
HAL Id: hal-00619579
https://hal.science/hal-00619579v1

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data compression using antidictionaries
Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi

To cite this version:
Maxime Crochemore, Filippo Mignosi, Antonio Restivo, Sergio Salemi. Data compression using an-
tidictionaries. Proceedings of the I.E.E.E., 2000, 88 (11), pp.1756-1768. �10.1109/5.892711�. �hal-
00619579�

https://hal.science/hal-00619579v1
https://hal.archives-ouvertes.fr

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 180Data Compression Using AntiditionariesM. Crohemore , F. Mignosi , A. Restivo , S. SalemiAbstrat|We give a new text ompression sheme basedon Forbidden Words ("antiditionary"). We prove that ouralgorithms attain the entropy for balaned binary soures.They run in linear time. Moreover, one of the main advan-tages of this approah is that it produes very fast deom-pressors. A seond advantage is a synhronization propertythat is helpful to searh ompressed data and allows paral-lel ompression. The tehniques used in this paper are fromInformation Theory and Finite Automata.Keywords| Data Compression, Lossless ompression, In-formation Theory, Finite Automaton, Forbidden Word, Pat-tern Mathing. I. IntrodutionWE present a simple text ompression method alledDCA (Data Compression with Antiditionaries)that uses some \negative" information about the text,whih is desribed in terms of antiditionaries. In on-trast to other methods that make use, as a main tool, ofditionaries, i.e., partiular sets of words ourring as fa-tors in the text (f. [1℄, [2℄, [3℄, [4℄ and [5℄), our methodtakes advantage of words that do not our as fators inthe text, i.e., that are forbidden. Suh sets of words arealled here antiditionaries.We desribe a stati ompression sheme that runs inlinear time (Setions II and III) inluding the onstrutionof antiditionaries (Setion V and Setion VI). Variationsusing statistial or dynamial onsiderations are disussedin the onlusion (Setion VII)Let w be a text on the binary alphabet f0; 1g and letAD be an antiditionary for w. By reading the text w fromleft to right, if at a ertain moment the urrent pre�x v ofthe text has as suÆx a word u0 suh that u = u0a 2 ADwith a 2 f0; 1g, i.e., u is forbidden, then surely the letterfollowing v in the text annot be a and, sine the alpha-bet is binary, it is the letter b 6= a. In other terms, weknow in advane the next letter b, that turns out to beredundant or preditable. The main idea of our methodis to eliminate redundant letters in order to ahieve om-pression. The deoding algorithm reovers the text w byDCA URL is http://www-igm.univ-mlv.fr/�ma/DCA.htmlM. Crohemore, Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Frane. E-mail: Maxime.Crohemore�univ-mlv.fr.F. Mignosi, Universit�a degli Studi di Palermo, Italy and Bran-deis University, U.S.A. E-mail: mignosi�altair.math.unipa.it andmignosi�s.brandeis.edu. Work partially supported by the CNR-NATO fellowship n. 215.31 and by the projet \Modelli innovativi dialolo: metodi sintattii e ombinatori" MURST, Italy.A. Restivo, Universit�a degli Studi di Palermo, Italy. E-mail:restivo�altair.math.unipa.it. Work partially supported by the pro-jet \Modelli innovativi di alolo: metodi sintattii e ombinatori"MURST, Italy.S. Salemi, Universit�a degli Studi di Palermo, Italy. E-mail: sale-mi�altair.math.unipa.it. Work partially supported by the projet\Modelli innovativi di alolo: metodi sintattii e ombinatori"MURST, Italy.

prediting the letter following the urrent pre�x v of walready deompressed.The method proposed here presents some analogies withideas disussed by C. Shannon at the very beginning ofInformation Theory. In [6℄ Shannon designed psyholog-ial experiments in order to evaluate the entropy of En-glish. One of suh experiments was about the human abil-ity to reonstrut an English text where some haraterswere erased. Atually our ompression method erases someharaters and the deompression reonstrut them.We prove (Setion IV) that the ompression rate of ourompressor reahes the entropy almost surely, providedthat the soure is balaned and produed from a �nite an-tiditionary. This type of soure approximates a large lassof soures, and onsequently, a variant of the basi shemegives an optimal ompression for them. The idea of usingantiditionaries is founded on the fat that there exists atopologial invariant for Dynamial Systems based on for-bidden words, invariant that is independent of the entropy(f. [7℄ and [8℄).The use of the antiditionary AD in oding and deodingalgorithms requires that AD must be strutured in order toanswer to the following query on a word v: does there ex-ists a word u = u0a, a 2 f0; 1g, in AD suh that u0 isa suÆx of v? In the ase of positive answer the outputshould also inlude the letter b de�ned by b 6= a. One ofthe main features of our method is that we are able to im-plement eÆiently �nite antiditionaries in terms of �niteautomata. This leads to fast linear-time ompression anddeompression algorithms that an be realized by sequen-tial transduers (generalized sequential mahines). This isespeially relevant for �xed soures. It is then omparableto the fastest ompression methods beause the basi oper-ation at ompression and deompression time is just tablelookup.A entral notion of the present method is that of minimalforbidden words, whih allows to redue the size of anti-ditionaries. This notion has also some interesting ombi-natorial properties. Our ompression method inludes al-gorithms to ompute antiditionaries, algorithms that arebased on the above ombinatorial properties and that aredesribed in detail in [9℄ and [10℄.The ompression method shares also an interesting syn-hronization property, in the ase of �nite antiditionaries.It states that the enoding of a blok of data does not de-pend on the left and right ontexts exept for a limited-sizepre�x of the enoded blok. This is also helpful to searhompressed data and the same property allows to designeÆient parallel ompression algorithms.The paper is organized as follows.In Setion II we give the de�nition of Forbidden Wordsand of antiditionaries. We desribe DCA, our text om-

