cannot, for example a post-ac- o?

tivation undershoot. We then perform a full analysis of fMRwhereX = [z(d + 1), z(d + 2), ..., =(T)]" is a matrix con-
data acquired during a visual stimulation experiment. In partitaining the (transposed) input vectarg) for all values of ¢,
ular, we show how to derive from the resulting filter measures éhdY = [y(d+1), y(d+2), ..., y(T)]" is the vector of mea-
support p-values) for the null hypothesis of no activation, angurements, the target values for our filter. Maximizing the likeli-
meaningful physiological information like the strength or delafood with respect tas leads to the well-known maximum-like-
in activation. lihood (ML) solution

Il. DATA wy = (XTX)TXTY @
The dataset was acquired at Hvidovre Hospital on a 1.5__|_When the ratio of the number of independent data to the filter

. . T .
Magnetom Vision MR scanner by Egill Rostrup. The scanni order is small, the matrig&X ' X)) tends to be badly conditioned

n X .
sequence was a 2-D gradient echo EPI"(Wighted) with 66 %hd the ML solution becomes unstable. It is necessary to regu-

ms echo time and 50 degrees RF flip angle. The images Were!ggze the solution. Alternatively, in a Bayesian context we will

quired with a matrix of 128« 128 pixels, with FOV of 230-mm, :cglcpuossgncggsl:;iligf ()r?(;rzy c?fpt?\((:elfy:anr?e?af fr(;?rrﬁ(w)' we wil
and 10-mm slice thickness, in a para-axial orientation parallel to P ' g
the calcarine sulcus. The region of interest (ROI) will be limited p(w|R) = (27)~Y2\/|R]| exp [~ 3w Rw] (5)

to a 68x 82 two-dimensional (2-D) voxel map. The voxel di- . . . .
mension is 1.8< 1.8 X 10 mm. where| - | indicates the determinant of a matrix. The posterior

The visual paradigm consists of a rest period of 20 s of darﬂi_stribution ofw, conditioned on the data and the hyper-param-
ness using a light fixation dot, followed by 10 s of full-field®ters becomes
checker board reversing at 8 Hz, and ending with 20 s of reslv| X, Y, R, 02)
(darkness). In total, 150 images were acquired in 50 s, corre- 1 T )
sponding to a period of approximateER = 330 ms/image. X €xp —ﬁ(w —wvar) (X X +0°R)(w—wwvar)
The experiment was repeated in ten separate runs containing ©)
150 images each. In order to reduce saturation effects, the first
29 images were discarded, leaving 121 images for each run.which is largest for the maximum posterioriparameters

The datasets studied in this article were acquired on the same T 21T
subject, but during two separate scanning sessions (d3711 and wyap = (XX +07R) XY (7)
d3991), such that, e.g., the position and the shape of the sliete that this is also the ridge regression solution wRes a
are slightly different. In each case, the dataset was built by codiagonal matrix with identical elements on the diagonal.
bining the ten runs into a single sequence of 1210 images. HowThe matrix R implements the constraints that we impose on
ever, as the runs were acquired separately, it should be noted thatmodel. Here, we want to obtagmoothfilters, i.e. filters
there cannot be any causality between the activation in one 8uth as neighboring parameters (eug.,andws) have similar
and the signal measured in the next. Note also that due to tadue. This corresponds to saying that neighboring filter param-
haemodynamic delay, the signal measured in activated voxeters should be somehow correlated. AccordinBlwill be the
will be roughly centered within the remaining 40 s of each ruimverse of a covariance matrix where the covariance is a de-
In the dataset we use in this article, the brain has first beereasing function of the distance between two parameters
masked, and the data was preprocessed using the run-based de- h
trending described by [18]. R=%"" withZ; =vexp <—§(i - j)2> (8)

IIl. THEORY OF SMOOTH FIR EILTERS In (8), the covariance decreases as a Gaussian parameterized by
i ¢ . ired i ) | v andh, but any nonnegative decreasing function of the distance
Let us consider a fMRI signal(t) acquired in a given voxel \; 1 .14 be used. This corresponds to putting a Gaussian

usin% a:ti'mu_lus;(t). The image indﬁx run: bztweer:jore ﬁndprocess prior on the filter parameters themselves, rather than on
T. The finite input response (FIR) filter of orddrmodels the the predictions [19], [20].

fMRI signal using linear coefficients = (wy, w2, - - wa) With this expression, the MAP estimate @f becomes

d T 25 —1\—1¢ T i i
o T wyap = (X' X + 0237 1H~1X 'Y which can be efficiently
ut) = Z wia(t —1) = w z(t) () calculated asoyap = S(EX X + 02I)"1 XY, avoiding
=t T the additional inversion oB. The resulting estimaterap
wherez(t) = (z(t —1), z(t—2), ---z(t — d)) " isavectorof gepends on three hyper-parameters: the noise levelthe

past values of the stimulus. . strength of the prior- and the smoothness factbr We will
Assuming independent additive zero mean Gaussian noigge pelow how it is possible to estimate the values of these
the likelihood of the model parameters becomes parameters using a Bayesian argument.
p(Y|X, w, o%)

WValues ofz(¢), t < 1 can be treated in several ways. For a block design in-

1 T volving baseline-activation-baseline patterns, they will naturally take the value
= H exp [——Q(w z(t) — y(t))? (2) ofthe baseline. Alternatively, ati(t), t < 1 can be treated as nuisance param-
—l Vv 27 o? 20 eters and integrated out of the model.
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Fig. 1. Resulting filter using ridge regression (thin line) and the smooth FIR filter approach (thick line). Top: characteristi¢ eyt bottom:¢ = 7.5 s.
From left to right, increasing levels of regularizatigr= o2 /». Data: one voxel from the visual cortex (voxel 429) displaying a large activation.

