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COMPONENT SYNTHESIS FROM FUNCTIONAL 
DESCRIPTIONS 

Elke A. Rundensteiner, Daniel D. Gajski and Lubomir Bic 
Department of Information and Computer Science 

University of California, Irvine 
Irvine, CA 92717 

August, 1991 

Abstract 

In the literature, it is generally overlooked that designers use functional models more frequently 
than behavioral or gate-level models. In functional modeling, the functionality of one or more com­
ponents, like arithmetic/logic units, memories, and counters, are described as separate concurrent 
blocks. We present an algorithm, called Component Synthesis Algorithm (CSA), for synthesis 
from these functional descriptions. Our algorithm automatically synthesizes components needed 
to implement a functional description while minimizing hardware costs and performance. Since a 
functional description uses standard operators in the hardware description language, a mismatch 
between the operators of the language and the functionalities provided by library components 
arises. CSA solves this functionality mismatch problem by pattern matching of the description 
against a library of function patterns. In addition, CSA clusters functions to maximally match 
components from a given library. Experimental results show that automated functional synthesis 
produces designs that are comparable to those produced by human designers. 

Key Words: Functional Synthesis, Component Modeling, Functionality Recognition and Reduction, 
Register-Transfer Level Technology Mapping, Compatibility Graph. 
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1 INTRODUCTION 

High-level or behavioral synthesis involves mapping an algorithmic specification into a set of micro­

architecture components that implement the desired behavior while satisfying a set of constraints 

[16]. Examples of such components include arithmetic/logic units, counters, comparators, registers, 

memories, and interconnect units, such as multiplexors and buses. Designers however rarely use be­

havioral descriptions. Instead, they most often use functional descriptions. A functional specification 

describes one or a group of components as separate concurrent blocks (using concurrent statements in 

the case of VHDL ). A typical example of such a functional description, namely, of an arithmetic/logic 

unit called ALUl, is given in the middle of Figure 1. A main reason for using functional descriptions 

is that it captures the structural and physical views most familiar to designers. 

Figure 1 shows the relationship between high-level [22, 13, 16, 26, 27], functional, and logic level 

synthesis [3, 2, 9]. High-level synthesis algorithms are concerned with mapping a behavioral descrip­

tion of the desired system to a (generally generic) register-transfer level structure that performs that 

behavior. Functional synthesis or component synthesis on the other hand synthesizes a functional 

description of one or possibly several register-transfer level components to component( s) from a given 

library that perform the same functionality. A behavioral specification is temporal, i.e., it is a pro­

cedural description of an algorithm or a set of sequential actions to be executed over time. On the 

other hand, a functional specification is spatial, i.e., it is a description of the functionality of one 

(or possibly a group of) micro-architecture components. These components modeled be a functional 

description could be generic components, technology-specific components, or even newly designed 

architectural portions of a design. Lastly, logic-level synthesis corresponds to automated design ~nd 

logic optimization at the gate level. Functional synthesis thus fills the gap between behavioral and 

logic level synthesis. 

As can be seen in Figure 1, functional synthesis tools can work in synergism with high-level 

synthesis tools by mapping (functional descriptions of) register-transfer level designs produced by 

the high-level synthesis onto actual hardware. On the other hand, the functional input description 

is often also directly entered by modelers who are more familiar with the register-transfer level 

of design than with the algorithmic level. The designers think in terms of major components that 

compose the overall design; and then give a functional description of each of these subsystems. These 

subsystems (components or groups of components) can be synthesized separately by component and 

logic synthesis tools. Furthermore, designers may also utilize the functional description style to 

describe the components of existing designs. Reasons for producing such descriptions of an existing 

design are manifold: first, the design is simulatable at the functional level if a language, such as 

VHDL, is used, and second, the specification can serve as design documentation. In addition, it is 

a perfect basis for redesign into a new technology by synthesizing the description using components 

from a new technology. 
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MODELER/DESIGNER 

\;··········~i~~;;;;~·d:~;i~;i~~··············~ 
l entity design1 is i 

port (control1: in BIT; : 
A,8: in BIT-VECTOR(3 downto O); : 
OUT: out BIT-VECTOR(3 downto O)); : 

end design1 : 
architecture d1-body of design1 is 
begin 

if (control1 ="001 ") 
OUT<=A+B· 

elseif ' 

end d1 -body; 

I a•••••• ••11.1 •II• mna .1ll•a11a a a .Ii! I a aaa a a a a aaa a a ma aa11a11 aa •• 

MODELER/DESIGNER 

\ r······ .. f~~cii~~~·l·d~~~i~ti~~················ 
: architecture functional of design1 is 
: begin 

ALU1: block begin 
with F select 
OUT<=A+B 

A+ 8 + "1" 
A +comp(B) 
AandB 
AorB 

when "000", 
when "001" 
when "01011 
when "011"' 
when "100";' 

generic 
RTL library 

technology-specific 
RTL library 

generic structure graph 
..,w11aa1111•••••••11a111aa1111•mm•••••••••""•••11• 

technology-specific structure graph 

end block ALU1; 
COMP2: block begin 

end functional; 

-
___ ··········7··············· ........ . 

t.. ..................... ... .... ... ......... ... .........• .. 

M~OD,'.~:'."..'.:'.~.~.'.~ •••••••••• ie:C ............ . 
: (gate-level) structural description 

: architecture structure of design 1 is 
Component ALUX 

port (10: in BITVECTOR(2 downto O); .... ) 
end component; 
Component ORX 

port(IO: in BITVECTOR(2 downto O); ... ) 
end component; 

signal n4: BITVECTOR(2 downto O); 
begin 
ALU1: ALUX port map(IO=>n4,11=>Reg, .. ); 
OR1: ORX port map(IO=>n1 ,11=>n2, ... ); 

end structure; 
'·············••11••••1111•••••••••111••11••••11••11•••••••• .. 

(technology-specific) 
logic library 

LOGIC SYNTHESIS 

Figure 1: Motivation. 
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Functional synthesis thus not only solves the technology mapping problem on the register-transfer 

level, but it also addresses the important problem of efficient redesign and technology adaptation. In 

order to stay competitive, . companies must be flexible enough to quickly redesign their products 

by replacing obsolete components used in their design with components from a new technology. 

Performing this redesign manually is a tedious and labor intensive task. It is also extremely costly. 

We propose to automate this process of retargeting to a new technology by automatically synthesizing 

a given component description to (a set of) new components from a given component library. 

The use of hardware description languages such as VHDL for specifying functional descriptions 

has given rise to new problems. Functional descriptions of components vary drastically. The modeler 

may not have an exact description of the component he or she wants to model. Furthermore, the 

language may provide several different ways to describe the same functionality. Also, of course, 

in a functional description a single component is described by several, often nested conditional, 

statements. These statements need to be grouped in order to map them to the same component. 

To complicate matters even further, the functional descriptions of components are expressed by 

standard operators in the description language that may not match the functions supported by the 

target library components. 

Since functional descriptions are used for concurrent finite-state designs, scheduling needed for 

high-level synthesis [26, 22] is not applicable to functional synthesis. Therefore, sharing of units for 

operators in different time steps (states) is not needed. However, functional descriptions contain 

nested conditional statements; and operators used in different branches of these conditional state­

ments can share units. This unit sharing across conditional statements is exactly what is exploited 

by functional synthesis. High-level synthesis often hides conditional expressions in micro-code, and 

thus does not address the sharing of units due to conditional expressions. An exception to this is 

[30] which presents an algorithm for conditional resource sharing that generates efficient micro-code 

control sequences for nested conditional branches as well as for straight line codes. 

Usually, high-level synthesis is divided into three stages: allocation, scheduling, and binding. 

These three tasks, though being tightly interdependent, are generally solved independently because 

of the complexity of each task. Since scheduling is not relevant to functional synthesis, we can 

perform the tasks of allocation and binding simultaneously. Therefore, interconnection costs can be 

considered simultaneously with the hardware allocation costs. 

Another difference between behavioral and functional synthesis is that register merging as done 

in high-level synthesis [26, 22] is not relevant to functional synthesis. We assume that the design 

representation has been optimized to remove redundant intermediate variable references that had 

been introduced by a hardware description language. Registers are then needed for all remaining 

variable references because the design is concurrent. This reduces the component synthesis problem 

to an optimization problem on the combined operator and interconnection costs. 
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Most binding techniques that minimize the connectivity costs of a design fail to incorporate the 

added cost of control into their optimization procedures [22]. The Component Synthesis Algorithm 

(CSA) presented in this paper generates control logic, which corresponds to the function select code 

of a multi-functional unit. For this reason, CSA can include appropriate control costs into the cost 

function. 

Related research is presented in Section 2. The functional synthesis problem is formalized and 

our solution is outlined in Sections 3 and 4, respectively. One algorithm of CSA, called functional­

ity recognition algorithm is described in Sections 5, while the second algorithm, called component 

mapping algorithm, is described in Section 6. Experimental results and conclusions are discussed in 

Sections 7 and 8, respectively. Lastly, the cost and bound function used by the component mapping 

algorithm are presented in Appendix A and B. Our earlier work on this problem has been published 

in [24]. 

2 RELATED RESEARCH 

Below, we compare our work on functional synthesis with research in behavioral-level synthesis, 

register-transfer level technology mapping, and logic-level synthesis. 

2 .1 Behavioral Level Synthesis 

As discussed in the previous section, the tasks of allocation and binding are related to the problem 

of functional synthesis. Therefore, we compare the techniques proposed by the high-level synthesis 

community to address these two problems with our approach. 

Tseng [26] was among the first to formulate allocation and binding as clique partitioning problems. 

EMERALD uses a heuristic approach towards the problem by assigning profit measures for merging 

nodes into the same cluster for each pair of nodes. Then, a greedy method is applied where all 

nodes that fall into the ca~egory with the highest profit are clustered first, all the ones in the next 

highest profit group next, and so on. EMERALD handles only straight-line blocks of assignment 

statements. Also, operators are grouped into sets of functions that do not necessarily correspond to 

the functionalities supported by existing micro-architecture components. In our work, we overcome 

this problem by prepruning the solution space based on the mergeability information derived from the 

given component library. The profit function used by EMERALD for operator merging is somewhat 

unrealistic. For instance, the merging of an addition with a multiplication operator is considered to 

be equivalent to the merging of an addition with a subtraction operator as long as both have the 

same number of common sources and sinks. CSA uses a more accurate profit function that estimates 

the cost of the design in terms of silicon layout. It considers for instance the bit width of units. 

4 



HAL (Hardware Allocator) (22) applies the clique partitioning method to the register and inter­

connection binding problem. It assumes that scheduling, allocation of functional units as well as unit 

binding are completed. Similar as in EMERALD, all potential merges with a weight (profit) above 

a certain threshold are executed. Rather than doing this in a greedy fashion it is done exhaustively 

within each profit group. The overall control strategy is greedy, however, and thus cannot guarantee 

an optimal solution. An additional drawback of this work is that control costs are not included into 

the cost function. 