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 181pression and deompression algorithms (binary oriented)assuming that the antiditionary is given. In Setion IIIwe desribe a data struture for �nite antiditionaries thatallows us to answer in an eÆient way the queries need-ed by our ompression and deompression algorithms; weshow how to implement it given a �nite antiditionary. Inthe ase of rational antiditionaries the ompression is al-so desribed in terms of transduers. We end the setionby proving the synhronization property. In Setion IVwe evaluate the ompression rate of our ompression al-gorithm relative to a given antiditionary. In Setion Vwe show how to onstrut antiditionaries for single wordsand soures. As a onsequene we obtain a family of lin-ear time optimal algorithms for text ompression that areuniversal for balaned Markov soures with �nite memo-ry. In Setion VI we give linear time improved algorithmsfor building antiditionaries for a stati approah. Theyuse the ideas of pruning and self-ompressing. We disussimprovements and generalizations in Setion VII.Some of the results present in this paper have been su-intly stated in [11℄.II. Basi AlgorithmsLet us �rst introdue the main ideas of our algorithmon its stati version. We disuss variations of this �rstapproah in Setion VII.Let w be a �nite binary word and let F (w) be the set offators of w. For instane, if w = 01001010 then F (w) =f"; 0; 1; 00; 01; 10; 001; 010; : : : ; 01001010g where " denotesthe empty word.Let us take some words in the omplement of F (w), i.e.,let us take some words that are not fators of w and thatwe all forbidden. This set of suh words AD is alled anantiditionary for the language F (w). Antiditionaries anbe �nite as well in�nite. For instane, if w = 01001010the words 11, 000, and 10101 are forbidden and the setf11; 000; 10101g is an antiditionary for F (w). For in-stane, if w1 = 001001001001 the in�nite set of all wordsthat have two 1's as i-th and as i+2-th letter for some in-teger i, is an antiditionary for w1. We want here to stressthat an antiditionary an be any subset of the omple-ment of F (w). Therefore an antiditionary an be de�nedby any property that onerns words.The ompression algorithm treats the input word in anon-line manner. At a ertain step in this proess we haveread the word v proper pre�x of w. If there exists any wordu = u0a, a 2 f0; 1g, in the antiditionary AD suh that u0 isa suÆx of v, then surely the letter following v annot be a,i.e., the next letter is b, b 6= a. In other words, we know inadvane the next letter b that turns out to be \redundant"or preditable. Remark that this argument works only inthe ase of binary alphabets.The main idea in the algorithm we desribe is to elim-inate redundant letters. In what follows we �rst desribethe ompression algorithm, Enoder, and then the de-ompression algorithm, Deoder. The word to be om-pressed is noted w = a1 � � �an and its ompressed versionis denoted by (w).

Enoder (antiditionary AD, word w 2 f0; 1g�)1. v "; ";2. for a �rst to last letter of w3. if for every suÆx u0 of v, u00;u01 62 AD4. :a;5. v v:a;6. return (jvj,);As an example, let us run the algorithm Enoder onthe string w = 01001010 with the antiditionary AD =f000; 10101; 11g. The steps of the treatment are de-sribed in the next array by the urrent values of the pre�xvi = a1 � � �ai of w that has been just onsidered and of theoutput (w). In the ase of positive answer to the query tothe antiditionary AD, the array also indiates the value ofthe orresponding forbidden word u. The number of timesthe answer is positive in a run orresponds to the numberof bits erased." (w) = "v1 = 0 (w) = 0v2 = 01 (w) = 01 u = 11 2 ADv3 = 010 (w) = 01v4 = 0100 (w) = 010 u = 000 2 ADv5 = 01001 (w) = 010 u = 11 2 ADv6 = 010010 (w) = 010v7 = 0100101 (w) = 0101 u = 11 2 ADv8 = 01001010 (w) = 0101 u = 10101 2 ADv9 = 010010100 (w) = 0101 u = 000 2 ADv10 = 0100101001 (w) = 0101 u = 11 2 ADRemark that the funtion is not injetive.For instane (01) = (010) = 01.In order to have an injetive mapping we an onsid-er the funtion 0(w) = (jwj; (w)). In this ase we anreonstrut the original word w from both 0(w) and theantiditionary.The deoding algorithm works as follow. The om-pressed word is (w) = b1 � � � bh and the length of w isn. The algorithm reovers the word w by prediting theletter following the urrent pre�x v of w already deom-pressed. If there exists one word u = u0a, a 2 f0; 1g, in theantiditionary AD suh that u0 is a suÆx of v, then, theoutput letter is b, b 6= a. Otherwise, the next letter is readfrom the input .Deoder (antiditionary AD, word 2 f0; 1g�,integer n)1. v ";2. while jvj < n3. if for some u0 suÆx of v and a 2 f0; 1g, u0abelongs to AD4. v v � :a;5. else6. b next letter of ;7. v v � b;8. return (v);The antiditionary AD must be strutured in order to an-swer to the following query on a word v: does there exist

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 182one word u = u0a, a 2 f0; 1g, in AD suh that u0 is a suÆxof v? In ase of a positive answer the output should alsoinlude the letter b de�ned by b 6= a. Notie that the lettera onsidered at line 3 is unique beause, at this point, theend of the text w has not been reahed so far.In this approah, where the antiditionary is stati andavailable to both the enoder and the deoder, the enodermust send to the deoder the length of the word jwj, inaddition to the ompressed word (w), in order to give tothe deoder a \stop" riterion. Slight variations of the pre-vious ompression-deompression algorithm an be easilyobtained by giving other \stop" riteria: For instane, theenoder an send the number of letters that the deoder hasto reonstrut after that the last letter of the ompressedword (w) has been read. Or the enoder an let the de-oder stop when there is no more letter available in (line6), or when both letters are impossible to be reonstrutedaording to AD. Doing so, the enoder must send to thedeoder the number of letters to erase in order to reoverthe original message. For suh variations antiditionariesan be strutured to answer slightly more omplex queries.Sine we are onsidering here the stati ase, the enodermust send to the deoder the antiditionary unless the de-oder has already a opy of the antiditionary or it hasan algorithmi way to reonstrut the antiditionary fromsome previously aquired information.The method presented here brings to mind some ideasproposed by C. Shannon at the very beginning of Informa-tion Theory. In [6℄ Shannon designed psyhologial exper-iments in order to evaluate the entropy of English. One ofsuh experiments was about the human ability to reon-strut an English text where some haraters were erased.Atually our ompression methods erases some haratersand the deompression reonstrut them. For instane inprevious example the input string is 01�00�1�01�0�0�1, wherebars indiate whih letters are erased during the ompres-sion.In order to get good ompression rates (at least in thestati approah when the antiditionary has to be sent) weneed to minimize in partiular the size of the antiditionary.Remark that if there exists a forbidden word u = u0a,a 2 f0; 1g in the antiditionary suh that u0 is also for-bidden then our algorithm will never use this word u inthe algorithms. So that we an erase this word from theantiditionary without any loss for the ompression of w.This argument leads to onsider the notion of minimal for-bidden word with respet to a fatorial language L, and thenotion of anti-fatorial language, points that are disussedin the next setion.III. Implementation of Finite AntiditionariesWhen the antiditionary is a �nite set, the queries on theantiditionary required by the algorithms of the previoussetion are realized as follows. We build a deterministiautomaton aepting the words having no fator in the an-tiditionary. Then, while reading the text to enode, if atransition leads to a sink state, the output is the other let-ter. We denote by A(AD) the automaton built from the