— Ridge i
— Smooth
- -- Smooth + boundary

The hyper-parametef controls the smoothness of the re- 45L
sulting filter. For large values ok, 3;; will go to zero very
fast for increasing values ¢f — j|, such that there will be very
little correlation between parameters: the filter will be very un 101
smooth. Foh — +oo, we recover the ridge regression solution
For small values of:, X,; will stay close to one for allé, 7),
indicating perfect correlation between the filter parameters. Tk
filter will be over-smooth. In the limit. — 0 all parameters are
identical and the filter performs a local averaging of the stimrg ot
ulusz(¢). It is useful to think ofh as corresponding to a “char- i
acteristic length” of the filter, i.e., the typical length in which
the filter varies. The characteristic lengtican be defined here -5
as/ = 1/+/h. This is quite useful in fMRI modeling because
it is widely believed on the basis of empirical studies [21], [3 _10-
that the haemodynamic response has a characteristic lengtr 0 1‘0 2‘0 3‘0 4‘0 5‘0 60
the scale of seconds, typically between 5 and 10 s. In first a Delay (images)
proximation it is then possible to use this prior information such

that¢ corresponds to, e.g., 7 s. For an fMRI experiment wheFé. 2. Comparison of the filters obtained by ridge regression, the smooth FIR
filter without boundary condition (thick solid) and the FIR filter with boundary

TR = 1/3_S' this correspon_ds to= 21 filter paramgters. conditions (thick dashed). Notice how the endpoint goes (smoothly) to zero.
Fig. 1 displays a comparison of smooth filters with the resultata: one voxel from the visual cortex (voxel 429) displaying a large activation.

of ridge regression. Itis quite clear that ridge regression does not

yield smooth filters, and the fluctuation in the parameters is inlow are clearly smoother, as expected from the larger character-
portant. Itis possible to reduce this fluctuation by increasing thetic length (the filters obtained from ridge regression are obvi-
amount of regularization (from left to right on Fig. 1), but thisusly identical).

also reduces the amplitude of the filter. This fluctuation means

that the filter contains high frequency components, which pé- Boundary Conditions

tentially have a strong influence on summary statistics like the|t js apparent from Fig. 1 that the first and (especially) the
maximum parameter or the delay, even though they seem to ci filter parameters can take clearly positive or negative values.
tribute little to the modeling on average. The influence of thehis cannot be avoided using the above equations. However, by
smoothness factor is clear from the comparison between the fisality, allw; for ¢ < 0 should be zero, as the influence of
and bottom row in the figure. The smooth filters in the bottorfhe stimulus at time, #(¢) should be felt only fot > 0. This

ient

coe
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corresponds to saying that a hypothetical filter parameter | . Ridge regression Tikhonov (1)
should be equal to zero. According to our prior, this will hav 2
a decreasing influence any, ws, etc. which will be forced (by 1
smoothness) to be close to zero. Similarly, it is sensible that t 1
influence of an activation should vanish in the past, hence, ve 05 0
ishing filter parameters for large delays. This can be againir 4
plemented by forcing an additional parametgy,; to be zero. -1

In practice, we are still interested only in estimating the valuc0-5—— ¢4 > 4 6 8 10
of filter parametersv, , ws, ..., wq. This is done by defining Tikhonov (2) Smooth FIR fiter
a(d+2) x (d+ 2) matrix3, such that:;; = vexpt(—h(i — 500

(=)

$)?), for (4, 5) € {0,1,...,d+ 1}% The matrixR is then 6
defined as the central x d part of X1, i.e., taking away the 4
first and last rows and columns. This operation can be eas 2
defined mathematically by introducing tfié + 2) x d matrix 0
Jat2 4, constructed as the superposition of a row of zeros « _2 -500

top, a unitd x d matrix in the centradl rows and a row of zeros 4
at the bottom. We then havé = J;,, ;S Jui2 a. 5 4 6 8 1o 1000 20 40 60
Note that we cannot use the same trick as above to avoid in-
; ; ; o _ Fig. 3. Comparison of the neighboring influences for Ridge regression,
v_ertlng the parameter CO_Va”ance matrlg._HoweEérs a ban(_j Tikhonov regularization on the gradient [“Tikhonov (1)"] and the curvature
diagonal (Toeplitz) matrix, such as efficient methods exist {@rikhonov (2)"] and the smooth filter approach.

perform an inversion in quadratic time instead of cubic for gen-
eral matrices. Furthermord, is usually quite small such that g, the derivative used. Far = 1 (gradient) and = 2 (curva-

inve_rsion of ad x d matrix is quite fast. N ture), we haveR = +R,,, with

Fig. 2 shows the effect of the boundary conditions. The hyper-
parameters are set to the same values as the left-most bottom -1 0 T 0
plot on Fig. 1. The smooth FIR filter obtained above had clearly -1 2 —1 0
negative values for the first delays as well as for the longer de- R, = U 2 0
lays (around 75). This effect disappears when boundary condi- : . :
tions are used. In particular, for large delays, the coefficients go 0 -1 2 -1
smoothly to zero, as expected. L 0 . 0 -1 1

and
B. Link to Tikhonov Regularization - 1 0 0
-2 5 -4 2 0

Regularization is often performed using Tikhonov regular- 1 —4 6 —4
ization, which imposes a constraint on derivatives of the target Ry = : . . (11)
function. In the context of this work, this would correspond 0 9 _4 - 9