Splicer (19) uses an heuristic approach towards connectivity binding. Given a fixed resource 

allocation and a schedule, Splicer minimizes the number of connections between functional units 

and registers by using a branch-and-bound search with the number of multiplexers as criterion. It 

uses a heuristic function in place of a proper bounding function to more effectively prune the search 

space. This however removes the guarantee of finding an optimal solution. Similarly as Splicer, 

the CSA algorithm is based on the branch-and-bound methodology. CSA, however, combines this 

methodology with the clique partitioning approach for operator merging. Hence, CSA succeeds in 

pruning the search space substantially without losing the guarantee of an optimal solution. 

Lastly, most of the cost functions used by high-level synthesis systems incorporate area measures, 

while our algorithm handles both area and delay optimization. 

2.2 Register-Transfer Level Technology Mapping 

A technology mapping step of translating a netlist of generic register-transfer level (RTL) components 

into a technology-specific RTL structure is sometimes performed between high-level and logic-level 

synthesis. 

Leive was one of the first to address this problem [11, 12). SYNNER takes a localized approach to 

the problem by selecting a component from a given library based on some local criterion for one data 

path node at a time ([12], page 479). Leive and Thomas ((12), pg. 480) write: "This selection process 

takes a narrow view of optimization in that internode dependencies are not considered". In other 

words, the constraints of area or delay are only utilized for selecting among the candidate modules for 

a single RT-node. No absolute design goals, such as, the minimal total area, can be handled by this 

local optimization strategy. Concurrently with technology mapping, SYNNER performs some logic 

optimization by reducing certain cascaded logic operations into one logic operation, e.g., it replaces 

two 2-bit ANDS by one 3-bit AND ([12), page 31). This early work also attempts to utilize its 

localized approach for merging units that are never active in the same states, a task which nowadays 

is handled by high-level synthesis. 

Dutt and Kipps [5] describe an approach of mapping generic RTL components into technology­

specific RTL library cells using the rule-based system DTAS [10]. Their work addresses technology 
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mapping of a known generic component with a fixed set of functions into a technology-specific compo­

nent. On the other hand, functional synthesis introduced in this paper synthesizes a possibly complex 

functional description, which could be a description of either generic components, technology-specific 

components, or even newly designed architectural portions of a design, into component(s) from a 

technology-specific library. 

2.3 Logic Level Synthesis 

Work presented in the literature on logic synthesis generally addresses two tasks: logic optimization 

and technology mapping. In logic optimization, a technology independent logic specification is usually 

processed using algebraic and/or Boolean methods, such as, two-level minimization [3] and algebraic 

decomposition [2]. These techniques remove redundant logic and make use of common terms. In logic 

technology mapping, the optimized Boolean equations are transformed into an interconnection of 

technology-specific logic elements from a given library of gates [9, 2, 14]. Logic technology mapping 

itself consists of three tasks [14): first partitioning into an interconnection of single-output sub­

networks, then the decomposition of each sub-network into an interconnection of two-input functions, 

e.g., AND and OR, and lastly the covering of each sub-network by an interconnection of library cells. 

Functional synthesis is also concerned with technology mapping, though, at a higher abstrac­

tion level of design. Functional synthesis matches a graph representing a (possibly technology­

independent) functional design against a library of technology-specific patterns. One difference 

between technology mapping at the functional level and at the logic level is that the number of 

different patterns in functional synthesis is much smaller than in logic synthesis. A Boolean functi?n 

can be described by many different combinations of logic operators. On the other hand, the func­

tions of components currently available in micro-architecture libraries are rather simple and thus 

can be described by one statement. Consequently, technology mapping in functional synthesis will 

result in less potentially overlapping matches of technology-specific patterns on the generic design 

representation. Therefore, CSA uses a simple pattern matching and reduction algorithm rather than 

the sophisticated dynamic programming algorithm proposed by [9] for the covering subtask of logic 

synthesis. 

Mailhot and De Micheli [14] extend the work by Keutzer [9] by using Boolean matching techniques 

based on Shannon decomposition. The proposed matching process checks the tautology between a 

given Boolean function (the network) and the set of functions represents a library element for any 

permutation of its variables. CSA instead relies on a simple matching procedure due to the simplicity 

of the functions of register-transfer components. 
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3 PROBLEM DESCRIPTION 

In this section, we introduce the functional or component synthesis problem. Functional synthesis 

synthesizes register-transfer components needed to implement a given functional description while 

minimizing the underlying hardware costs and the design delay. Functional synthesis is composed of 

two subprograms: functionality recognition and component merging. First, the functionality recogni­

tion step attempts to utilize the complex functions supported by register-transfer components from 

the library for implementing a given functional description. The input description is however ex­

pressed by language operators that do not correspond directly to these functions. The functionality 

recognition problem thus is similar in flavor to technology mapping, since it matches functions pro­

vided by real components with operators described by a hardware description language. Thereafter, 

the component mapping step allocates components from a given library to implement the functional 

specification while minimizing hardware costs and performance. During this phase the component 

mapper maps mutually exclusive operators of the input description to the same component, whenever 

possible. 

3.1 The Input Description 

The input for functional synthesis is a functional description of a design written in a hardware de­

scription language1 . An example of a typical input description is shown in Figure 2. The description 

consists of three concurrent conditional statements. The first and second statement form a nested 

conditional statement, since the variable tmpl is produced by the first and consumed by the second. 

The statements labeled by values Vi following a select condition correspond to different branches of 

the condition, that is, they are disjoint and only one of them will be executed. The input descrip­

tion is translated by a compiler into an internal fl.ow graph representation, an ECDFG graph [23] 2• 

Figure 3 depicts the ECDFG representation of the example description given in Figure 2. 

3.2 Formulation of the Component Synthesis Problem 

The functional synthesis problem can be stated using the following graph theoretic formulation. Let 

0 = { opi, op2, ... , opn} be a set of operators, and let U = { ui, u2, ... , um}, also called the unit table, 

be a set of functional unit types. Each unit Ui E U is capable of performing a subset of the functions 

in 0, denoted by functionality( Ui) ~ 0. Let the function op-cost( Ui, bw( ui)) represent a cost 

estimate for each unit Ui E U in terms of the required silicon layout area with bw( Ui) the bit width 

1The current prototype of CSA uses VHDL as input hardware description language. However, VHDL can easily 
be replaced by another language as long as the input compiler is modified accordingly. 

2 The ECDFG design representation [23] is an extension of the commonly known Control/Data Flow Graph model 
[18] with concepts, such as, timing constraints, structural bindings, asynchronous events, etc. 
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with r5 select 
tmpl <= r6 or r7 

r7 and r8 

with rl select 
r16 <= guarded 

(rl + r2) + r4 
r2 - r4 
tmpl 

with (r9=r10) select 
r16 <= guarded 

rll + r12 
(rlO + rl2) - (r13 + r14) 

when v6, 

when v7; 

when vl, 
when v2, 
when v3; 

when vl, 
when v4; 

Figure 2: An Input Description Example. 

of Ui. Let the function delay( Ui, bw( Ui)) represent a delay estimate for each unit Ui E U in terms of 

the propagation delay with bw(ui) the bit width of Ui· 

Let G = (V, A) be a directed fl.ow graph with V = {vi, v2 ; •.• , vk} the set of nodes and A = 

{ ai, a2, ... , a1} the set of edges. An edge ai = < Vj, Vk >represents the data dependency between the 

nodes Vj an,d Vk· Vis composed of three disjoint sets V = NURUD. N = {ni,n2, ... ,nk} represents 

the set of operators, R = {r1 , r2, ... , rz} the set of storage elements, and D ={di, d2, ... , dm} the set of 

decision nodes that model data selection. Figure 3 represents such a graph G with operator nodes N, 

storage elements R, and decision nodes D depicted by circles, rectangles, and triangles, respectively. 

The edges A are depicted by solid arrows. The function operation: N -+ 0 defines the operation 

modeled by each operator node. For instance, the operator node n4 executes the logic operation or, 

denoted by operation( n4 )=or. 

The connection points of an edge ai = < Vj, Vk > with the nodes Vj and Vk are called the output 

and input ports, respectively. The ports of a node Vi are denoted by PORTj( vi) with j = 1, ... , 

#(ports of vi)· A decision node di E D has three or more input ports with the first input port 

being of type control and all others of type data. Mutually exclusive decision values (constants) 

are associated with the data input ports of a decision node. A comparison of these decision values 

with the value at the control input port determines which of the data input values is selected by the 

decision node. 
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Example 1 Figure 3, for instance, represents such a graph G, that is a representation of the func­

tional design description given in Figure 2. In Figure 3 the decision node di has one control input 

port PORT1{di} guarded by ri and three data input ports PORT2{di), PORT3{di}, and PORT4{di) 

with the decision values being vl, v2, and v3, respectively. Hence, if ri=vl then the value connected 

to PORT2{di}, namely, (ri + r2) + r3, will be selected by di, if ri=v2 then the value connected to 

PORT3{di}, namely, r2 - r4, will be selected by di, and so on. 

storage node 
r14 .................... . 

data arc 

decision node ................................ 
control.e<;!! ••••••••••••••••••••• 
·········· 

Figure 3: A Flow Graph Example. 

A path in G is defined to be an ordered list of nodes and edges of G of the form, (vi, ai, v2, a2, 

V3, ... , v;, ai, v;+i, ... , vk) where vi is the start node and Vk the end node of the path, and each edge a; is 

connecting its predecessor in the list, v;, with its successor in the list, v;+l, that is, a; = < v;, v;+l >. 
If v; and dj are an operator and decision node in G, respectively, and P;j are the directed paths of 

data flow edges from v; to dj in G, then we denote the set of the data input ports of dj at which the 

directed paths P;j connect with dj by PORT-SET-v;(dj)· 

Then we define the mutually exclusiveness of operator nodes as follows: if the condition which 

selects one operator always falsifies the condition selecting the other, then the two operator nodes 

are mutually exclusive. More specifically, in the graph theoretic terminology given above mutually 

exclusiveness is defined as follows. 
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Definition 1 Two nodes Vj and Vk are mutually exclusive3 in G if there exists a node di E D in 

G, and all directed paths of data flow edges on which Vj lies lead to data input ports of di (denoted 

by PORT-SET-vj{di}) and all directed paths of data flow edges on which Vk lies lead to data input 

ports of di (denoted by PORT-SET-vk(di}}, and PORT-SET-vj{di} n PORT-SET-vk(di} = 0. 