antiditionary AD. An algorithm to build A(AD) is de-sribed in [9℄ and [10℄. The same onstrution has beendisovered by Cho�rut et al. [12℄, it is similar to a desrip-tion given by Aho and Corasik ([13℄, see [14℄), by Diekertet al. [15℄, and it is related to a more general onstrutiongiven in [16℄.The required automaton aepts a fatorial language L.Reall that a language L is fatorial if L satis�es the fol-lowing property: for any words, u, v, uv 2 L) u 2 Land v 2 L. The omplement language L = A� n L is a(two-sided) ideal of A�. Denoting by MF (L) the base ofthis ideal, we have L = A�MF (L)A�. The set MF (L) isalled the set of minimal forbidden words for L. A wordv 2 A� is forbidden for the fatorial language L if v 62 L,whih is equivalent to say that v ours in no word of L.In addition, v is minimal if it has no proper fator that isforbidden.One an note that the set MF (L) uniquely haraterizesL, just beause L = A� n A�MF (L)A�: This set MF (L)is an anti-fatorial language or a fator ode, whih meansthat it satis�es: 8u; v 2 MF (L); u 6= v =) u is not a fatorof v, property that omes from the minimality of words ofMF (L). Indeed, there is a duality between fatorial andanti-fatorial languages, beause we also have the equality:MF (L) = AL\LA\(A�nL): In view of the remark made atthe end of the previous setion, from now on in the paperwe onsider only antiditionaries that onsist of minimalforbidden words. Thus they are anti-fatorial languages.Figure 1 displays the trie that aepts the anti-fatoriallanguage AD = f000; 10101; 11g. The automaton pro-dued from the trie is shown in Figure 2.m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1����R1Fig. 1. Trie of the fator ode f000; 10101; 11g. Squares representterminal states.The following theorem is proved in [10℄. It is based onan algorithm alled L-automaton that has as (�nite) in-put AD in the form of a trie T . It is straigthforward toget T if AD is given in the form of a list of words. Thealgorithm an be adapted to test whether T represents ananti-fatorial set, to generate the trie of the anti-fatoriallanguage assoiated with a set of words, or even to buildthe automaton assoiated with the anti-fatorial languageorresponding to any set of words.Theorem 1: The onstrution of A(AD) from T an berealized in linear time.We report here, for sake of ompleteness, the algorithmL-automaton desribed in [10℄. Its input, the trie T thatrepresents AD, is a tree-like automaton aepting the set

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 183m1 m2 3m0 m4 m5 m6 m7 89�����0 -0 -0-1 -0 -1 -0 -1����R1 ����	 1?1 ����	 1 60 HHHHHHHHHY 0� �	�0,1 � �	�0,1

 	��0,1Fig. 2. Automaton aepting the words that avoid the setf000; 10101; 11g. Squares represent non-terminal states (sink s-tates).AD and, as suh, it is noted (Q;A; i; T; Æ0). The set T ofterminal states is the set of leaves of the trie.The algorithm uses a funtion f alled a failure funtionand de�ned on states of T as follows. States of the trie Tare identi�ed with the pre�xes of words in AD. For a stateau (a 2 A, u 2 A�), f(au) is the longest suÆx of u that is astate of the trie T , a word that may happen to be u itself.This state is also Æ(i; u), where Æ is the transition funtionof A(AD), and this an be easily proved by indution onthe length of u. Note that f(i) is unde�ned, whih justi�esa spei� treatment of the initial state in the algorithm.L-automaton (trie T = (Q;A; i; T; Æ0))1. for eah a 2 A2. if Æ0(i; a) de�ned3. Æ(i; a) Æ0(i; a);4. f(Æ(i; a)) i;5. else6. Æ(i; a) i;7. for eah state p 2 Q n fig in width-�rstsearh and eah a 2 A8. if Æ0(p; a) de�ned9. Æ(p; a) Æ0(p; a);10. f(Æ(p; a)) Æ(f(p); a);11. else if p 62 T12. Æ(p; a) Æ(f(p); a);13. else14. Æ(p; a) p;15. return (Q;A; i;Q n T; Æ);A. TransduersFrom the automaton A(AD) we an easily onstrut a(�nite-state) transduer B(AD) that realizes the ompres-sion algorithm Enoder, i.e., that omputes the funtion. The input part of B(AD) oinides with A(AD), withsink states removed, and the output is given as follows: ifa state of A(AD) has two outgoing edges, then the outputlabels of these edges oinide with their input label; if astate of A(AD) has only one outgoing edge, then the out-put label of this edge is the empty word. The transduerB(AD) works as follows on an input string w. Considerthe (unique) path in B(AD) orresponding to w. The let-