. . . . . o]
to imposing smoothness by constraining the derivatives of the 0 o0 1 -2 1
filter. The regularized solution is then obtained by minimizing B
the penalized cost Tikhonov regularization is, thus, implemented by using a band-

diagonal regularization matrig. However, whereas for smooth
v\ 2 FIR filters R = ¥~ has nonzero elements on (almost) all diag-
Clw) = (Y — Xw)* ++ Z <an> (9) onals, the number of diagonals used by Tikhonov regularization

depends on the order of the derivative and the approximation

] o ) used. This means that whereas for smooth FIR filters the effect

wheren is the order of the derivatives used for smoothing. o gne given parameter is far reaching, it is really limited for
Of course the true deriVatiVeS are UnknOWn, SUCh that we tyn‘khonov regu'arization (2 neighbors far= 2 here)_

ica”y use instead the Central differences approximation, Where,By p|ott|ng one row (Or one Co|umn) ofthe regu'arization ma-

e.g., the first derivative (gradient) is approximated by the diffefrix one can picture the influence of the values of neighboring

ence between neighboring filter coefficientss/di ~ (wiy1—  parameters on the solution. This is done on Fig. 3 for ridge re-

w;). The regularized cost can then be formulated as gression, Tikhonov regularization on the gradient and curva-
tures, and the smooth FIR filter. The influence of the smooth
Clw) = (Y — Xw)> + w' Rw (10) filter can be seen here as a generalization of the Tikhonov ap-

proach of regularizing on the (approximate) amplitude of higher
Note that we have kept the notati&because equation (10) canorder derivatives.
actually be obtained (up to an additive and a multiplicative con-
stants) as the negative logarithm of the product of the likeliho&d EMor Bars
(2) and the prior (5), i.e., as the log-posterior, dglays the The posterior distribution aiy makes it possible to estimate
same role as the prior covariance. The expressidd @épends the uncertainty ofvy 4. Note however that (6) is a multivariate

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 30, 2009 at 10:29 from |IEEE Xplore. Restrictions apply.
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fMRI modelling with smooth FIR filter ally due to the fact that we represent only three of ten runs on the

”' ) ‘ - figure. Over the 10 runs, 79 measurements exceed the interval

150 it T 4 given by the estimate plus or minus 1.96 standard deviations.
N ot I

This should be compared to an expected 5% of 1210, or 61.

The time series modeled by the smooth FIR filter shows a
clear post-activation undershoot, followed by an overshoot of
similar amplitude. It should be noted that this might be a pre-
processing artefact. Note also that (on this data at least) it is not
possible to observe an “initial dip.”

100

Activation
[6,]
o

D. Significance of Activation

In the context of functional neuroimaging, it is not sufficient
to estimate the haemodynamic response in each location of the

-50 brain. One has to use the estimated model in the purpose of
‘ , ‘ ‘ ‘ . ‘ finding regions that are activated by a given stimulus sequence.

150 200 250 300 350 400 450 This is traditionally done by testing the null hypothesis of no

Time (images) activation using various statistical tests. In the context of this

. . , . , study, the null hypothesis takes the form{éfy: w = 0}, i.e.,
Fig. 4. fMRItime series{) measured in one strongly activated voxel (VOX(Iéqtbe filter parameters are identically equal to zero. The alterna-
429), with the activation estimated by the smooth FIR filter (solid) and the p e y €q s : i
prediction error bars on this activation, obtained from (12) (dotted). The entive hypothesis iSH;: w # 0}. In a Bayesian context, this
bars appear slightly over estimated because the first run has a larger amplitﬁp@mem is fundamentally ill posed. The posterior probability
than the last nine runs, thus inflating the apparent noise level.
for each hypothesiBr(Ho|D) andPr(H; |D) can, of course, be

) o ) ) ) estimated, but as fHcorresponds to a single point in parameter

Gaussian distribution with a general covariance matrix, such(ebg) space, the associated volume is zero, yieldtngHo| D) =