Example 2 In Figure 3, the two operator nodes ni and n5 are mutually exclusive because there 

exists one directed path of data flow edges from ni and ns to d1 , respectively, and the path from ni 

to di, < ni, a3, n2, a4, di >, ends at PORT1(d1), and the path from ns to di, < ns, ai, d3, a2, 

di >, ends at PORT3(d1). If due to some graph optimization, an additional data flow edge would 

have been inserted between node n5 and n9 ( < n5 , n9 > is depicted as a dashed arrow in Figure 3), 

then n5 would have a fanout of two. In this case, the two nodes n1 and n5 are no longer mutually 

exclusive because not all paths from n 5 go through the decision node di. 

An expression tree, Gi = (Vi, Ai), is defined to be a connected subgraph of G consisting only 

of operator nodes, i.e., Vi ~ N. One node is designated as the root, and all paths in Gi are directed 

from the leaves towards the root. Vi ~ N, and Ai ~ A. Further, Gi is a complete subgraph of Gin 

the sense that for all pairs of nodes nj, nk E Vi, if there is an edge a1 = < nj, nk > in A then the 

same edge a1 also exists in Ai. The function op: G-+ (0 U 0) is a mapping from an expression tree 

Gi to the operation described by Gi. Gi may trivially correspond to a single operator node ni, and 

then, by default, op(ni) is defined to be the primitive operation represented by ni, namely, op(ni) 

= operation( ni ). 

Example 3 On the right hand side of Figure 3 we mark the expression tree E 1 as consisting of the 

three operator nodes ns, ng, and n10. Let us denote the operation described by the expression tree 

Ei by opE1 • Then the function op: G -+ (0 U 0) is a mapping from the expression tree Ei to the 

operation described by E1 , denoted by op(Ei) = opE1 • This implies that there is a hardware unit in 

the given library that can directly implement the operation expressed by Ei as one function, called 

the opE1 function. The second marked expression tree E2 corresponds to a single operator node n1. 

Therefore, by default, op(E2) is defined to be the primitive operation represented by n1, namely, 

op(E2) = operation(n1) = "+". 

Pis defined to be the collection of all partitions Pi of the graph G into subgraphs Gi. Mis 

defined to be the collection of all mappings Mi: P :::} 2U with Uthe unit table. A mapping Mi from 

a partition Pi of G to a set of functional units from U is defined to be a legal mapping iff and only 

if the following constraints are fulfilled: 

3 CSA actually utilizes a more general notion of mutually exclusiveness based on conditional expressions rather than 
on the existence of decision nodes; see discussion in Section 6.1 and in report (25]. 
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2. Each pair of root nodes n; of Gi and nj of Gj with M;( G;) 

exclusive in G. 

M;( Gj) must be mutually 

The first constraint requires that all operator nodes (or expression trees) that are mapped to the 

same unit are compatible in functionality. The second requirement states that all operator nodes 

mapped to the same function unit by the mapping M; have to be mutually exclusive. Both thus are 

necessary requirements for ensuring the correctness of the resulting design. 

Lastly, the component synthesis problem is to find a tuple (Pi,Mi) where P; E P is a partition 

of G into subgraphs G; and M; E M is a legal mapping from P; to a set of functional units from U 

which minimizes the cost of the resulting design. The cost of a design is measured by a weighted 

sum of the area and the performance of the design. A precise definition of the cost function is given 

in Appendix A. 

4 OUR APPROACH TOWARDS COMPONENT SYNTHESIS 

In this section, we outline our overall approach in solving the functional synthesis problem defined in 

the previous section, while more detailed algorithms will be presented in later sections. A top-level 

block diagram of CSA is given in Figure 4. The library-specific information used by CSA (see left 

hand side of Figure 4) is kept in two tables, the functionality table and the unit (mergeability) table. 

The unit table contains a unique name for each unit, a list of all functions implemented by the given 

unit u, called functionality(u), and a function that measures unit cost, called op-cost(), and a 

function that measures the propagation delay of the unit, called delay(). The functionality table 

enumerates the non-primitive functions that can be executed by components of the input library and 

gives a corresponding pattern in terms of generic operators. These two tables have to be designed 

once for each technology. It can be done automatically by parsing an input library description into 

two tables, or it can be done manually. 

CSA consists of two modules, called functionality recognizer and component mapper. In 

addition, it uses a graph compiler as pre-processor and a netlist generator as post-processor. The 

system can be summarized as follows: 

( 1) A language compiler [13] parses the input description, a functional description, into an internal 

design representation, an Extended Control/Data Flow Graph (ECDFG) [23]. An example input 

description and the corresponding ECDFG are given in Figure 5.a and 5.b, respectively. 

(2) The functionality recognizer addresses the mismatch problem between the operators of 

the language and the functions supported by library components. It merges expression subtrees 

into single nodes whenever components are capable of executing those expressions as one function. 

An example of a partition of the ECDFG into expression trees is given in Figure 5.b, while Figure 
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5.c shows the resulting reduction of the graph. In Figure 5.c, the reduced operator nodes AI and 

SI (abbreviations for the terms Add-and-Increment and Subtract-and-Increment) correspond to the 

expression trees "A + B + 1" and "A - B + l", respectively. 

,.; 
r-------i::::i , 
Component {, 
'- Library ~ ·-, 

··Graph 
Compiler 

I 

~------------- -

Net list 
Generator 

Component 
Merging 

Figure 4: The CSA Block Diagram. 

(3) The component mapper addresses the problem that functional descriptions use multiple 

statements to describe the functionality of a single component. It thus merges mutually exclusive 

operators of the reduced graph to minimize hardware costs and design delay. Figure 5.d shows 

how the four mutually exclusive operator nodes of Figure 5.c are merged into one multi-functional 

operator node. 

(4) Ea~h merged operator node is mapped to a micro-architecture component from the given 

library. The netlist generator then creates a .netlist of the resulting structure. In Figure 5.d, - -
for instance, the final design is produced by mapping the multi-functional operator node to an 

Adder/Subtractor unit. 

The functionality recognition and the component mapping algorithms are described in the re­

mainder of this paper; while the graph compiler and the netlist generator are discussed elsewhere 

[13}. 
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F 

OUT 

entity design! is 
port (F: in BIT-VECTOR(! downto O); 

A, B: in BIT-VECTOR(3 downto 0); 
OUT: out BIT-VECTOR(3 downto O)); 

end design!; 
architecture designl-body of design! is begin 
with F select 
OUT <= A + B when "00", 

A + B + "0001" when "01", 
A - B when "10" , 
A - B + "0001" when "11''; 

end designl-body; 

(a) VHDL description 

A 

F 

OUT 

B A B 

F 

'00':+ 
'Ol':AI 
'10':-
'll':SI 

b) Partitioned CDFG c) Reduced CDFG d) Maximally Merged CDFG 

Figure 5: CSA on the Adder/Subtractor Design Example. 
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5 FUNCTIONALITY RECOGNITION 

A functional description uses standard language operators that do not always correspond directly to 

component functions. The functionality recognition algorithm solves this functionality mismatch 

by transforming a design representation of generic operator nodes into a representation consisting of 

library-supported operator nodes. 

For example, in Figure 6 the expression "A+B+l" is originally compiled into two operator nodes 

nl and n2. This expression can however be implemented as a single function of an ALU. The graph 

structure can be modified accordingly by merging nl and n2 into one node n3, performing Addition 

and Incrementation. 

reduce to 

) n3: 

flow graph pattern flow graph pattern 

using generic operation nodes using library-specific function nodes 

Figure 6: A Function Recognition Example. 

The library-specific information used by the algorithm is kept in the functionality table F. F 

stores the graph patterns of expression trees that are implemented as single functions by library com­

ponents (Figure 6). Associated with each pattern Pis a pair of cost reduction measures, (Ap,Dp ), 

with Ap and D p the measures for the expected improvement in hardware area and in delay costs 

when implementing the pattern P by a single component function, respectively. Both measures are 

a function of the number and type of operators in the pattern and are determined a priori. For 

example, the pattern Pl=((A+l" might have the cost reduction measure pair (APl,DPl) = (1,1), 

while the pattern P2 = "A+B+l" might have the cost reduction measure pair (Ap2 , Dp2 ) = (2,2). 

Finally, the total cost reduction measure of a pattern P is determined as follows: 

cost-reduction(P) =a x Ap + /3 x Dp 
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with the constants a and /3, with a, f3 E [0:1] and f3 = 1.0 - a, input parameters entered to CSA 

by the designer. The constants a and f3 correspond to the relative importance of area versus delay 

optimization. In particular, if the area parameter a = 1.0 (i.e., /3=0.0) then the function measures 

exclusively the area cost of the design, and hence CSA will optimize exclusively for area. If the 

delay parameter f3 = 1.0 (i.e., a=O.O) then CSA will optimize exclusively for performance. Finally, 

for all other values of a and /3, CSA will optimize both for area and delay with the relative degree 

of importance being a and /3, respectively. 

Input: a flow graph G with generic operator nodes, a functionality table F 
Output: a flow graph G' with library-specific operator nodes 
Algorithm: 
while there is an unmarked operator node n in the flow graph do: 

Match the library function patterns Pi of F 
against the expression trees Gi in G of which node n is the root. 
if one or more match is found, 
then begin 

Set P to the pattern with the largest cost reduction according to F. 
Replace the subgraph Gj of G that corresponds to P 
by one operator node mi with op(mi) taken from F. 

Mark mi. 
end 
else begin 

Mark n. 
end 

end while 

Figure 7: The Functionality Recognition Algorithm. 

The functionality recognizer uses the pattern matching and reduction algorithm given in Figure 

7. This algorithm matches the function patterns captured in the table F against the graph G. It 

traverses the graph Gin a bottom-up manner, such that each operator node n E G is visited once. 

For each operator node n E G, the function patterns Pi E F are matched against the expression 

tree Gi E G rooted at n. If more than one match is found, then the pattern Pi with the largest cost 

reduction is selected. For instance, the pattern "A+B+l" will be chosen over the pattern "A+l". 

Once a pattern Pi has been selected, the subgraph structure Gi of G that corresponds to Pi is reduced 

to one operator node n3 with op( n3) = op( Gi) as shown in Figure 6. 

A reduced node will not participate in any further pattern matching, as the pattern descriptions 

kept in F are described exclusively with primitive operator nodes. Hence, pattern matching is 
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completed in one pass through the graph. This assures that the functionality recognizer finds a 

partition P of G into subgraphs Gi, and thus the first subproblem described in Section 3.2 is solved. 

Each element of P corresponds to one node in the completely reduced graph G'. ff the node is a 

library-specific function, then it corresponds to a subgraph Gi of the original G. ff it is a generic 

operator nodes, then it corresponds to a trivial subgraph Gi of size one. For instance, the graph in 

Figure 5.b is partitioned into four patterns, two library-specific functions and two generic ones. Thus, 

the reduced fl.ow graph in Figure 5.c consists of only four operator nodes. Since pattern matching is 

completed in one pass through the graph, the algorithm's complexity is O((Size of G) x (Size of the 

Pattern Set)). 