ters of w that orrespond to an edge that is the uniqueoutgoing edge of a given state are erased; other letters areunhanged.We an then state the following theorem.Theorem 2: Algorithm Enoder an be realized by asequential transduer (generalized sequential mahine).Conerning the algorithm Deoder, remark (see Se-tion II) that the funtion is not injetive and that weneed some additional information, for instane the lengthof the original unompressed word, in order to reonstrutit without ambiguity. Therefore, Deoder an be realizedby the same transduer as above, by interhanging inputand output labels (denote it by B0(AD)), with a supple-mentary instrution to stop the deoding.Let Q = Q1 [Q2 be a partition of the set of statesQ, where Qj is the set of states having j outgoing edges(j = 1; 2). For any q 2 Q1, de�ne p(q) = (q; q1; : : : ; qr) asthe unique path in the transduer for whih qh 2 Q1 forh < r and qr 2 Q2.Given an input word v = b1b2 : : : bm, there exists inB0(AD) a unique path i; q1; : : : ; qm0 suh that qm0�1 2 Q2and the transition from qm0�1 to qm0 orrespond to theinput letter bm. If qm0 2 Q2, then the output word orre-sponding to this path in B0(AD) is the unique word w suhthat (w) = v. If qm0 2 Q1, then we an stop the deodingalgorithm realized by B0(AD) in any state q 2 p(qm0), and,for di�erent states, we obtain di�erent deodings. So weneed supplementary information (for instane, the length ofthe original unompressed word) to perform the deoding.In this sense we an say that B0(AD) realizes sequentiallythe algorithm Deoder (f. also [17℄).The onstrutions and the results given above on �niteantiditionaries and transduers an be generalized also tothe ase of rational antiditionaries, or, equivalently, whenthe set of words \produed by the soure" is a regular (ra-tional) language. In these ases it is not, in a strit sense,neessary to introdue expliitly antiditionaries and al-l the methods an be presented in terms of automata andtransduers, as above. Remark however that the presenta-tion given in Setion II in terms of antiditionaries is moregeneral, sine it inludes the non rational ase. Moreover,even in the �nite ase, the onstrution of automata andtransduers from a �xed text, given in the next setion,makes an expliit use of the notion of minimal forbiddenwords and of antiditionaries.B. A Synhronization PropertyIn the sequel we prove a synhronization property ofautomata built from �nite antiditionaries, as desribedabove. This property also \haraterizes" in some sense�nite antiditionaries. This property is a lassial one andit is of fundamental importane in pratial appliations.De�nition 1: Given a deterministi �nite automatonA, we say that a word w = a1 � � � ak is synhronizingfor A if, whenever w represents the label of two paths(q1; a1; q2) � � � (qk; ak; qk+1) and (q01; a1; q02) � � � (q0k; ak; q0k+1)of length k, then the two ending states qk+1 and q0k+1 areequal.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 184If L(A) is fatorial, any word that does not belong toL(A) is synhronizing. Clearly in this ase synhronizingwords in L(A) are muh more interesting. Remark alsothat, sine A is deterministi, if w is synhronizing for A,then any word w0 = wv that has w as pre�x is also syn-hronizing for A.De�nition 2: A deterministi �nite automaton A is loalif there exists an integer k suh that any word of length kis synhronizing. Automaton A is also alled k-loal.Remark that if A is k-loal then it ism-loal for anym � k.Given a �nite antifatorial language AD, let A(AD) bethe automaton assoiated with AD that reognizes the lan-guage L(AD). Let us eliminate the sink states and edgesgoing to them. Sine there is no possibility of misunder-standing, we denote the resulting automaton by A(AD)again. Notie that it has no sink state, that all states areterminal, and that L(A(AD)) is fatorial.Theorem 3: Let AD be a �nite antifatorial antidi-tionary and let k be the length of the longest word in AD.Then automaton A(AD) assoiated to AD is (k � 1)-loal.Proof: Let u = a1 � � � an�1 be a word of lengthn� 1. We have to prove that u is synhronizing. Supposethat there exist two paths (q1; a1; q2) � � � (qn�1; an�1; qn)and (q01; a1; q02) � � � (q0n�1; an�1; q0n) of length n � 1 labeledby u. We have to prove that the two ending states qn andq0n are equal. Reall that states of A are words, and, morepreisely they are the proper pre�xes of words in AD. Asimple indution on i, 1 � i � n shows that qi (respetivelyq0i) \is" the longest suÆx of the word q1a1 � � � ai (respetive-ly q01a1 � � � ai) that is also a \state", i.e., a proper pre�x ofa word in AD. Hene qn (respetively q0n) is the longest suf-�x of the word q1u (respetively q01u) that is also a properpre�x of a word in AD. Sine all proper pre�xes of words inAD have length at most n� 1, both qn and q0n have lengthat most n� 1. Sine u has length n� 1, both they are thelongest suÆx of u that is also a proper pre�x of a word inAD, i.e., they are equal.In other terms, the theorem says that only the last k �1 bits matter for determining whether AD is avoided ornot. The theorem admits a \onverse" that shows thatloality haraterizes in some sense �nite antiditionaries(f. Propositions 2.8 and 2.14 of [18℄).Theorem 4: If automaton A is loal and L(A) is a fa-torial language then there exists a �nite antifatorial lan-guage AD suh that L(A) = L(AD).Let AD be an antifatorial antiditionary and let k be thelength of the longest word in AD. Let also w = w1uvw2 2L(AD) with juj = k� 1 and let (w) = y1y2y3 be the wordprodued by our enoder of Setion II with input AD andw. The word y1 is the word produed by our enoder afterproessing w1u, the word y2 is the word produed by ourenoder after proessing v and the word y3 is the wordprodued by our enoder after proessing w2.The proof of next theorem is an easy onsequene ofprevious de�nitions and of the statement of Theorem 3.Theorem 5: The word y2 depends only on the word uvand it does not depend on the ontexts of it, w1 and w2.

The property stated in the theorem has an interestingonsequene for the design of pattern mathing algorithmson words ompressed by the algorithm Enoder. It im-plies that to searh the ompressed word for a pattern, itis not neessary to deode the whole word. Just a limitedleft ontext of an ourrene of the pattern needs to beproessed. The same property allows the design of highlyparallelizable ompression algorithms. The idea is that theompression an be performed independently and in par-allel on any blok of data. If the text to be ompressed isparsed into bloks of data in suh a way that eah blokoverlaps the next blok by a length not smaller than thelength of the longest word in the antiditionary, then it ispossible to run the whole ompression proess in parallel.IV. EffiienyIn this setion we evaluate the eÆieny of our ompres-sion algorithm relatively to a soure orresponding to the�nite antiditionary AD.Indeed, the antiditionary AD naturally de�nes a soureS(AD) in the following way. Let A(AD) be the automa-ton onstruted in the previous setion with no sink statesand reognizing the fatorial language L(AD) (all states areterminal). To avoid trivial ases, we suppose that in thisautomaton all the states have at least one outgoing edge.Reall that sine our algorithms work on a binary alphabet,all states have at most two outgoing edges.For any state of A(AD) with only one outgoing edge wegive to this edge probability 1. For any state of A(AD)with two outgoing edge we give to these edges probabili-ty 1=2. This de�nes a deterministi (or uni�lar, f. [19℄)Markov soure, denoted S(AD). Notie also that, by The-orem 3, that S(AD) is a Markov soure of �nite order or�nite memory (f. [19℄). We all a binary Markov sourewith this probability distribution an balaned soure.Remark that our ompression algorithm is de�ned exat-ly for all the words \emitted" by S(AD).In what follows we suppose that the graph of the soureS, i.e., the graph of automaton A(AD), is strongly onnet-ed. The results that we prove an be extended to the gen-eral ase by using standard tehniques of Markov Chains(f. [19℄, [20℄, [21℄ and [22℄). Reall (f. Theorem 6.4.2of [19℄) that the entropy H(S) of a deterministi Markovsoure S is H(S) = ��ni;j=1�ii;j log2(i;j); where (i;j) isthe stohasti matrix of S and (�1; � � � ; �n) is the stationarydistribution of S.We now state three lemmas.Lemma 1: The entropy of a balaned soure S is givenby H(S) = �i2D�i where D is the set of all states thathave two outgoing edges.Proof: By de�nitionH(S) = ��ni;j=1�ii;j log2(i;j):If i is a state with only one outgoing edge, by de�nitionthis edge must have probability 1. Then �j�ii;j log2(i;j)redues to �i log2(1), that is equal to 0. HeneH(S) = ��i2D�nj=1�ii;j log2(i;j):