the individual components aé are correlated. In that contextity gnd rejection of the null-hypothesis in favor of the alternative
is not easy to represent graphically the uncertainty. Condmorﬁll
. 2 .
error bars obtained frop(wi|w;, X, Y, R, o°), wherew_; In a Bayesian context, the comparison of a point hypothesis
contains all filter parameters except, give a good idea of NOW \yith an interval hypothesis will, thus, usually lead to the adop-
close the filter parameters should be from each other, but greqfly, of the Jatter. In order to derive a measure of support for our
underestimate the possible range of variatiomofThis range - ,,int il hypothesis in a Bayesian context, we will use the con-
is well estimated by the marginally error bars obtained from cept of highest posterior density (HPD), described, e.g., by [22]
) ) and used in a functional neuroimaging context by [12]. Given
plwi X, Y, R, 0%) = / _p(“’|X7 Y, R o")dw, a posterior density functiom(w|D), the HPD region of content
- (1— ) is the regionR of parameter space such that [22, section
but these error bars overlook the fact that filter parameters @@
very correlated to each other, such that it is impossible for ex- 1) Pr(w € R|D) = 1 — q;
ample thatw, lies at the top of its marginal error bar while, 2) Vw, € R, ws & R P(1;11|D) > P(w2|D)
lies at the bF’Ftom- . . For a given significance level, we can test whetherHies
The condltlpnal error bars_ age eas2||y obtained ”OF” the Riithin the HPD region of contenk. If so, the null hypothesis
Z‘;:'zf‘ce maltn)I( of thet pto;tTe;me f}g _/la’“’“ whereayi iSthe 014 pe accepted at level Otherwise H would be rejected
jlagonal elemen d : o ) .and the voxel declared activated. Alternatively, we can use the
It is especially interesting to find error bars on the resultlnHPD as a measure of support by calculating the volume of the
predictions of the MAP filter, i.e., the estimated (de-noised) re; ionRo = {w, p(w|D) < p(w = 0|D)}. This is the region in
sponse pattern. U§||jg tAhe Gau§S|an noise a§sumpt.|on, the %%%émeter space that lies outside the équiprobability curve going
terior f_or the prediction; associated with an input, is also throughw = 0. Clearly, if H is to be accepted, this volume will
Gaussian be larger tham, as the HPD contains = 0. This region is large
p(41X, 20, Y, R, 02) when zero is close to.the MAP (hence, should not be re;ected),
. 1 and small when zero is far of the MAP (and should be rejected).
X X It, thus, seems justified to use the volumeffas a measure of
T 2 T ) ’
= Y —— +R 12 .
N | =0 wniar, o7+ 2 < PR ) zo | (12) support for the null hypothesis.
It is important to note that the use of the HPD to construct a
This is illustrated for a particular time series (measured in tiieeasure of support for point hypotheses is not exempt of some
visual cortex) in Fig. 4. We have plotted three runs out of 10, amd the logical flaws of other traditional measures of support like
we see clearly that the data fits well inside the error bars. Thes®alues or Bayes factors [23], [24]. In particular, it potentially
actually seem slightly overestimated, for two main reasons. Figstffers from inconsistency in some pathological cases. How-
the Gaussian assumption might be violated, though there is littheer, it has been noted that in a number of standard situations, it
evidence on this data of outliers. Second, the impression is agtields results that are similar to classical statistical tests [22].
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In our case, the posterior density of the filter parameter wgould integrate over the three hyper-parameters, after endowing
Gaussian, such that it is possible to get an efficient closed-fothrem with suitable priors (i.e., reflecting prior knowledge or lack
solution for the measure of support of) ih each voxel. With thereof). In the context of this study, it is impractical to carry out

the notation? = wyap(X X /o? + R)wyiap, We have the marginalization analytically. Classical MCMC techniques
122 [26] are able to perform numerical integration, but these tech-

pHPD = L / w1 —uw g, nigues are computationally intensive and not practical for a full
I'(d/2) brain (or even a full slice) analysis. We give a quick guideline

wyiap(X ' X /0% + R)ywnap and an example of application in the appendix to this article.
9 d/2 In the following, we will use an intermediate approach,
(13) and select the hyper-parameters according to their likeli-

hood p(Y|X, o2, v, h). Note that using uniform priors

where gammainc is the two-parameter incomplete Gamma the hyper-parametets, the posterior distribution of
function, and we have adopted the notatipiirp for the the hyper-parameters is proportional to the likelihood,

= gammainc <

support for K by similarity with traditionalp-values. p(o?, v, h|X,Y) x p(Y|X, o2, v, h). The hyper-parameters
o that we wish to optimize will, thus, be chosen so as to maximize
E. Estimation of the Delay the likelihood, also known as thevidenceThis is obtained by

Whereas standard parametric models of the haemodynatfii€grating over the distribution of the weights
response have one or several parameters representing the dela e/ g
(parameter of the Poisson, mean of the Gaussian, ratio of th& Y|X, 0% v, h) = /
Gamma parameters), the FIR filter does not model this directly.
Itis necessary to estimate the delay from the many filter param- As the product of the two terms inside the integral has a

eters. One approach is to use the group delay described, e.g CRYySSian form, integration can be performed analytically,

p(Y|X, w, o*)p(wly, h) dw (15)

w

Oppenheim and Schafer [25] leading to
. 2R
Zwi et p(Y1X, 02’ v, h)= (27(02)_(T/2) |XT§( -||- 0|'2R|
TFIR = 227 (14) T
w; Y (Y — Xwyy,
i - exp [— ( ZO_QWMAP)] . (16)

i.e., the average of the delay in each filter parameter, weighted
by the parameter values. In some situations, this estimate will bel he evidence (16) can be optimized over several hyper-pa-
unreliable. This is the case for example when the denominatofr@Meters using standard nonlinear optimization techniques [27].
(14) is small or when the filter has high frequency component3s this can still be computationally intensive, we can use an ap-
Note that by construction, the smooth FIR filter contain onlproximation from the so-called “evidence framework”[28], [29,
low frequency components, such that the latter does not occ&f¢- 10.4], which provides a re-estimation formula for the noise
Furthermore, the denominator will take small values when ti@velo? and the prior strength. In that framework, these hyper-
mean filter coefficient is close to zero, indicating a nonactivatdtframeters can be estimated iteratively. For example, given a
voxel. Overall, the estimation of the group delay in activateioise |eV9|Uo1dv we estimate the filtetrnar, and the noise
regions will give a reliable idea of the delay implemented bigvel o, is updated according to the resulting filter fit [29,
the FIR filter. sec. 10.4].