6 COMPONENT MAPPING 

The component mapping algorithm solves the problem of merging mutually exclusive operators by 

reformulating it as a clique partitioning problem. 

6.1 Reformulation of the Component Mapping Problem 

Two operator nodes n1 and n2 are defined to be mergeable with respect to a given unit table U if 

and only if there is a unit u E U with functionality( u) 2 op( n1) U op( n2). They are defined to 

be mutually exclusive to each other if the condition which selects one operator always falsifies the 

condition selecting the other, and vice versa. For a graph-theoretic definition of the term mutually 

exclusive see Section 3. Details of the condition encoding scheme, the treatment of default valu_es 

(namely, the otherwise clause in a conditional statement), and the recognition of identical conditions 

(an example of equivalent conditions is given below) can be found in [25]. Two operator nodes n1 

and n2 are said to be compatible with respect to U, if they are both mutually exclusive and 

mergeable. CSA creates a compatibility graph CG = (N,E) from a fl.ow graph G = (V,A) 

with N the set of operator nodes from V, and E a set of undirected edges, called compatibility 

edges. There is an edge ei = < nj, nk > in CG for each pair of compatible nodes nj, nk E N. 

Next, we demonstrates how a fl.ow graph is transformed into a compatibility graph using a simple 

design example. 

Example 4 A data flow graph and its corresponding compatibility graph are presented in Figure 8.a 

and 8.b, respectively. They share the same set of operator nodes. First an edge is inserted between 

each mutually exclusive operator node pair (Section 3). For instance, n 2 is mutually exclusive with 

n3 and n4 because of decision node d1 . Additional mutually exclusive operator nodes can be found by 

comparing conditional branch expressions. For instance, the expression trees E 1 and E 2 correspond 

to equivalent (in this case, identical) conditional expressions, namely, ('SJ =S2", and therefore the 

corresponding decision nodes d1 and d2 th its capture the same condition. Therefore, the Plus operation 
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a.flow graph b. complliibUily graph 

Figure 8: A Compatibility Graph Formation Example. 

(n2) attached to di is found to be mutually exclusive to the Minus operation (n1) attached to dz. There 

are seven mutually exclusive pairs, i.e., seven arcs in the compatibility graph. After this, we need 

to assure that the selected node pairs are also mergeable. For this example, we assume a component 

library that contains purely arithmetic units and purely logic units. For this library, all dashed lines 

which connect logic with arithmetic operations represent non-mergeable pairs, and they have to be 

removed from the graph. The final compatibility graph contains the four solid arcs. 

6.2 Compatibility Graph Reduction 

Note that a collection of operator nodes can be mapped to the same functional unit if and only if 

they are pairwise compatible. This follows from the two constraints discussed in Section 3.2. In the 

terminology defined at the beginning of this section, this means that a subgraph of CG completely 

connected by compatibility edges, also called as clique, can be mapped to one unit. We express this 

in our design representation by merging a group of operator nodes, that will be mapped to the same 

functional unit, into a multi-functional operator node. 

During the process of incrementally creating clique covers on the compatibility graph CG, CSA 

adjusts the graph as described below in order to correctly maintain its structure. This reduction of 

the compatibility graph corresponds to an additional pruning of the search space. 

Proposition 1 Let CG be a compatibility graph, n an operator node and m a newly created multi­

functional node composed of the original operator nodes n1 , nz, ... , nj with n -/= ni for all i from 1 
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to j. A compatibility edge ek = < n, nk > (for some k E { 1, ... , j}) can only be used for future merges 

if and only if n is compatible with all nodes~' i.e., the edges ei = <n,~> exist in CG for all·i E 

{1, ... ,j}. If this is the case, the following two edge reductions follow: 

• equivalent edge property: If all edges ei = <n,~> exist in CG for i E {1, ... ,j}, then they 

are called equivalent to one another. Thus, the CG can be reduced by replacing all of them 

by one edge, e = <n,m>. 

• illegal edge property: If there is at least one operator node nk (for some k E {1, ... ,j}) for 

which no compatibility edge e = < n, nk > exists then none of the other edges e = < n, ni > for i 

E {1, ... ,j} can be used for future merges. Thus, the CG can be reduced by deleting all of them. 

In other words, during the clique formation process CSA deletes compatibility edges that need 

no longer be considered for one of two reasons: either their usage would violate the clique property 

(illegal edge), or they have become equivalent to other edges in CG and thus will be covered when 

considering those edges (equivalent edge). 

An example of how proposition 1 is used to reduce a compat~bility graph is given in Figure 9. 

a. flow graph 

® e1 (r;\ 
~ 

b. compatibility graph c. clique formation 

Figure 9: A Compatibility Graph Reduction Example. 

d. graph reduction 

Example 5 Figure 9.a shows a flow graph G with four operator nodes n1, n2, n3 and n4. Note that 

nodes n3 and n4 are not mutually exclusive, because they lie on a common path in G. All other 
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pairs of nodes are mutually exclusive. Assume that all operator nodes in G are mergeable by a 

given unit table. Then the compatibility graph CG shown in Figure 9.b can be derived from G. If nl 

and n3 are merged into one multi-functional node n (Figure 9.c), then edges e2 and e5 are equivalent 

and can be collapsed into one edge e2/e5. The edge e4, however, violates the illegal edge property 

and must be removed. The final graph is shown in Figure 9.d. 

In the previous example, the merge of two nodes reduced the compatibility graph from five to 

two compatibility edges. 

6.3 Operator Merging 

When genera.ting a partial solution, CSA not only adjusts the compatibility graph but also the 

underlying flow graph. This allows for the simultaneous consideration of ( 1) the connections costs · 

due to the sharing of units (decision nodes), and (2) the control logic costs for the selection of the 

correct function of a. multi-functional unit (decoder nodes). We outline below how the sharing of 

units is expressed in the flow graph. 

CSA explores the two options of whether or not to map two nodes n1 and n2 to the same hardware 

unit (expressed by the compatibility edge e = < nl, n2 > ). Correspondingly, CSA transforms a. flow 

graph G and its matching compatibility graph CG in one of two ways: 

• case 1: Map ni and n2 to the same unit. 

- CG ::} CG' by adjusting the compatibility edges according to the rules described in 

Section 6.2, and 

G ::} G' by directly reflecting the sharing of units in the flow graph as will be described 

below. 

• case 2: Do not map n1 and n 2 to same unit. 

- CG::} CG' by simply deleting edge e from CG, and 

- G ::} G' by simply setting G' = G. 

Once all decisions for merging/not merging operator nodes have been made, i.e., CG = 0, then 

the solution pair ( G, CG) is called a complete solution. Otherwise, it is called a. partial solution. 

Case 1, i.e., the mapping of two operator nodes to the same hardware unit, is expressed in 

the flow graph by merging the two nodes into one multi-functional opera.tor node. The semantic 

equivalence of the original and the transformed flow graph is assured by inserting decision nodes 

that select the correct inputs for the multi-functional operator node. We handle the function select 
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Figure 10: An Example of the Operator Merging Process. 

of multi-functional operator nodes by encoding function select conditions and storing them in the 

associated decoder nodes (depicted by a dark box in Figure 10). 

The process of operator merging is best explained with an example. Figure 10 shows how the 

two compatible operator nodes n1 and n2 with functionalities "+" and "-" are merged into one 

multi-functional operator node n. The node n is controlled by a decoder node which implements the 

function select logic, i.e., it represents the conditions Vi under which n's respective functions "+" 
and "-" are executed. For instance, the functions "+" and "-" are controlled by the conditions 

r1 = v1 and r 1 = v2 , respectively. The new node n is connected to the original output destinations 

of both n1 and n2 . If n1 and n2 were directly connected to the same decision node, as is the case in 

Figure 10, then the size of the decision node is reduced or it may even be completely removed. In 

the example at hand, this corresponds to the fact that the two decision values v1 and v2 are merged 

into one value ( v1 + v2 ). Similarly, the input edges to the newly created multi-functional node n are 

adjusted to connect to the original inputs of n1 and n2 . Decision nodes may have to be introduced 

to select among the inputs to n, as can be seen in Figure 10. For a detailed discussion on this see 

[25]. 

This example points out the trade-off involved in determining 'optimal merges' of operator nodes. 

This example merge reduces, for instance, the hardware costs in two respects: it reduces (1) the 

number of operator units from two to one and (2) the size of the decision node. However, new costs 

accrue in the form of (1) more complex components (a multi- rather than single-function unit), (2) 

increased interconnection costs (two additional input decision nodes), and (3) increased control cost 
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(the decoder to select among the two functions of n ). CSA trades off between the costs and gains 

of each such merge based on the heuristic function introduced in the next section. 

6.4 A Heuristic Function for Compatibility Edge Selection 

While the cost and bound functions are described in Appendix A and B, respectively, the heuristic 

function to evaluate the gain of mapping two operator nodes to the same hardware unit is given next. 

This function, which is an extension of the heuristic function developed in [25], associates with each 

compatibility edge an estimate of the benefit it is likely to bring to the solution (see the discussion 

in the previous section). The component mapping algorithm described in the next section uses this 

heuristic for the selection of the compatibility edge that is to be used next to form a clique. 

The benefit of mapping two operator nodes to one unit, denoted by benefit(), is a measure of the 

change in area costs and in design performance due to the operator merge. benefit(): N X N ~ Real, 

with N the set of operator nodes in the graph G, is a function from a pair of operator nodes to a 

cost value defined by: 

with n1 , n 2 E N, and a and j3 the relative area and delay optimization parameters defined in a 

previous section. 

The area benefit of mapping two operator nodes to one unit, denoted by area_benefit(), is the 

sum of the three measures described below. If the two operator nodes ni and n2 are merged into one 

node n then the benefit in terms of hardware operator costs of executing this merge, n = < ni, n2 >, 

is area-operator-costs( n) := bound_node_area( n) - bound_node_area( n1) - bound_node_area( n2) (with 

bound_node_area() the minimal cost of implementing an operator node as defined in Appendix B). If 

the resulting multi-functional node has more than one functionality, then the cost for a decoder to 

select among them is added to the measure. The second measure, area-connection-cost(), corresponds 

to the connection costs that result from the sharing of units. This takes into account the number and 

size of decision nodes that have to be inserted to disambiguate between different inputs to multi­

functional operator nodes [25]. The third measure, called ancestor-mergeability (}, evaluates the . 

potential of direct ancestors of the merged nodes for being merged as well. For each pair of operator 

nodes that are directly connected by data flow output edges as inputs to n1 and n2, respectively, and 

that are compatible and thus could be merged in the future, increment the third measure by one. 

This cost evaluation accounts for the fact that a merge directly atop the current merge is likely to 

reduce the connection costs by making decision nodes redundant. 