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 185Sine from eah i 2 D there are exatly two outgoingedges having eah probability 1=2, one hasH(S) = ��i2D2�i(1=2) log2(1=2) = �i2D�ias stated.Lemma 2: Let w = a1 � � � am be a word in L(AD) and letq1 � � � qm+1 be the sequene of states in the path determinedby w in A(AD) starting from the initial state. The lengthof (w) is equal to the number of states qi, i = 1; : : : ;m,that belong to D, where D is the set of all states that havetwo outgoing edges.Proof: The statement is straightforward from thedesription of the ompression algorithm and the imple-mentation of the antiditionary with automaton A(AD).Through a well-known results on \large deviations" (f.Problem IX.6.7 of [23℄), we get a kind of optimality of theompression sheme.Let q= q1; � � � qm be the sequene of m states of a path ofA(AD) and let Lm;i(q) be the frequeny of state qi in thissequene, i.e., Lm;i(q) = mi=m, where mi is the numberof ourrenes of qi in the sequenes q. Let also Xm(�) =f q j q has m states and maxi jLm;i(q)� �ij � �g; whereq represents a sequene of m states of a path in A(AD).In other words, Xm(�) is the set of all sequenes of statesrepresenting path in A(AD) that \deviate" at least of � inat least one state qi from the theoretial frequeny �i.Lemma 3: For any � > 0, the set Xm(�) satis�es theequality lim 1m log2Pr(Xm(�)) = �(�); where (�) is a posi-tive onstant depending on �.We now state the main theorem of this setion. Theproof of it uses the three previous lemmas. It states thatfor any � the probability that the ompression rate �(v) =j(v)j=jvj of a string of length n is greater thanH(S(AD))+�, goes exponentially to zero. Hene, as a orollary, almostsurely the ompression rate of an in�nite sequene emittedby S(AD) reahes the entropy H(S(AD)), that is the bestpossible result.Theorem 6: Let Km(�) be the set of words w of lengthmsuh that the ompression rate �(v) = j(v)j=jvj is greaterthan H(S(AD))+�. For any � > 0 there exist a real numberr(�), 0 < r(�) < 1, and an integer m(�) suh that for anym > m(�), Pr(Km(�)) � r(�)m:Proof: Let w be a word of length m in the languageL(AD) and let q1; � � � ; qm+1 be the sequene of states in thepath determined by w in A(AD) starting from the initialstate. Let q= (q1; � � � ; qm) be the sequene of the �rst mstates. We know, by Lemma 2, that the length of (w)is equal to the number of states qi, i = 1 � � �m, in q thatbelong to D, where D is the set of all states having twooutgoing edges.If w belongs toKm(�), i.e., if the ompression rate �(v) =j(v)j=jvj is greater than H(S(AD)) + �, then there mustexists an index j suh that Lm;j(q) > �j + �=jDj. In fat,if for all j, Lm;j(q) � �j + �=jDj then, by de�nitions andby Lemma 1,�(v) = �j2DLm;j(q) � �j2D�j + � = H(S(AD)) + �;

a ontradition. Therefore the sequene of states q belongsto Xm(�=d). Hene Pr(Km(�)) � Pr(Xm(�=d)).By Lemma 3, there exists an integer m(�) suh that forany m > m(�) one has1m log2Pr(Xm(�d)) � �12(�d):Then Pr(Km(�)) � 2�(1=2)(�=d)m. If we set r(�) =2�(1=2)(�=d), the statement of the theorem follows.Theorem 7: The ompression rate �(x) of an in�nite se-quene x emitted by the soure S(AD) reahes the entropyH(S(AD)) almost surely.V. How to build AntiditionariesIn pratial appliations the antiditionary might not begiven a priori but it must be derived either from the textto be ompressed or from a family of texts belonging to theassumed soure of the text to be ompressed.There exist several riteria to build eÆient antidi-tionaries, depending on di�erent aspets or parameters thatone wishes to optimize in the ompression proess. Eahriterion gives rise to di�erent algorithms and implementa-tions.All our methods to build antiditionaries are based ondata strutures to store fators of words, suh as suÆxtries, suÆx trees, DAWGs, and suÆx and fator automata(see for instane Theorem 15 in [10℄). In these strutures,it is possible to onsider a notion of suÆx link. This linkis essential to design eÆient algorithms to build represen-tations of sets of minimal forbidden words in term of triesor trees. This approah leads to onstrution algorithm-s that run in linear time in the length of the text to beompressed.A rough solution to ontrol the size of antiditionariesis obviously to bound the length of words in the antidi-tionary. A better solution in the stati ompression shemeis to prune the trie of the antiditionary with a riterionbased on the tradeo� between the spae of the trie to besent and the gain in ompression, this will be developed innext setion. However, the �rst solution is enough to getompression rates that reah asymptotially the entropyfor balaned soures, even if this is not true for generalsoures. Both solutions an be designed to run in lineartime.We present in this setion a very simple onstrution tobuild �nite antiditionaries of a �nite word w. It is thebase on whih several variations are developed. The idea isto build the automaton aepting the words having samefators of w of length k and, from this, to build the setof minimal forbidden words of length k of the word w. Itan be used as a �rst step to build antiditionaries for �xedsoures. In this ase our sheme an be onsidered as a stepfor a ompressor generator (ompressor ompiler). In thedesign of a ompressor generator, or ompressor ompiler,statistial onsiderations and the possibility of making "er-rors" in prediting the next letter play an important role,as disussed in Setion VII.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 186Algorithm Build-AD desribed hereafter builds the setof minimal forbidden words of length k (k > 0) of the wordw. It takes as input an automaton aepting the wordsthat have the same fators of length k (or less) as w, i.e.,aepting the languageLk = fx 2 f0; 1g� j (u 2 F (x) and juj � k)) u 2 F (w)g:The preproessing of the automaton is done by the al-gorithm Build-Fat whose entral operation is desribedby the funtion Next.Build-Fat (word w 2 f0; 1g�, integer k > 0)1. i new state; Q fig;2. level(i) 0;3. p i;4. while not end of string w5. a next letter of w;6. p Next(p; a; k);7. return trie (Q; i;Q; Æ), funtion f ;Next (state p, letter a, integer k > 0)1. if Æ(p; a) de�ned2. return Æ(p; a);3. else if level (p) = k4. return Next(f(p); a; k);5. else6. q new state; Q Q [fqg;7. level(q) level (p) + 1;8. Æ(p; a) q;9. if (p = i) f(q) i;10. else f(q) Next(f(p); a; k);11. return q;Build-AD (trie (Q; i;Q; Æ), funtion f , integer k > 0)1. T ;; Æ0 Æ;2. for eah p 2 Q, 0 < level(p) < k, in breadth-�rstorder3. for a 0 then 14. if Æ(p; a) is unde�ned and Æ(f(p); a) isde�ned5. q new state; T T [fqg;6. Æ0(p; a) q;7. Q Q n fstates of Q from whih no Æ0-pathleads to Tg8. return trie (Q [T; i; T; Æ0);The automaton is represented by both a trie and its fail-ure funtion f . If p is a node of the trie assoiated withthe word av, v 2 f0; 1g� and a 2 f0; 1g, f(p) is the nodeassoiated with v. This is a standard tehnique used inthe onstrution of suÆx trees (see [24℄ for example). Itis used here in algorithm Build-AD (line 4) to test theminimality of forbidden words aording to the equalityMF (L) = AL \ LA \ (A� n L).The above onstrution gives rise to the following stat-i ompression sheme in whih we need to read the text