A second interesting measure is the delay necessary to reachhe model sizel can also be thought of as playing the role
90% percent of activation after onset of the stimulus, or to réf & hyper-parameter. A sensible choice is to tdlefficiently
turn within 10% of maximum activation after offset of the stimlarge such that the corresponding filter contains the entire hemo-
ulus. This delay has been reported to be between 5 and 8 s [2inamic response. In this paper we have chosen tataké0,
Note that linear filters implement symmetrical responses, sug@rresponding to 20 s. Additional experiments usihg- 75
that the shape of the activation (and, thus, delay) after stimulg@rresponding to 25 s) showed little difference in the results.
onset is identical to the deactivation after stimulus offset. Fés a comparison, the length of the filter in SPM99 (from the
block design involving binary baseline-activation stimulus, thée SPM_HRF.V) is 32 s.

delay is easily calculated from the cumulative sums of the filter
parameters. IV. EXPERIMENTS

A. Can Smooth FIR Filter Estimate Standard Kernel Shapes?

In a first experiment, we look at the ability of the smooth filter

For given values of2, » andh, we have been able to give the, to recover the shape of traditional linear filters: the Poisson filter
expression of the posterior (6) and derive the MAP estimate of P

the filter parameters and some error bars. We will now see h hoposed by [9], the Gammafilter of [10] and the Gaussian filter

we can find proper values for these parameters, using agai ?I]\/e use the same sequence of 1210 images with ten runs of
probabilistic approach. In a fully Bayesian approach, we wou

! e R . . baseline, 30 activation and 60 baseline. Hence, the paradigm
integrate over “nuisance” parameters to obtain the posterior dis-

tribution of interest. If we are interestedqn for example, we  2Technically, the priors are uniform on the log-domain

F. Tuning of Hyper-Parameters
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Fig. 5. Smooth FIR filter obtained on data generated by convolution of a square wave by a fixed-shape kernel. (a) Poisson, (b) Gamma, and (djeBaussian fi
Top: paradigm (dotted), signal (dashed), noisy data (dots) and modeled signal (solid); Bottom: generating filter (dashed) and estimated flrevqgokdiR
Notice that the target and modeled signals (top row) are almost indistinguishable.

is a vector with 1210 elements and consists of a series of squime second half of the filter is virtually flat. So in a way this
waves. For all three filters, the mean is taken to be 18 images®ithe least smooth of the three filters. Note that the estima-
6 s, while the variance of the Gamma and Gaussian filters aretset of the Gamma filter is also slightly impaired for the same
equal to 70. The variance of the Poisson filter is by constructio@ason: the variation in filter coefficients is faster before the
equal to the mean, i.e., 18. All filter parameters where scaletbde, and smoother afterwards (middle plot). Note however
such that the amplitude of the signal was roughly the samethat when taking into account the rather large amount of noise
what we observed in activated voxels in the actual experimeintthe data, the fit is quite satisfactory in all cases. Furthermore,
Additive white noise of variance?® = 400 was added to the the misfit in the filter parameters does not prevent the smooth
convolved signal, giving a signal-to-noise ratio between 2.ZHR filter to model the data almost exactly (cf. top row in Fig. 5).
and 2.91 dB (i.e., the variance of the signal is only around 40%This simulation indicates that for the three basic filter shapes,
larger than that of the noise), cf. Fig. 5. the smooth FIR filter is able to recover the filter shape effi-
Fig. 5 shows the results obtained for the three filters. The reiently. In particular, in all three cases studied here, the recov-
sulting smooth FIR filter was better estimated in the case efed FIR filter showed little or no post-activation undershoot, in
the Gamma and Gaussian generating filter. The Poisson filercordance with the strictly positive target filters. This suggests
is more difficult to estimate because the “length scale” of thtat any difference between the smooth FIR filter and these clas-
filter varies widely depending on the delay. There are stesjral filters observed on real data is not due to the inability of
changes in the filter coefficients around the maximum, whilde FIR filter to reconstruct the true fMRI response, but rather
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Fig. 6. (a) Smooth FIR filter obtained for a particular voxel (bold solid), together with the best fit obtained using a Poisson shape (solid), a &zer{deskh
dotted) and a Gaussian shape (dashed). (b) Fitted signal, for one run, of the four filters from (a), plotted together with the data, averagettacross the
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Fig. 7. Brain maps indicating the mean filter coefficient in each voxel. The colorbar is common to both images. The two maps are from the samé subject, bu
different scanning sessions. The differing shapes are due to different alignments in the two sessions. Notice the good agreement betweien tregtactisat
indicating good reproducibility. Voxels from the primary visual cortex (and to the lesser extent the supplementary visual cortex) displaypad@sgmmetric)
response to the stimulus. Notice that locally the haemodynamic response yields a “negative activation” (white dots above the activated arbajiZa)téh

lines at row 14 and 66 indicate the voxels that we will study in more detail further down (cf. Fig. 8).

to the built-in limitations of these classical filters. In particularThe results are presented on Fig. 6, where we have plotted the
the modeling of the post-activation undershoot observed on readult of the smooth FIR filter together with the best fit obtained
data is not due to the Gaussian process prior used to constiging the three standard kernel shapes introduced above.
the FIR coefficients, but reflects a feature that standard filter One obvious result is that the Poisson filter seems to be quite
shapes are unable to model. inappropriate for estimating the haemodynamic filter. This is
due to the fact that the one-parameter filter has identical mean
and variance. In some particular cases, notably when TR is large
B. What is the Shape of the Haemodynamic Response?  and the filter only covers a few images, this might not be too
limiting. However, this clearly introduces a strong constraint on
Let us now take the opposite standpoint and compare ttee shape of the filter, which leads to an inappropriate filter on
smooth filter obtained on real data to the best fit using the otheur data. The Poisson parameter is here 17.8, corresponding to
three standard kernel shapes. On the same data, we estimata thean activation delay of 5.9 s, which is reasonable. We would
maximuma posteriorifilter parametersuvyap, as well as the on the other hand appreciate getting a wider filter as the three
Poisson, Gamma and Gaussian filters with the best fit to the dadther filters are wider, but due to the restriction of the Poisson
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Fig. 8. The smooth FIR filters obtained on the rows indicated in black on Fig. 7 (row 14 and 66X -Bixés (VOXELS) runs along the “cut” indicated in Fig. 7,
theY -axis (DELAY) runs along the delays in the FIR filter (like té-axis in, e.g., Figs. 1 and 2). Notice the strong activation in row 66, in the middle of the
range, which corresponds to voxels from the primary visual cortex (V1). There is also a more limited response in the lateral areas. By corteestnthawil