The delay benefit of mapping two operator nodes to one unit, denoted by delay_benefit(), is 

the sum of the two measures described below. If the two operator nodes n1 and n2 are merged 
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into one node n then the benefit in terms of delay of executing this merge, n = < n1, n2 >, is 

delay-operator-costs( n) := max( bound_node_delay( n) - bound_node_delay( n1 ), bound_node_delay( n) -

bound_node_delay(n2)). (with bound_node_delay() the minimal delay of implementing an operator 

node as defined in Appendix B). The second measure, delay-connection-cost(), corresponds to the 

maximum of changes in delay due to the new interconnections of the merged node. This takes into 

account the number and size of decision nodes that have to be inserted to disambiguate between 

different inputs to multi-functional operator nodes. The delay_benefit() function is a local measure 

of the effect of the operator merge on the delay. 

6.5 The Component Mapping Algorithm 

The Component Mapping algorithm reformulates the component synthesis problem as a clique par­

titioning problem on the compatibility graph (CG) [26]. The goal is to find a minimal cost clique 

partition of the set of operator nodes of CG such that each clique can be mapped to one multi­

functional unit. We present two algorithms to solve this problem: (1) the heuristic (or greedy) 

component mapping algorithm and (2) the branch-and-bound component mapping algorithm. 

6.5.1 The Heuristic Component Mapping Algorithm 

Input: a flow graph F, a unit table, the area/delay parameters a and (3. 
Output: a flow graph optimized for area cost and/or for delay. 
Algorithm: 
Generate a compatibility graph CG for the flow graph F (Sec.6.1). 
while (there is an edge e in CG with benefit(e)>O) 

(1) Select edge e=< ni, n2 > fr~m CG with the largest heuristic benefit(e) (Sec.6.4). 
(2) Map n1 and n2 to the same unit by transforming F and CG (Sec.6.2 and 6.3). 

end while; 
Return the transformed flow graph F. 

Figure 11: The Heuristic Component Mapping Algorithm. 

The heuristic component mapping algorithm [25] is described in Figure 11. The algorithm is based 

on ·the heuristic function, benefit(), which associates with each compatibility edge e a measure of the 

benefit of using this edge for clique merging (Section 6.4). In a greedy fashion, it repeatedly selects 

the edge e with the largest benefit and utilizes it for operator merging. (Section 6.3). It stops, when 

no more profitable edge remains. 
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6.5.2 The Branch-and-Bound Component Mapping Algorithm 

The component mapping algorithm described in this section (Figure 12) replaces the greedy method 

by a branch-and-bound control strategy. The algorithm uses the inclusion (or exclusion) of a com­

patibility edge as the branching criterion (Section 6.3). At each node in the branch-and-bound search 

tree, the solution space is partitioned into two sets of potential solutions according to whether or not 

a given compatibility edge is used in the clique cover. If an edge is (not) used in a solution, then the 

corresponding pair of operator nodes is (not) being mapped to the same unit. 

All partial solutions (leaf nodes in the current search tree) that have been generated and that 

can lead to a potentially complete solution are maintained in a list, called active-stack. While 

there is any node left in this list, the algorithm selects one of them by the last-in-first-out scheme. 

Then the heuristic function, benefit(), is used for branch selection, i.e., to determine the next most 

profitable compatibility edge for merging (Section 6.4). CSA selects the edge e with the largest 

benefit, benefit(e). 

Then, it expands the current solution node by generating its two children. The first child uses 

the selected edge e for operator merging, while the second child eliminates the edge e so that it will 

not be used for operator merging (Section 6.3). For the generation of partial solutions we utilize the 

clique property to reduce the compatibility graph as demonstrated in Section 6.2. 

If either of the two children cannot lead to a least-cost solution based on the bounding function 

presented in Appendix B, then it is discarded. A solution is discarded if the bounding function 

results in a cost larger than or equal to the cost of the best s?lution that has been found by the 

algorithm so far (BSF). Remaining children are kept as potential future solutions in the active list. 

If one of the children represents a complete solution, then it is compared against the current best 

solution to determine the new best solution. This process is repeated until either no partial solution 

remains in the active list or the time limit given by the user is exceeded. 

CSA traverses the branch-and-bound search space in a last-in-first-out manner. This allows us 

to backtrack over the solution space rather than having to keep all partially explored solutions. This 

reduces the amount of storage for intermediate solutions. In addition, this scheme generates an initial 

'good' solution fast, i.e., in polynomial time. 

Below, we explain the main features of the branch-and-bound component mapping algorithm 

based on an example. Figure 13 shows the portion of the branch-and-bound search space for the 

Adder/Subtractor design example (Figure 5) that is being traversed by CSA. This bounded design 

space consists of 7 nodes, while the complete search space consists of 30 solution nodes (see [24]). 

Example 6 The flow graph of the the Adder /Subtractor design that serves as input to the component 

mapper is depicted in Figure 5.c. From this, a compatibility graph which corresponds to the first 
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Input: a flow graph, a unit table, an iteration count limit, 

and the area/delay parameters a and /3. 
Output: a flow graph optimized for area cost and/or for delay. 

Algorithm: 
Transform the flow graph into a compatibility graph (Sec.6.1). 

active-stack = { 0 }; 

BSF =empty; (Best Solution Found) 

UP = oo; (Upper Bound =cost of BSF) 

while ((active-stack -f 0) and (iteration-count>O)) do begin 
(1) Pop branching node b (partial design solution) from active-stack. 

(2) Select edge e with the largest benefit() based on the heuristic (Sec.6.4 ). 

(3) Generate children of b with child1 = b + e, child2 = b - e (Sec.6.2 and 6.3). 

(4) Calculate lower bounds of the two children: bound(childi) (App.B). 

(5) for i = 2 downto 1 do 

if bound( childi) 2:: UP 

then discard childi; 

else 
if childi is a complete solution (Sec. 6.3) 

then 
if cost( chi I di) < UP 

then childi replaces the best solution found, 

i.e., U P:=cost( childi ); BS F:=childi; 

else discard childi; 

end if; 
else push childi onto active-stack; 

end if; 
end if; 

end for; 
( 6) decrement iteration-count. 

end while; 
Return BSF. 

Figure 12: The B&B Component Mapping Algorithm. 
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(partial) solution node Sl is derived using the technique discussed in Section 6.1. CSA selects the 

next branching edge, el, based on the heuristic function described in Section 6.4. Now, the two 

children of Sl are created; they are called S2 and S7. The left child S2 is created by using edge el in 

. the clique cover. That is, the operator nodes Add-Inc and Subtract-Inc that are connected by edge el 

are merged into one multi-functional operator node (meaning, they are mapped to the same multi­

functional hardware unit). Furthermore, the clique property is utilized to reduce the compatibility 
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Figure 13: CSA 's Search Space for the Adder /Subtractor Design. 

graph as demonstrated in Section 6.2. The right child S7, on the other hand, is created by deleting 

edge el from SJ. Consequently, the operator nodes Add-Increment and Subtract-Increment will not be 

merged into one multi-functional operator node in any solution derived from S7. S7 is pushed on the 

active stack, and CSA continues with S2. CSA repeats this process until either a complete solution 

or a solution that can be bounded is found. The first complete solution found by CSA is S4. At this 

point, BSF = S4, UP= 3, and active-stack={S5, S6, S7}. Then, SS is popped off the active-stack. 

SS is also a compiete solution. However, it is not as good as 84 and is therefore discarded. CSA 

inspects the remaining solutions in the active-list in a depth first manner . Both 86 and 87 can be 

bounded immediately, since their bound is larger than the cost of S4. The final design returned by 

CSA is 84, which corresponds to the merged ECDFG graph shown in Figure S.d. 
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6.6 Evaluation of CSA 

There are several observations we would like to make about CSA: 

1. The branch-and-bound component mapping algorithm has an exponential worst-case complex­

ity. However, we utilize several techniques to prune the search space and therefore have been 

able to run the complete algorithm on the typical functional descriptions. In particular, the 

component mapper uses the unit table to preprune the compatibility graph (Section 6.1), it 

exploits the clique property to reduce compatibility edges during the branch-and-bound search 

(Section 6.2), and it applies a bounding function to discard branches of potential solutions from 

the search tree (Appendix B). 

2. Note that the branch-and-bound algorithm is guaranteed to find an optimal solution if given 

sufficient time. This is desirable as most descriptions of register-transfer level components we 

have come across thus far are reasonably sized. For high-level synthesis, this is not feasible 

because descriptions of complete designs are generally large. 

3. Lastly, this approach allows for trade-off between the quality of the solution and the computa­

tion time. The component mapper can improve on initial good solutions until the time limit 

is met. If no time limit is set then an optimal solution will be found. 

7 EXPERIMENTAL RESULTS 

7.1 Experimental Setup 

CSA currently runs on SUN3/SUN4 workstations under the UNIX operating system. It consists of 

approximately 15000 lines of C code not including the VHDL input compiler [13]. We present two 

different experiments. In the first experiment, we explore the features and limitations of CSA. In 

particular, we compare CSA's performance when using the functionality recognition option versus 

when not using it. We also study the solution quality (both area and delay) achieved by CSA for the 

heuristic and for the branch-and-bound component mapping algorithm. In the second experiment, 

we are testing CSA 's ability for technology adaptation. Therefore, we experiment with replacing 

the component-specific information by different libraries. 

The two experiments are based on the following collection of typical VHDL descriptions of hard­

ware component(s). Example 1, called Add/Sub, is a variation of an adder/subtractor description 

[6] with complex functions, such as, Add-and-Increment and Add-and-Decrement. Examples 2 and 

3, called Manol and Mano2, are two different functional description styles of the arithmetic logic 

unit proposed by Mano ([15], pg. 337 and pg. 242). Example 4 is a functionally reduced version of 

the TI 74181 ALU [28]. Example 5 is a divide-by-3328 counter design from the Rockwell-Counter 
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case study [7]. The sixth example, called Count/Logic, describes a combination of a counting and 

a logic unit [15], however, with partially permuted inputs. Example 7, called AM2901, corresponds 

to a functional description of the 2901ALU unit including input multiplexors and latches [17]. The 

last two design specifications Concurl and Concur2 describe a combination of concurrently execut­

ing components. Concurl includes several input multiplexors that are shared among the different 

concurrent units. The components in the Concur2 description receive input data from and write 

output data to a set of register files. 