twie, the �rst time to onstrut the antiditionary AD andthe seond time to enode the text.Informally, the enoder sends a message z of the form(x; y; �(n)) to the deoder, where x is a desription of theantiditionary AD, y is the text oded aording to AD, asdesribed in Setion II, and �(n) is the usual binary odeof the length n of the text. The deoder �rst reonstrut-s from x the antiditionary and then deodes y aordingto the algorithm in Setion II. The antiditionary AD isomposed in this simple ompression sheme by all mini-mal forbidden words of length k of w, but other intelligenthoies of subsets of AD are possible. We an desribe theantiditionary AD for instane by oding with standardtehniques the trie assoiated with AD to obtain the wordx. A basi question is how fast must grow the number kas funtion of the length n of the word w. In this simpleompression sheme we hoose k to be any funtion suhthat one has that jxj = o(n), but other hoies are possible.Sine the ompression rate is the size jzj of z divided bythe length n of the text, we have that jzj=n = jyj=n+o(n).Assuming that for n and k large enough the soure S(AD),as in Setion IV, approximates the soure of the text, then,by the results of Setion IV, the ompression rate is \opti-mal".For instane, suppose that w is emitted by an balanedMarkov soure S with memory h, and let L be the formallanguage omposed of all �nite words that an be emit-ted by S. By Theorem 4 there exists a �nite antifatoriallanguage N suh that L = L(N). Moreover, sine S hasmemory h, the words in N have length smaller than or e-qual to h+1. If jwj is suh that k > h then AD ontains Nand, therefore H(S(AD)) � H(S(N)) = H(S). By Corol-lary 1 we an dedue that this simple ompression shemeturns out to be universal for the family of balaned Markovsoures with �nite memory (f. [25℄).Let w= a1a2 � � � be a binary in�nite word that is periodi(i.e., there exists integer P > 0 suh that for any index ithe letter ai is equal to the letter ai+P), and let wn be thepre�x of w of length n. We want to ompress the word wnfollowing our simple sheme informally desribed above.It is not diÆult to prove that the ompression rate forwn is jzj=n = O(�(n)) = O(log2(n)), whih means that thesheme an ahieve an exponential ompression.VI. Pruning AntiditionariesIn this setion, as well as in previous setion, we onsidera stati ompression sheme in whih we need to read thetext twie: the �rst time to onstrut the antiditionaryAD and the seond time to enode the text.In this setion, however, we suppose that we have enoughresoures to build, in linear time, a suÆx or a fator au-tomaton (or their ompated version, f. [26℄) of the �nitetext string to be ompressed. From these strutures wean obtain in linear time a trie representating of all mini-mal forbidden words of the text (f. [10℄). It an be shownthat the total length of all minimal forbidden words an bequadrati in the size of the original text. However the trierepresenting these words is of linear size. It is lear that if

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 187we want to get good ompression ratios not all the minimalforbidden words should be onsidered.The �rst idea developed in this setion is to prune thetrie of the antiditionary with some riteria based on thetradeo� between the spae of the trie to be sent and thegain in ompression. Clearly, the spae of the trie to besent stritly depend on how we enode the trie.Using a lassial approah, in this setion we reall thata binary tree that has k nodes an be enoded using twobits for eah node, whih gives 2k bits for the whole tree.Indeed, depending on whether a subtree S of a binary treeT has both subtrees, only the right subtree, only the leftsubtree, or no subtree, the root of S an be enoded respe-tively by the strings 11, 10, 01, 00. This is done reursivelyin a pre�x traversal of the whole tree. All the results p-resented in this setion an be easily extended to the asewhen a node of the trie an be enoded using � bits foreah node, where � is a positive real number.The seond idea presented afterwards is to ompressthe words retained in the antiditionary using the anti-ditionary itself.The two operations, pruning and self ompressing, anbe applied iteratively on antiditionaries. They lead tovery ompat representations of antiditionaries, produinghigher ompression ratios.A. Pruned AntiditionaryA linear-time algorithm for obtaining the trie T of allminimal forbidden word of a �xed text t an be found in[10℄. Hene we suppose here that we have this trie T .In order to make a tradeo� between the spae of thetrie to be sent and the gain in ompression, we have toknow how muh eah forbidden word ontributes to theompression. Minimal forbidden words of text t orrespondin a bijetive way to the leaves of the trie T , i.e. withany leave q of the tree we an assoiate the orrespondingminimal forbidden word w(q). Indeed if we identify, asin Setion III, the nodes of the trie T to the pre�xes ofthe minimal forbidden words, then the funtion w is theidentity.We de�ne a ost funtion that assoiates with any leaf qof T the number of bits (q) that the word w(q) ontributesto erase during the ompression of the text t. This number(q) is also the number of times that the longest properpre�x of w(q) appears in text t as a fator but not as asuÆx. In another words, the number (q) is the numberof times that a state p is traversed while reading the textt in the automaton A(AD), where p leads to state q bysome letter a (f. Setion III and Theorem 1). Indeedthe last letter of the text is not onsidered in this proessbeause there is nothing to erase after it. By Theorem 1,the funtion an be omputed in linear time.We further de�ne the gain (saving) of a subtree S of thetrie T representing an antiditionary T as g(S) = �((q) jq leaf of S)� 2mS where mS is the number of nodes of S.Indeed the number of bits that have to be sent afterompression is omposed of: 2blogn bits to enode the