14 are almost flat, indicating no activation.

filter, this would increase the activation delay beyond reasotie brain or locally estimated. The local estimation requires a
able. For comparison, the activation delays are 5.3 s and 5.8ignificant increase in computation which makes the estimation
for the Gamma and Gaussian filters, respectively, and 5.8 s foocess impractical on current workstations for several thou-
the smooth FIR filter. But the width, measured by the standasdnd voxels. Accordingly, we will here adopt a hybrid approach,
deviation, is 1.4 s for the Poisson filter, versus 1.8 s and 1.9wich is computationally easier. Parameters fixed from a
for Gamma and Gaussian. priori knowledge to a value corresponding to a characteristic
A second salient feature is that, by construction, none of thength of 7 sy is set by iterative re-estimation, which converges
three basic filter shapes is able to model the post activatigary fast; and- is fixed for the whole brain to a value optimized
undershoot evidenced by the smooth filter. The ability of thésing the evidence on a given activated voxel.
Gaussian filter to model the first activation “bump” nicely, and Note that using a global set of hyper-parameters does not
go to zero fast afterwards gives a slightly better fit to the datanply that the filter itself should be constant. As argued by [10],
By construction, the Gamma filter is skewed and has signifire characteristics of the filter should vary spatially. However, it
cant mass in the tail (i.e., for large delays). This proves to liedesirable to impose some constraint on the filter such that the
harmful as it introduces additional misfit around the post-actilters would not vary beyond reasonable from one voxel to the
vation undershoot (as the filter can not go to zero fast enoughgxt. The use of global hyper-parameters, beyond its computa-
This is also the reason why the maximum of the filter seems tional justification, forces such a high level constraint between
be reached slightly ahead of what is expected. Because of the filters.
skewness, the maximum of the filter is attained sensibly earlierThe results are summarized in Fig. 7. As we have 60
(at 4.7 s) than the mean (5.9 s). Furthermore, in order to mifilter parameters/voxel, it is necessary to design a summary
mize the misfit around the post-activation undershoot, the mosl@tistic in each voxel for presentation purposes. In Fig. 7
has to be shifted toward zero. we present the mean filter coefficient. The rationale behind
This result indicates that the smooth FIR filter will be abléhis choice is that positive responses will display a positive
to model additional features in the data, when traditional filtenean coefficient, even when the post-activation undershoot
shapes fail. This is important because we know from previoiss taken into account. Alternatively, we could use the most
studies (e.g., [17]) that there is a post-activation undershooteartreme coefficient, or the mean absolute coefficient, but
fMRI data. It might also be possible to model the initial negativihe latter loses the sign of the activation, and we know
response if it is present in the data (cf. Section V-A). from previous studies [30], [18] that some areas display a
negative BOLD response to the stimulus.

In order to represent the filter themselves, additional dimen-
sions are required to accommodate the filter delay and the coef-
The slice that we study in this dataset contains 3891 voxelient values. Accordingly, we will illustrate the difference be-
We estimate the smooth FIR filter in each voxel, usihg: 60 tween the filters on two rows of voxels, one from a nonactivated
delays. This leads to 3891 distinct filters. Note however that area (row 14), and one taken from a cut through the visual cortex
the MAP estimation procedure (7), the fMRI signal comes intcorresponding to row 66 in the summary images (Fig. 7). The re-
the pictures through the vectdf, while X is identical for all sults are presented in Fig. 8. In row 14, the filters are almost flat,
voxels. An important methodological question is whether tireflecting the fact that there is no activation. Small fluctuations
hyper-parameters?, » and h should be kept constant acrossround zero reflect the presence of noise. On the other hand, the

C. Full Analysis
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Fig. 9. Brain maps indicating the log suppprp in each voxel, calculated using (13). Values have been thresholdedaah@ superimposed over a reference
background. (a) Displays concentrated activation in the primary visual cortex, as well as in lateral areas. In (b), the lateral activationfisseooe thife other
hand artefactual false positives appear (see, e.g., arrow), probably due to movement effects. The colorbar indicates the (bage;:@).log of

filters identified in the voxels corresponding to the primary vi- We will now characterize the delay in activation modeled

sual cortex (V1), in the middle of the range on Fig. 8(b), displayy the FIR filters, using the group delay [25] described earlier.

a strong positive activation, followed by a post-activation undefig. 10 plots the resulting delays on brain maps where only the

shoot, modeled by a series of negative filter coefficients aroumdxels that exceeded the threshold used in Fig.4 (.001) are

40 to 60 images delay. Voxels located in the lateral visual corteatained, and superimposed on the background reference. There

display a moderate positive activation. In some cases, the eiia similarity in the spread of the delays, as well as in the fact

mated filter displays a corresponding under-shoot, but the athat the group delay seems longer in the posterior region of acti-

plitudes are so limited that the relevance of this feature is cleaxlgtion. There is however a striking difference in the actual delay

debatable. values. In the first experiments, the delays range roughly be-
Let us investigate the significance of activation using th@veen nine images (3 s) and 18 images (6 s), while in the second,

highest probability density approach outlined above. Fig. tBe range is between 15 and 24 images (5-8 s). This difference

presents the location of the voxels for whighpp < 0.001, could be the sign of an inconsistency in the time registration

superimposed on a background reference. This allows fodaring the experiments. The activation periods might have ac-

quantitative characterization of the activation pattern outlinedally occurred earlier than registered in experiment d3711, or

above (Fig. 7). In both experiments there is a clear activatitater than registered in d3991, or a combination of both.