7.2 Test Series 1 

The results of the first experiment are listed in Table 1. In order to explore the features and 

limitations of CSA, we have run the nine examples described in the previous section (first column of 

Table 1) under a number of different parameter settings. For instance, we run both area and delay 

optimization as indicated by the a parameter in the second column of Table 1. For a = 1.0, CSA 

optimizes for area, and for a = 0.0, CSA optimizes for performance (Appendix A). Furthermore, 

we ran CSA with or without applying the functionality recognition algorithm as indicated by the 

FR parameter in the third column of the table. The next two columns, labeled Heuristic CM and 

B&B CM, display the design results achieved by CSA using (1) the heuristic and (2) the branch­

and-bound component mapping algorithm, respectively. For each, the solution quality of the design 

is described by the two measures Area and Delay. Area corresponds to the transistor count of the 

design and Delay to the maximal delay through the design. Both are calculated by the cost function 

given in Appendix A. The computation time of the respective runs measured in CPU seconds is 

given in the column labeled CPU. The last column, labeled Designer, displays the results achieved 

by the human designer (meaning the best possible design we could find by hand). 

One goal of this experiment was the evaluation of the usefulness of the branch-and-bound over 

the greedy control strategy for the component mapping task. Thus the sixth column of Table 1, 

labeled "lmp(provement) B&B", indicates the percentage of design quality improvement gotten 

by CSA when using the branch-and-bound versus when using the heuristic component mapping 
al · h Th · · al 1 d b h .c 1 quality heuristic - quality B&B . h h gont m. e improvement is c cu ate y t e iormu a quality heuristic wit t e 

quality measure being Area for a = 1.0 and Delay for a = 0.0. We found that CSA improves 

the design quality in almost half of the thirty six example runs when using the branch-and-bound 

over when using the heuristic component mapping algorithm (indicated in the sixth column by a 

percentage larger than zero). It is a quality improvement of 18% percent on the average. For the 

remaining example runs, the best design was found even without running the compiete branch­

a:rid-bound algorithm. This improved design quality is achieved at an increased running time of 

the algorithm. Therefore, CSA allows for a trade-off between the quality of the solution and the 

computation time. 
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Table 1: A Comparison Matrix of Design Quality and Algorithm Performances. 

Heuristic CM B&B CM Designer 
Area Delay CPU Area Delay CPU Imp Area Delay 

Examples a FR (trans) (ns) (sec) (trans) (ns) (sec) B&B (trans) (ns) 

Add/Sub 1.0 yes 172 8 1 172 8 1 0% 172 8 
Add/Sub 0.0 yes 172 8 1 172 8 1 0% 172 8 
Add/Sub 1.0 no 344 16 2 344 16 7 0% 
Ad<!Z.Sub 0.0 no 792 19 2 344 16 2 16% 
Add/Sub Imp FR 50% 58% 50% 58% 

Manol 1.0 yes 578 11 2 408 8 9 29% 408 8 
Manol 0.0 yes 408 8 2 408 8 2 0% 408 8 
Manol 1.0 no 726 19 1 716 18 780 1% 
Manol 0.0 no 828 19 2 716 18 141 51fo 
Manol Imp FR 20% 58% 43% 56% 

Mano2 1.0 yes 464 15 2 464 15 11 0% 408 8 
Mano2 0.0 yes 706 17 1 761 14 23 18% 408 8 
Mano2 1.0 no 614 24 2 614 24 98 0% 
Mano2 0.0 no 911 20 2 752 19 122 5~ 
Mano2 Imp FR 24% 15~ 24~ 26~ 

Tl-74181 1.0 yes 706 12 2 411 8 127 42% 411 8 
Tl-74181 0.0 yes 411 8 2 411 8 2 0% 411 8 
TI-74181 1.0 no 910 20 2 789 18 672 1% 
TI-74181 0.0 no 909 19 2 789 18 532 5% 
TI-74181 Imp FR 22% 58% 48% 56% 

Rockwell 1.0 yes 2170 56 3 2170 56 12 0% 2170 56 
Rockwell 0.0 yes 3223 57 3 2912 33 25 42% 2912 33 
Rockwell 1.0 no 2170 56 3 2170 56 12 0% 
Rockwell 0.0 no 3223 57 3 2912 33 25 42% 
Rockwell Imp FR ~ 0% 0% 0% 

Count/Log 1.0 yes 409 11 2 409 11 4 0% 364 l 11 
Count/Log 0.0 yes 634 15 1 543 10 6 33% 406 l 8 
Count/Log 1.0 no 409 11 2 409 11 4 0% 
Count_z:Log 0.0 no 634 15 1 543 10 6 33% 
Count/Log Imp FR o~ 0% 0% Oo/<J 

AM2901 1.0 yes 1038 18 2 964 18 238 7% 964 1 18 
AM2901 0.0 yes 1132 16 3 1132 16 255 0% 1132 l 16 
AM2901 1.0 no 1038 18 2 964 18 238 7% 
AM2901 0.0 no 1132 16 3 1132 16 255 0% 
AM2901 Imp FR Oo/<J 0% 0% 0% 

Concurl 1.0 yes 459 13 2 459 13 2 0% 459 l 13 
Concurl 0.0 yes 459 13 2 459 13 2 0% 459 l 13 
Con curl 1.(l no 685 23 2 685 23 33 0% 
Concurl 0.0 no 831 24 2 1133 23 14 4% 
Concurl Imp FR 33% 46% 33% 43% 

Concur2 1.0 yes 379 8 2 379 8 3 0% 379 l 8 
Concur2 0.0 yes 452 8 2 379 8 2 0% 379 l 8 
Concur2 1.0 no 579 18 2 579 18 91 0% 
Concur2 0.0 no 790 19 1 579 18 453 51fo 
Concur2 · Imp FR 36% 58% 36% 56% 
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These experiments further show the importance of the functionality recognition algorithm. For 

each group of example descriptions, the fifth row labeled "Imp FR" indicates the percentage of 

improvement gotten by CSA when using the FR option over when not using the FR option. This 

design quality improvement is calculated by the formula quality ;::"if::n;;J:ality FR . The percentage 

listed in the Area column is gotten by plugging the Area measures taken from the rows with the 

parameter setting a= 1.0 into the formula; and the percentage listed in the Delay column is gotten 

by plugging the Delay measures taken from the rows with the parameter setting a = 0.0 into ~he 

formula. For 6 out of 9 example design descriptions, CSA improves the design quality by an average 

of 423 when the FR option is used over when the FR option is not used. This is true for both 

the heuristic and the branch-and-bound component mapping algorithm and for both area and delay 

optimization. For all examples the results produced by CSA using the FR option are better than 

or equal to (but never worse than) the designs produced by CSA without using the FR option. 

The designs produced by the human designer (last column of the table) are nearly always equiva­

lent to those of the full-blown CSA version, i.e., CSA using the FR option and the B&B component 

mapping algorithm. The designer only produced a better design for two of the examples, namely, 

Mano2 and Count /Logic. The designer improved the design for the Mano2 description because 

s/he recognized the fact that the Mano2 description is equivalent to the Manol description. The 

Mano2 description uses complex expressions, such as "A + ones-complement(B) + 1" and "A + 
ones-complement(B)" in place of simpler expressions, such as, "A - B", and "A - B - 1" (15]. The 

latter functions are directly supported by the ALU in the underlying library (and are stored in the 

associated functionality table), while the former are not. Note that CSA's results could be improved 

for this example by adding the respective function patterns to CSA 's functionality table. The de­

signer produces a better result for the Count/Logic design description because s/he reversed the 

inputs of a commutative operation. Note that we have purposely composed this example description 

by permuting the data inputs for some of the functions of the described component. 

7.3 Test Series 2 

In this second experiment, we explore CSA's ability for technology adaptation by replacing the 

component-specific information by different libraries. We ran CSA with the three libraries: Genus, 

Mano, and TTL. The Genus library corresponds to the Generic Component Library GENUS devel­

oped at UC Irvine [6]. The Mano library contains a number of the components described in [15] in 

addition to all components from the Genus library. Finally, the TTL library contains the components 

of the TTL library [28] in addition to all components from the Mano library. The results presented 

in the previous section (in Table 1) were generated using the TTL library. Rather than providing 

complete tables for the experiments using the other two libraries, we present a summary in Table 

2. The results presented in Table 2 are based on the CSA algorithm with the following parameter 

settings: B&B Component Mapping and a=l. 
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Table 2: A Comparison Matrix for Design Quality Using Three Different Libraries. 

Using TTL Lib 
CSA Designer ~ Area 

Examples Area Delay CR Area Delay CR Im prov. 

Add/Sub 172 8 yes 172 8 yes 0% 
Manol 408 8 yes 408 8 yes 0% 
Mano2 464 15 no 408 8 yes 12% 

TI-74181 411 8 yes 411 8 yes 0% 
Rockwell 2170 56 yes 2170 56 yes 0% 

Count/Log 409 11 * 364 11 yes 11% 
AM2901 964 18 * 964 18 * 0% 
Concurl 459 13 yes 459 13 yes 0% 
Concur2 379 8 yes 379 8 yes 0% 

Using Mano Lib 
CSA Designer Area 

Examples Area Delay CR Area Delay CR Im prov. 

Add/Sub 344 20 no 344 20 no 0% 
Manol 408 12 yes 408 12 yes 0% 
Mano2 587 17 no 408 12 yes 30% 

TI-74181 768 15 no 768 15 no 0% 
Rockwell 2170 60 yes 2170 60 yes 0% 

Count/Log 409 11 * 364 11 yes 11% 
AM2901 1160 21 * 1160 21 * 0% 
Concurl 566 15 * 566 15 * 0% 
Concur2 452 10 * 452 10 * 0% 

Using Genus Lib 
CSA Designer Area 

Examples Area Delay CR Area Delay CR Improv. 

Add/Sub 344 20 no 344 20 no 0% 
Manol 716 24 no 716 24 no 0% 
Mano2 654 16 no 654 16 no 0% 

TI-74181 826 25 no 826 25 no 0% 
Rockwell 2170 60 yes 2170 60 yes 0% 

Count/Log 409 11 no 409 11 no 0% 
AM2901 1160 21 * 1160 21 * 0% 
Concurl 566 15 * 566 15 * 0% 
Concur2 452 10 * 452 10 * 0% 
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Table 2 shows that CSA using the TTL library outperforms both CSA using the Mano library 

and CSA using the Genus library. Similarly, CSA using the Mano library outperforms CSA using 

the Genus library. This is so because the TTL library has a set of richer components than the 

Mano library, and the Mano library has a set of richer components than the Genus library. For 

instance, CSA using the Mano library is able to reduce the second example description, Manol, to 

one unit. On the other hand, CSA using the Genus library does not reduce the Manol design to one 

unit. There is no unit in the Genus library which directly supports some of the described functions, 

e.g., the function "A - B - 1". This function would therefore be implemented by two subtractors 

in sequence, which considerably decreases the performance of the resulting design. For the Manol 

example description, CSA using the TTL library also outperforms CSA using the Mano library, 

even though both libraries have ALUs that directly implement all described functions. The TI74181 

component in the TTL library however features a better delay characteristic than the corresponding 

ALU in the Mano library. 