length n of the text t (f. the asading lengths tehniquein [4℄ and referenes therein); 2mT bits for a desriptionof the antiditionary T ; j(t)j bits for the text ompressedusing T . The overall size is2blogn+ 2mT + j(t)j = 2blogn+ n� g(T)by de�nition of g(T).Sine 2blogn+ n is �xed and sine the gain g(T) is thesum of the gain of its subtrees minus 2 bits (for enodingthe root), then pruning subtrees of T that have a negativegain inreases the gain of T and, onsequently, dereasesthe overall number of bits that have to be sent after om-pression.Suppose however that S2 is a subtree of S1 whih is, inturn, a subtree of the trie T . Suppose further that S2 hasa negative gain and the same holds for S1, but that S1 hasa positive gain if S2 is pruned from it. In this ase, in orderto obtain better ompression ratios, the best thing to dois to prune S2 and not the whole S1. It is thus naturalto onsider the optimization problem related to an abstatnon-negative funtion (de�ned on leaves of T) where oneinstane is a trie T representing a pre�x ode C, and asolution is a trie T 0 that represents a subset of C and thatmaximizes the gain g(T 0).In what follows we show that a bottom-up approah givesa linear-time solution to this problem.With any subtree S of T we assoiate the funtion g0,alled the pruned gain, that is de�ned byg0(S) = 8><>: 0 if S is empty(S)� 2 if S is a leafg0(S1)� 2 if S has one hild S1Mwhere M = max(g0(S1); g0(S2); g0(S1) + g0(S2)) � 2, withS1 and S2 hildren of S.From the above de�nition it is not diÆult to see thatit is possible to ompute funtion g0 in linear time withrespet to the size of the trie T , in a bottom-up traversalof the trie.We an now present the simple pruning algorithm.Simple Pruning (trie T , funtion)1. ompute g0(S) for eah subtree S of T ;2. eliminate subtrees S of T for whih g0(S) � 0;3. return modi�ed trie T ;The following proposition is a onsequene of the de-sriptions given above, and the next theorem shows thatthe output of the algorithm gives a solution to the opti-mization problem desribed above.Proposition 1: Algorithm Simple Pruning an be per-formed in linear time.Theorem 8: Let T be a trie representing a pre�x ode Cand let be a non-negative funtion de�ned on leaves of T .The output T 0 of algorithm Simple Pruning representsa subset of C and g0(T 0) is maximum. Moreover we havethat g(T 0) = g0(T 0).

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 188Proof: First of all we laim that the trie T 0 outputby algorithm Simple Pruning represents a subset of C.Indeed, by the de�nition of g0 it follows that if a subtreeS of T is not a leaf and if g0(S) > 0, then S must have atleast one hild S1 with positive pruned gain, i.e. g0(S1) >0. This fat implies that all leaves of T 0 are leaves of T ,proving the laim.The rest of the proof is done by indution on the height ofT . If T is empty there is nothing to prove. If T has height0 then T is a leaf and we already have g(T) = g0(T). Ifg(T) > 0, T itself is equal to T 0, otherwise T 0 is the emptytree. In both ases the statement of the theorem is satis�ed.Suppose now that T has height > 0. Either it has justone hild S1 or it has two hildren S1 and S2.Suppose that T has two hildren S1 and S2. Si; theyare both tries and we an assoiate to them the restritionof the funtion gain to all subtrees. By applying algorithmSimple Pruning with input Si, i = 1; 2, and funtion (restrited to leaves of orresponding subtrees), we obtainas output a modi�ed trie S0i. By indution we know thatg(S0i) = g0(S0i) and that this value maximizes the funtiongain. Therefore, if both g(S01) and g(S02) are positive, a trieT 0 representing a subset of C and maximizing the funtiongain is the trie that has the same root as T and has hildrenS01 and S02. Moreover g(T 0) = g0(T 0) and algorithm SimplePruning does not prune S1 and S2 from T 0 so the theoremis proved in this ase.The other ases, (g(S1) � 0 and g(S2) > 0), (g(S1) >0 and g(S2) � 0), (g(S1) � 0 and g(S2) � 0), and thease when T has only one hild S1 are dealt in analogousmanner.Remark that the statement of Theorem 8 holds essen-tially beause pruning a subtree S of T does not a�et thevalue of funtion gain over all other subtrees of T . This fa-t is not true anymore with the self-ompressing approahused in next subsetion.B. Self-ompressing the antiditionaryLet AD be an antifatorial antiditionary for text t. SineAD is antifatorial then, for any v 2 AD the set ADnfvg isan antiditionary for v. Therefore it is possible to ompressv using AD n fvg or a subset of it.One an think of a strategy that sends to the deoder, ina stati approah, all words v ofAD ompressed by algorith-m Enoder with a subset of ADnfvg and v as input. Thiswould ahieve better ompression. We all this approahself-ompression; it is the subjet of this subsetion.Let us �rst try to ompress any word v 2 AD by using thewhole AD n fvg and let us denote by 1(v) the ompressedversion of v by using ADnfvg. Notie that the words of ADthat are used in ompressing v have length � jvj. Further,if u 2 AD with juj = jvj is used to erase the last letter ofv, then u must oinide with v exept for the last letter,that is, u = xa, v = xb and a 6= b. In addition it is easyto see that 1(u) = 1(v). This word is also equal to 1(x)that has been ompressed by using the antiditionary of allwords of AD having length shorter than jvj = juj.