in the primary visual cortex. Notice that the asymmetric nature Apart from this possible inconsistency, Fig. 10 reveals that

of the activation reproduces well in both experiments. Anothére estimation of the group delay yields values that seem

finding is that the negative activation that were apparent ababvimlogically plausible, though noticeably smaller than the

the main (positive) activation area turn out as highly significawin-line/off-line delay. The estimates seem to be locally similar,

in Fig. 9. We also note that whereas some significant activatibaot display noticeable differences at larger scale, some regions

is present on both sides of the lateral visual cortex in theacting with shorter delays. This difference in activation delay

first experiment [d3711, Fig. 9(a)], only traces of significanivas previously spotted using clustering [18].

activation are observed in the second experiment. On the other

hand, experiment d3991 displays a higher number of scattered

artefactual activation, including a very consistent area [arrow V. DISCUSSION

on Fig. 9(b)] which could be due to movement artefacts.

Finally, the activated area may seem larger than the cortical

area (visual cortex) especially for d3711. One factor explainingIn addition to modeling the post-activation undershoot, as

this is the spatial blurring in the hemodynamic signal, which tshown, e.g., in Fig. 6, the smooth FIR filter is potentially able

our knowledge is still imperfectly understood. to model the initial negative response or initial dip [15], [16],

Initial Dip
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Fig. 10. Brain maps indicating the group delay measured in each activated yoxe).001), cf. Fig. 9. The delays in the activated areas range from nine to 18
images for d3711 (3—-6 s) and from 15 to 24 images for d3991 (5-8 s), indicating a possible inconsistency in time registration during the expericodmtsai h
indicates delay (in images) between nine images (3 s) and 24 images (8 s).

[31]-[33], . Despite the relatively low field intensity, the ini-is an attempt to do this. It is, however, outside of the scope of
tial dip was observed here in a number of voxels, mainly in exhis article.

periment d3991. Due to the temporal alignment problem that

we have uncovered above, it was difficult to check the repr&. Computational Issues

duc_ibility of the observed negative response across the two expne of the biggest challenge of this approach lies in the prac-
periment. tical implementation for whole brain analysis, or for the anal-
However, we can report that this feature has been obseryags of a reasonable subset of voxel, e.g., after sieving with an
in 20%-30% of the activated voxels, in both experiments, aft§mnipus F-test. While the calculation of the MAP estimate for a
correction of the temporal alignment. A complete analysis Eﬁven set of hyper-parameterd, v andh is straightforward and
the initial dip is out of the scope of the current article and wilhot more computationally intensive than traditional approaches
be reported elsewhere. based on ridge regression or singular value decomposition, the
tuning of the hyper-parameter is usually time consuming. While
we have argued for example that the parametntrolling the
typical length scale could be sa&fpriori to between 5 and 10 s
The relationship between the experimental paradigm and i¥es here), there is no guarantee that this is optimal in any sense.
observed images involves both a neuronal activation induced byA full nonlinear optimization over two or three hyper-param-
the paradigm, and the hemodynamic response to this activatieters is feasible for a limited number of voxels, but too compu-
which leads to the actual measurements. By using the paradiationally demanding for a whole volume or even a slice with
as input to the linear filter, we assume that the pattern of activairrent computing facilities. Similarly, sampling from the pos-
tion follows the paradigm closely. Although this is a reasonabterior using an MCMC technique is only practical for a limited
assumption is the context of a strong visual stimulation, in othsubset of voxels.
cases the stimulus might not be the same as the actual neuron@ne simplification would be the use of fixed hyper-parame-
activation. ters for the whole volumes. In that case only one nonlinear op-
This limitation is common to all the parametric models mertimization or Markov Chain would be needed to yield a set of
tioned in this study and has, therefore, little relevance for thyper-parameters which are applied to all voxels. Though some
comparison between these methods. It should, however, be kesearchers (e.g., [10]) have argued that the characteristics of the
in mind when more complicated experiments (perhaps involvifgiemodynamic response vary spatially, note that having fixed
cognitive tasks) are involved. To determine both the neurorfalper-parameters would allow the filters themselves to be spa-
activation and the hemodynamic response would require blitidlly different, while tying them at a higher level in a hierar-
deconvolution using a latent variable model. The model of [34hical manner. A drawback of this approach is that it might lead

B. Dependency on Neuronal Activation
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to averaging some of the characteristics like the noise level 250 N

the length scale. Typically, nonactivated voxels could be moc
eled using large length scales, corresponding to flat filters, whi
activated voxels would benefit from the flexibility introduced by G| |
smaller length scales. Note that this is not necessarily a proble
as far as theredictionsthemselves are concerned, as suggeste

. a0}
by Fig. 5. -:.~

In the experiments described above, we have adopted an =

termediate approach, wheteis seta priori to give a length =44, J -
scale of 7 s, the regularization strengtls optimized once and
for all based on some activated voxels, while the noise le¥el
is estimated locally using an iterative procedure similar to th  gp.
re-estimation formulas in the so-called “evidence framework I_
(e.g., [28], [29, sec. 10.4]). There is an obvious benefitin tern [ I'i
of computationally time. In our Matlab implementation running ~ g—** o i
on a 450 Mhz Pentium I, the full estimation of the filters and -8 ~4 B L'-"Dg E_mlze 4
associated measures of suppertp takes around 90 s for 4000
voxels. An added benefit of the local estimatiorvéfis that we @
do not need to make the assumption that the noise is spatic 5 S N
stationary. N
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VI. CONCLUSION 4r