In Table 2, we also present the results of human designers using the three libraries. The last 

column of the table indicates the percentage of area improvement of the designer's result over CSA's 

result calculated by (Area(CSi~;a~;1)(designer)). Given a particular library, CSA (with the assumed 

parameter settings) almost always produced the same result as the designer. This is indicated by a 0% 

percentage of improvement in the last column of the table. As discussed in the previous section, the 

designer using TTL components was able to produce a better design for the Count/Logic example by 

using the commutativity of operators. This is also true for the Mano library. It is not the case for the 

Genus library, however. Here it is more advantageous to implement the function with the permuted 

input as an individual component, and hence no input multiplexors can be saved by permuting its 

inputs. As described in the previous section, the designer improved the design of the Mano2 example 

by rewriting the input specification, i.e., by replacing the expression "A+ ones-complement(B)" by 

the expression "A - B - 1". This trick allows the designer to improve the design for both the TTL 

library and the Mano library. For the Genus library, however, this is no longer useful because there 

is no unit in that library that directly supports the function "A - B - 1". 

In this experiment, we furthermore study whether CSA is able to recog~ze and properly reduce 

the component( s) being described by the functional description. In Table 2, the column labeled CR 

(for component recognition) indicates whether CSA was able to reduce the functional description 

to the described component. The CR column can take on the three values: "yes", "no" and "*". 

CR=yes means that proper component recognition took place, while CR=no means that component 

recognition did not take place. Finally, CR="*" indicates that the algorithm was able to reduce 

the description to the described component, but also succeeded in finding an alternative and better 

design implementation for the given description. We can observe that CSA is more likely to re­

duce functional descriptions to their intended component( s) when given more complex component 

libraries. In other words, the number of component recognitions ( CR=yes) decreases for simpler 

component libraries. For the TTL library, CSA recognizes (and possibly even improves) the design 
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implementation for 883 of the examples; for the Mano library it is 663 of the examples, and fi­

nally for the Genus library it is 443 of the examples. This can be explained with the fact that 

the libraries contain less complex units and therefore more than one unit is required to implement 

complex functional descriptions. 

8 CONCLUSIONS AND FUTURE WORK 

In this paper, we have defined a new problem, which we call the component or functional synthesis 

problem. Functional synthesis maps a functional description of one or possibly several register­

transfer level components to an interconnection of components from a given library that perform the 

same functionality. Most research presented in the literature concentrates instead on the synthesis 

from behavioral (or algorithmic) descriptions. 

Furthermore, we define a general approach for the synthesis from such functional descriptions, 

and we provide a solution to this problem in form of a two-phase algorithm, called CSA. The 

presented component synthesis algorithm, CSA, solves this technology mapping problem on the 

register-transfer level by automatically synthesizing a given functional description to a near minimal 

set of micro-architecture components. CSA also provides a solution to the functionality mismatch 

problem using a pattern matching scheme. 

Our experiments show that in most cases the CSA algorithm produces a design that is comparable 

to that of a human designer. In addition, we found that CSA improves the design quality in about 

half of the example runs when using the branch-and-bound component mapping algorithm over when 

using the heuristic component mapping algorithm. The improvement in design quality (both area 

and delay) is 183 on the average. CSA therefore allows for a trade,.o:ff between the quality of 

the solution and the computation time. The designer can use CSA with the heuristic component 

mapping algorithm to get a good solution within a very short time. If the solution quality is of 

importance or if the computation time is not so critical, then the CSA should be run using the 

branch-and-bound component mapping algorithm in order to improve on the initially found solution. 

Our experimental results have also shown that designs synthesized using the functionality recog­

nition option are smaller in cost than those synthesized without it. CSA was able to improve 663 

of the example designs when using functionality recognition; and the improvement in design quality 

(area and delay) was 423 on the average. Therefore we can conclude that functionality recognition 

is an essential ingredient of functional synthesis. We have thus succeeded in moving the functionality 

recognition approach, a fairly common ingredient to logic-level synthesis systems, to a higher level 

of abstraction by utilizing it at the functional synthesis level. 
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Lastly, our experiments have shown CSA 's ability for component recognition and technology 

adaptation. Given an appropriate library, CSA was able to recognize and properly reduce 88% of 

the component( s) being described by a functional description. 

Future work will address the incorporation of the functionality recognition task directly into the 

component merging phase in order to solve the two problems of expression tree reduction and of 

grouping functions to hardware units simultaneously. We may also want to study whether there is 

any gain in replacing the simple pattern matching procedure used by CSA for functionality reduction 

by a more sophisticated method, such as those used in Boolean technology mapping [14]. 
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APPENDIX 



A APPENDIX: THE COST FUNCTION 

A.1 The Overall Cost Function 

We approximate the quality of design solutions in terms of a weighted sum of design area and design 

delay, while most other related research [26] focuses on area optimization. The cost of a graph G (a 

complete solution) is approximated by 

cost(G) = minM; e M( a x area_cost(G/Mi) + f3 x delay_cost(G/Mi)). 

The constants a and (3, with a, f3 E [0:1] and f3 = 1.0 - a, correspond to the relative importance of 

area versus delay optimization, and are entered as input parameters to CSA by the designer. Mi E M 

corresponds to a direct mapping of the design into hardware components from the given library, where 

a direct mapping means that each operation node is mapped to a different component instance (since 

the sharing of units between operator nodes is taken care of by explicitly creating multi-functional 

operator nodes in the graph G as shown in Section 6.3). The function area_cost(G/M1) corresponds 

to the area cost of the design when using the mapping Mi, while the function delay_cost(G/M1) 

corresponds to the delay cost of the design when using the mapping M1. 

A.2 The Area Cost Function 

We approximate the hardware cost ( area_cost) of design solutions by transistor counts. A significant 

difference to [26] is that our cost function is parameterized by the chosen component library (captured 

by the unit table U). U contains the function op-cost: U x Integer -+ Integer, that maps a unit 

type and its bit width ( u, bw( u)) to a cost value. For units with operators, such as plus, minus, 

and comparison, this function is (bit-width x log(bit-width) X some unit constant). For units with 

multiplication or division operators, the function is (bit-width2 x some unit constant). Since each 

operator node n1 is mapped to a functional unit u E U, the cost of an operator node ni can be 

expressed by op-cost(M1(n1),b) with b the bit-width of ni assuming the mapping Mi. A multi­

functional operator node ni requires a decoder node Vj that captures the function select logic in 

the form of a truth table. Its cost, denoted by decoder-cost( Vj ), corresponds to the number of 

transistors needed to implement the decoding. Interconnection costs are approximated by the cost 

of the decision nodes di E D in the design representation, since a decision node will be mapped 

to either a multiplexor or a bus. Thus, the increased control and wiring complexity that results 

from resource sharing is included in the cost optimization. This is calculated by a piece-wise linear 

function, conn-cost( choices( di), bit - width( di)), which maps the number of choices of a decision 

node di and the bit width of its data operands to a cost value. 

Assuming the mapping Mi of G, the total area cost of a graph G is approXimated by 



+ Lv; E v and Vj is a decoder-node (decoder - cost( Vj)) 

+ Ld; en( conn-cost( choices( di), bw(di))). 

CSA is not concerned with register binding. Thus, the cost of storage elements will be constant over 

all possible designs produced by CSA, and can be ignored in this cost function. 

A.3 The Delay Cost Function 

We approximate the performance ( delay_cost) of design solutions in terms of the maximal delay 

through the design. Our cost function is again parameterized by the chosen component library 

(captured by the unit table U). U contains the function delay: U x Integer --+ Integer, that maps 

a unit type and its bit width ( u, bw( u)) to a delay value. Since each opera.tor node ni is mapped 

to a functional unit u E U by a mapping Mi, the delay of a.n opera.tor node ni can be expressed 

by delay(Mi(ni), bw(ni)) with b the bit-width of ni. A multi-functional opera.tor node ni requires a 

decoder node v; to select the desired function. Its delay, denoted ~y decoder-delay( v; ), corresponds 

to the longest delay pa.th through the decode logic. The interconnection delay is approximated by 

the delay attributed to the decision nodes di E D in the design representation, since a decision 

node will be mapped to either a multiplexor or a bus. The delay of a decision node di, conn­

delay( choices( di), bit - width( di)), is thus a function of the number of its choices and the bit width 

of its data operands. 

Assuming the mapping Mi of G, the total delay cost of a graph G is approximated by 

delay_cost(G/Mi) = maxpathp; ea( 

+ L( v; on p;) and ( v; a decoder-node) (decoder - delay( Vj)) 

+ L(d; on p;) and(d; e D) (conn - delay( choices( d; ), bit - width( d;))) ). 

where Pi is a path in G as defined in Section 3.2. 



B APPENDIX: THE BOUND FUNCTION 

B.1 The Overall Bounding Function 

A bounding function determines a lower bound on the cost of a partial solution, i.e., a lower bound 

on all complete solutions that can be derived from the given compatibility graph via further operator 

merging (Section 6.3). This can then be used to bound the search space of the branch-and-bound 

algorithm. Assume that we associate with each node Gin the search space the value costmin(G) = 

min{ cost(F): Fis a complete and feasible solution node in the subtree of G }, or oo otherwise. Then 

the bounding function, bound(}, must fulfill the following rules [20]: 

Requirement 1: bound(G)::; costmin( G) for all nodes Gin the search tree. 

Requirement 2: bound{G1) :2: bound{G2) if G1 is a child of G2. 

The first requirement states that bound{G) is a lower bound on the cost of any design implemen­

tation of G that can be derived using further operator merging. This guarantees that the bounding 

function is a true lower bound on the cost function, and it ensures that you won't prematurely 

discard any potentially useful solution. The second requirement ensures the monotonicity of the 

bounding function. In other words, the estimated bound of a partial solution is always smaller than 

or equal to the estimated bound of any possible extension of that partial solution. Thus, if you make 

a decision to discard the solution branch based on the current value of the bounding function, then 

the knowledge of any solution further down the search branch would not have proven the current 

decision wrong. If a function fulfills these requirements, then the following is guaranteed: if the lower 

bound on a partial solution cost exceeds any complete solution cost found so far, then the partial 

solution extensions are nonoptimal and may be discarded. 

The definition of the bounding function used by CSA is given next. The function is a weighted 

sum of area and delay bounds of a graph G approximated by 

bound{G) =a x area_bound(G) + f3 x delay_bound{G) 

with a and f3 equal to the relative importance of area versus delay optimization as defined in a 

previous section. The function area_bound(G) is defined to be the bound on the area cost for any 

design implementation of G, while delay_bound{G) is defined to be the bound on the delay cost for 

any design implementation of G. 