In this paper, the use of smooth FIR filters for analyzin¢ 35|
functional magnetic resonance imaging data was describe_
Smoothness is implemented using a correlated Gaussian pr< 3¢
and analysis is carried on using Bayesian inference. TI™
smooth FIR filter has a number of advantages over stande 2.57
(Poisson, Gamma, Gaussian) parametric families for modelii
the haemodynamic response. In particular, it can model a loi
post-activation undershoot or the initial negative respons
The generality and flexibility of the smooth FIR approach wa
illustrated on simulated data. A full analysis of data acquire %
during a visual stimulation experiment with high tempora - i
resolution was performed. The ability of the smooth FIR filter
to find activated regions was demonstrated using a measure of ()

support derived from the highest posterior density approach.Fig- 11. (_a) Histogram for the three hyper-par_ameters obtaine(_j from sampling
the posterior. (b) Bivariate samples ofand . (in the log domain) as dots,

superimposed on a contour plot of the joint density gindh conditioned on

o2 = 400.

2_

1.5¢

5 -5 ~4.5 -4 -35

APPENDIX
SAMPLING VIA MCMC

As noted in Section llI-F, an ideal Bayesian analysis WOUIECMC [26], in _partu:_ula_r Metropolls_—Hastmgs, or hybrid
- S onte Carlo [35] if derivatives are available.
not optimize parameters, but obtain distributions of the relevant
quantities by integrating over nuisance parameters. This can Ape
useful here is at least three contexts. '

1) Marginalize the hyper-parameters to obtain the posterior | '€ first step is to setup some priors for the three hyper-pa-
of the filter parameterg(w|X, Y), in order to obtain rameters that we use here. We will put a Gamma prior on the

. T, : .
maximum posterior parameters or the covariance of theﬁ%"ance of the noise~ and prior strengthv. For normalized
parameters: ata, we would take a mean pf = 1 and a shape factor of

2) Marginalize the hyper-parameters in the distribution &f = 0.5, because it is unlikely that the noise level far exceeds
the prediction (12), in order to obtain the distribution of e variance of the data, and there should be significant mass to-

4o conditioned only on the actual data: ward zero in order to allow small noise levels (or little regular-
3) Obtain the posterior distribution of the hyper-paramézation)' Accordingly, we will scale the prior with the empirical

ters conditioned on the daj#o?, v, h[Y, X) in order Varance calculated on the actual data

to check for example whether the hyper-parameters are o2, v~ G(02, 0.5)
well-determined by the data. ’2 33;; ’ s s
Numerical integration methods will be necessary for all p(o”) xo exp(—o”/doy)
three problems, and can in principle be easily performed using p(v) ocv™/* exp(—v/do).

Priors
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For the length scale, we have stroagpriori information J. Kershaw for stimulating discussions on highest posterior
suggesting that typical length scales for the haemodynamic density regions and C. Rasmussen for discussions on general
sponse should be between 5 and 10 s. However, we wanB@&yesian matters.

allow larger length scales, which might be useful for nonacti-
vated voxels, where the underlying filter should be uniformly

zero. Accordingly, we will model this prior information using

a log-normal distribution, such that the log of the characteristic

length coverdlog 5, log 10] over two standard deviations. This
leads to

In h ~AN(2InTR — 3.92, 0.52)
(Inh — 2In TR + 3.92)?
1.04

1
h)=———e¢
p(h) h+/1.04n P

B. Sampling from the Posterior

We will now illustrate how to sample from the posterior of the

hyper-parameterg 2, v, h| X, Y), in order to check how well

determined these hyper-parameters are. The posterior is easily
obtained (from Bayes’ rule) as it is proportional to the product
of the evidence (16) by the priors described previously. As thee]

derivative of the evidence with respecttds nontrivial, we will

simply use a Metropolis—Hastings algorithm [36], [26] with a 7]
Gaussian proposal (in the log domain), which has the advantage

of being symmetric.

After setting the proposal such that we get a acceptance rat[e8 ]
between 50% and 60%, we run the chain for 1000 iterations[9]
and discard the 50 first samples as “burn-in.” The histograms of

A 10]
the sample distribution for the three hyper-parameters are pré-
sented in Fig. 11 (above). The log scale gives a good indica-
tion of the relative spread of the hyper-parameters around theff!l

mean. Clearly, the noise levef is very well determined by the

data. The prior strength is badly determined, meaning that a [12]
wide range of values have large probability. The situation for the
length scalé: is somewhat intermediate. These results show thaf 5)

itis sensible to optimize the noise level to a fixed value, as its

posterior distribution is close to a delta function. On the othef4l
hand, it would be interesting to integrate over hyper-parameters

v andh, which have broader marginal distributions.
In Fig. 11(b), we investigate the joint distributionefindh.

The background contour plot has been obtained from the exprefiz)

sion of the posteriop(c?, v, h|Y, X) by settings® = 400.

As our previous investigation showed that the noise level is
well determined in the neighborhood of this value, this gives
a probably accurate description of the marginal joint distribu{16]
tion p(o?, v|Y, X). The sample (dots on Fig. 11, right) seems
to support this approximation, and indicates that, due to correl—m
lation betweens andh, the hyper-parameters are slightly better
determined by the data than it is suggested by the marginal hif1'8]

tograms.

This result shows that obtaining a sample from the hyper-pa-
rameters posterior is potentially useful. Unfortunately, as indi{1°!
cated earlier, it is not computationally possible to perform this
[20]

sampling on a large scale.
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