B.2 The Area Bounding Function 

The area bounding function, area_bound{), is defined below, while the delay bounding function, 

delay_bound{), is defined in the next section. Let a partial solution G correspond to the compatibility 

graph CG. We denote the minimal cost of implementing an operator node by bound_node_area{), 

i.e., bound_node_area(nj} = minMk E M(op-cost(Mk(nj), bw(nj))). A node n in CG is isolated if no 

compatibility edges are connected with this node. We denote an input decision node of an isolated 

node n by D(n). Let a subgraph of operator nodes connected (not necessarily completely) by 

compatibility edges be called a cluster, and let CLUSTER stand for the set of all maximal clusters 

of CG. An isolated node is not considered to be a cluster of size 1. Denote the size of a cluster c 

by lei. Then define the function ADDON: CLUSTER --t Integer as follows. For c E CLUSTER, if 

there is one node n1 E c with the number of compatibility edges connected to n1 less than lcl - 1, 

then let n2 be a node in c with n1 /; n2 that is not connected to n1 and set ADDON(c) =min ( 

bound_node_area(n1 }, bound_node_area(n2) ). Otherwise ADDON(c) = 0. Then the area bounding 

function, area_bound(), is defined by 

area_bound( G) = Lisolated nodes n;EN(bound_node_area( ni)) 

+ Lisolated nodes n;EN( conn-cost( choices(D( ni)), bw(D( ni)))) 

+Le E CLUSTER( maxnec(bound_node_area(n)) + ADDON(c)). 

This definition of the area bounding function is best explained by an example. 

isolated nodes 

r;A 
~ 

. 

' (;-\ 
~ 

maximal clusters 

..... , 

cost of cost of maximal + cost of min. node of unconnected 
bound= isolated nodes + node in a cluster pair In non-clique cluster 

Figure 14: A Bounding Function Example. 

Example 7 Jn this example we show how the area bounding function is evaluated for the compatibil­

ity graph CG shown in Figure 14. We don't give the associated ECDFG graph, and therefore can only 

bound the operator hardware costs of the partial design. Assume that all operators have a bit width of 



one. Assume the following hardware costs for the ten operator nodes ni: bound_node_area( ni) = 15 

if i is an even number and 10 if i is an odd number for i = 1, ... , 10. Then bound( CG) is calculated 

as follows. Nodes nl and n2 are isolated nodes. Therefore, bound(CG) is incremented by 10 for nl 

and 15 for n2. CG has two maximal clusters, namely, n3 to n5 form one cluster Cl and nodes n6 

to nlO form a second cluster C2. Thus, bound(CG) is incremented by 15 for Cl and by 15 for C2. 

Cluster Cl is a clique, therefore no ADDON is calculated for Cl. C2 is not a clique. Therefore, 

each pair of its nodes that is not connected by compatibility edges will never be mapped to the same 

hardware unit. Let us pick the pair n8 and nlO. Hence, bound(CG) can be increased by the lesser 

cost of the two nodes, which is ADDON(C2) =min ( bound_node_area(n8 ), bound_node_area(n10)) 

= min(15,15} = 15. In total, bound(CG) = 70. 

B.3 The Delay Bounding Jfunction 

The delay bounding function, delay_bound(), is defined below. Again let a partial solution G cor­

respond to the compatibility graph CG. Assume all definitions given above. In addition, we define 

a decision node to be stable if its data inputs are either operator nodes or data access nodes, and 

none of its input operator nodes share compatibility edges among one another. Next, we define the 

function bound_node_delay: V -+ Integer with V the set of vertices of G as follows: 

bound_node_delay( v;) = 

minMk e M( delay( Mk( v; ), bw( Vj))) 
decoder - delay( v;) 

conn - delay( choices( Vj), bw( Vj)) 

0 

Vj EN 
v; EV and 
v; is decoder - node 
v; ED and 
Vj is stable 
otherwise 

with delay(), decoder-delay(), and conn-delay() the delay measures discussed above. We 

use Pi to denote a path in G as defined in Section 3.2. The total delay bound of a graph CG is 

approximated by 

delay_bound(G) = maXp; e a(I:vj onp;(bound_node_delay(vj)))). 

This definition of the delay bounding function is explained by an example below. 

Example 8 In this example we show how the delay bounding function is evaluated on the design 

shown in Figure 8. For this example assume that all operator and decision nodes can be implemented 

with a maximal delay of 2. The decision node d2 is stable because its data input nodes n6 and n1 

are not mergeable with one another, i.e., bound_node_delay(d2)=2. The decision nodes di and d3 are 

however not stable. Consequently, bound_node_delay(d1) = 0 and bound_node_delay(d3) = 0. The 

delay bounding function therefore returns the maximum path delay value of 4 based on the paths < 



ns, d2 > and< n1, d2 >. The cost function, on the other hand, would return the maximum path 

delay value of 6 by counting in the decision nodes di and d3 on the paths < n3, d3, di > and < n4 , 

d3, di >, if the design were complete. 

B.4 The Correctness Of The Bounding Function 

Before proofing the correctness of the bounding function, we will explain the interplay between the 

area and delay bounding functions via an example. In Figure 15, the X-axis measures the area and 

the Y-axis the delay of designs. Let the point PD with the coordinates (Ax, Dx) correspond to a 

partial design with area_bound(PD}=Ax and delay_bound(PD}=Dx. Then the bounding function for 

the partial design PD will result in the point PD', with bound(PD) =a x Ax + f3 x Dx. This 

point PD' indicates that all solutions derivable by CSA from the partial solution PD will be in 

the solution space in the top-right shaded area above the point PD'. This then implies the cutoff 

function a x Ax + f3 X Dx = a x X + /3 x Y, depicted by a dark diagonal line in the figure. To 

the left of the line are all design solutions which are at least as good as PD' or better. Therefore if 

CSA finds one complete solution to the left of the cutoff line then the partial solution PD and with 

it all solutions derivable from PD can be discarded. 
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Figure 15: Bounding Function for the Area/Delay Trade-off. 



In the following, we first show that the area bounding function is a true lower bound on the area 

cost function and that the delay bounding function is a true lower bound on the delay cost function. 

These two proofs can then be used to show that the total bounding function, bound(}, is a true lower 

bound on the total cost function, cost(). 

B.4.1 The Correctness of the Area Bounding Function 

Theorem 1 The area_bound(} function i~ a lower bound on the area_cost() function. 

Proof: Below, we show that the area_bound(} function fulfills the two bounding requirements given 

above, and therefore is a true lower bound on the area_cost() function. 

Requirement 1: area_bound(G) ~ area_costmin( G). 

The bound function meets this requirement for the following reasons. No further merging and 

therefore no further cost improvement is possible for isolated nodes. Therefore the first two terms 

of the area_bound(} function correspond to the area cost of all isolated nodes and their connections. 

To get a tighter bound, we add the third term to the area_bou~d function. This term corresponds 

to the area cost of the most expensive unit within each cluster. This utilizes the following fact: for 

two operator nodes nl and n2, if nl implements a subset of functions of n2 then there is a mapping 

Mi, such that, functionality(Mi(n1)) ~ functionality(Mi(n2)) and op-cost(Mi(n1),bw(n1)) ~ 

op-cost( Mi( n2), bw( n2)). In short, adding more functions to an operator node cannot decrease its 

area cost. If the cluster is a clique then all operators within t1!-e cluster might be mapped to the 

same hardware unit component (given favorable costs of the multi-functional unit) and thus the cost 

cannot be further bounded. If the cluster is not a clique then the bounding function is increased 

by another term, called ADDON. This is so, since such a cluster will be mapped to two or more 

components. q.e.d. 

Requirement 2: area_bound(G2} 2: area_bound{G1} if G2 is a child of G1. 

It can easily be seen that each further merge of operator nodes can only increase the area bound 

of a design. This implies that the bounding function also preserves this monotonicity princip~:e.d. 

B.4.2 The Correctness of the Delay Bounding Function 

Theorem 2 The delay_bound(} function is a lower bound on the delay_cost() function. 



Proof: Below, we show that the delay_bound(} function fulfills the two bounding requirements given 

above, and therefore is a true lower bound on the delay_cost() function. 

Requirement 1: delay_bound(G) ~ delay_costmin( G). 

The bound function meets the first requirement for the following reasons. No reduction and 

therefore no further delay improvement is possible for stable decision nodes. It is however possible 

that due to operator merging non-stable decision nodes can be optimized away. For this reason, the 

delay bound function considers only the delay of stable interconnection units while the delay cost 

function accounts for the delay of all interconnection units. On the other hand, the delay bound 

function includes the delays of all operator nodes. This is based on the following assumption: for 

two operator nodes nl and n2, if nl implements a subset of functions of n2 then there is a mapping 

Mi, such that, delay(Mi(n1),bw(n1)) ~ delay(Mi(n2),bw(n2)). Or short, adding more functions 

to an operator node cannot decrease its delay. This implies that if two operator nodes n1 and n2 

are merged into one operator node n, then the delay of the new node is larger or equal to the 

delay of either of the two original nodes, i.e., max( bound_node_delay(n1), bound_node_delay(n2)) ~ 

bound_node_delay(n). The merged node n would then lie on both nl's and n2's original paths, and 

hence the delay bound may increase but not decrease due to operator merging. q.e.d. 

Requirement 2: delay_bound{G2) ~ delay_bound{G1) if G2 is a child of Gt. 

The principle that more complex multi-functional operator nodes have larger or equal delays to 

simpler operator nodes implies that the bound on the delay of operator nodes can only be increased 

due to operator merging. Similarly, decision nodes may become stable due to operator merging, which 

may further increase the delay cost. Consequently, the bounding function preserves this monotonicity 

requirement. 

q.e.d. 

B.4.3 The Correctness of the Total Bounding Function 

Theorem 3 The bound(} function is a true lower bound on the cost() function. 

Proof: In this proof, we show that the boimd(} function fulfills the two bounding requirements given 

above, and thus, is a true lower bound on the cost() function. 

Requirement 1: bound(G) ~ costmin(G). 

bound{G) 

=a x area_bound(G) + (3 x delay_bound(G) 



:::; a X area_ bound.min { G) + /3 X delay_boundmin { G) 

:::; costmin {G ). 
q.e.d. 

Step 2 of the proof is based on the fact that the area_bound{G) is a bound on the area cost for 

any design implementation of G (Theorem 1) and that delay_bound(G) is a bound on the delay cost 

for any design implementation of G (Theorem 2). Step 3 utilizes the fact depicted in Figure 15, 

namely, that any complete solution derived from G will at best have both the smallest area and the 

smallest delay. 

Requirement 2: bound{G1) ~ bound{G2) if G1 is a child of G2. 

bound{G2) 

= a x area_bound{G2) + f3 X delay_bound{G2) 

:::; a x area_bound{G1) + f3 x delay_bound(G1) 

= bound{G1). 
q.e.d. 

Step 2 of the proof uses the fact that the functions area_bound{) and delay_bound{) have been 

shown to preserve the monotonicity requirement in Theorems 1 and 2, respectively. 
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