As as a speial ase of the next proposition, a set fu; vghaving these properties an our at most one in any an-tiditionary AD of a text t.A pair of words (v; v1) is alled stopping pair if v =ua; v1 = u1b 2 AD, with a; b 2 f0; 1g, a 6= b, and u isa suÆx of u1.Proposition 2: Let AD be an antifatorial antiditionaryof a text t. If there exists a stopping pair (v; v1) withv1 = u1b, b 2 f0; 1g, then u1 is a suÆx of t and does notappear elsewhere in t. Moreover there exists at most onepair of words having these properties.Proof: Sine u1b 2 AD, u1 is a fator of t. Supposethat u1 appears as a fator of t, with 2 f0; 1g. Sineu is a suÆx of u1, letter is not letter a (beause ua isforbidden) and is not letter b (beause u1b is forbidden), aontradition. Hene u1 is a suÆx of t and does not appearelsewhere in t.Sine u1 is a suÆx of t, then also u is a suÆx of t. Sup-pose that there exists another pair (v0 = u0; v01 = u01d) 6=(v; v1) of words in AD with ; d 2 f0; 1g, a 6= b, and u0 isa suÆx of u01. Then u01 and u0 are also suÆxes of t and itis not diÆult to prove by ases that one of the four wordsamong v; v1; v0; v01 is a fator of another, ontraditing theantifatoriality of AD.Let us suppose now that v1; : : : ; vk is a sequene of allwords in AD suh that for any i, 1 � i � k�1, jvij � jvi+1j.If one knows that there exists no vj suh that jvj j = jvijand vj has been used to erase the last letter of vi, thenthe set AD1 = fv1; : : : vi�1g is the antiditionary used forompressing vi to get 1(v), and vi an be reovered fromboth (vi) and jvij using algorithm Deoder. If thereexists vj suh that jvj j = jvij and vj has been used to erasethe last letter of vi then the set AD1 = fv1; : : : vi�1g is theantiditionary used for obtaining the ompressed version1(x) = 1(vi) of the longest ommon pre�x x of vi andvj , with jxj = jvij � 1. Also in this ase x and thereforevi and vj , an be reovered from both 1(x) = 1(vi) andjxj = jvij � 1 using algorithm Deoder.By the above disussion, it follows that if one knowsthe sequene (1(v1); jv1j), (1(v2); jv2j), : : :, (1(vk); jvk j),together with the ouple (i; j) suh that vi and vj havebeen used to mutually erase their last letter (i = j = 0 ifthere is no suh a pair), then the deoder an reonstrut,in this order, words v1, v2, : : :, vk. That is, deoder anreonstrut the whole antiditionary AD.Unfortunately, while AD, being antifatorial, is also apre�x ode and an be represented by a trie, this is nottrue anymore for the set X1 = f1(v) j v 2 ADg. Forexample, the reader an easily verify that if AD = f11;000; 10101; 00100100; 1010010100101g then X1 = f11;000; 111; 0000; 1111; g. Also, if AD = f10; 110; � � � ; 1n0gthen, for any n � 0, X1 = f10g. Consequently the spaesaved by self ompressing the antiditionary ould be lostin enoding the set X1.We propose a di�erent approah that makes use ofthe same idea and leads to simple algorithms for self-ompressing and reovering the antiditionary AD. Thesealgorithms run in linear time in the size of the trie T repre-

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 189senting the antifatorial antiditionary AD and, moreover,the ompression ratios obtained with the pruning tehniquean only be improved by the next self ompression teh-nique.We present a formal desription of the tehnique. Givena word v 2 AD, we ompress it using an antiditionary AD0that dynamially hanges at any step of the while loop online 2 of algorithm Enoder. While dealing with a properpre�x u of v and the letter a following it, the antiditionaryAD0 is omposed of all words belonging to AD with lengthnot greater than juj. Letter a is erased if and only if thereexists a word u0b 2 AD, b 6= a, with u0 a proper suÆx ofu. Let us all 2(v) the ompressed version of v obtainedin this way and let X2 = f2(v) j v 2 ADg.This kind of self-ompression an be performed in lineartime by next algorithm Self-ompress. It has as inputboth the trie T that represents AD and the funtion Æ ofautomaton A(AD) (f. algorithm L-automaton). Notiethat Æ is de�ned on nodes of T . Its output T 0 is the trieaepting the set X2 = f2(v) j v 2 ADg. The algorithmperforms breadth-�rst traversal of T implemented by thequeue Q. During the traversal, it reates a self-ompressedversion T 0 of T that represents the set X2.Self-ompress (trie T , funtion Æ))1. i root of T ;2. reate root i0;3. add (i; i0) to empty queue Q;4. while Q 6= ;5. extrat (p; p0) from Q;6. if q0 and q1 are hildren of p7. reate q00 and q01 as hildren of p0;8. add (q0; q00) and (q1; q01) to Q;9. else if q is a unique hild of p andq = Æ(p; a), a 2 A10. if Æ(p;:a) is a leaf11. add (q; p0) to Q;12. else reate q0 as a-hild of p0;13. add (q; q0) to Q;14. return trie having root i0;The orretness of algorithm Self-ompress relies onthe following proposition and the disussion thereafter.Proposition 3: If a node p in the trie T has two hildrenq0 and q1 then its orresponding node p0 in the output trieT 0 also has two hildren.Proof: If q0 and q1 are both leaves, they representtwo minimal forbidden words ua and ub, a 6= b. There isno minimal forbidden words in the form u0a or u0b with u0a proper suÆx of u beause AD is antifatorial. Thereforeneither letter a nor letter b an be erased by the tehnique.If q0 and q1 are not leaves, they represent two wordsua and ub, a 6= b, that are fators of text t. There is nominimal forbidden words in the form u0a or u0b with u0 aproper suÆx of u beause these words are also fators of t.Therefore neither letter a nor letter b an be erased by thetehnique.Let us suppose now that only one node among q0 and q1is a leaf. For instane, let us assume that q0 is a leaf and

q1 is not a leaf. They represent respetively two words uaand ub, a 6= b. Letter a annot be erased beause in theantiditionary there is no word in the form u0b with u0 aproper suÆx of u, ub being a fator of t. Letter b annotbe erased beause in the antiditionary there is no word inthe form u0a with u0 a proper suÆx of u, sine ua is in theantiditionary and the antiditionary is antifatorial.The previous proposition explains why the algorithm re-ates two nodes q00 and q01 at line 7.We next onsider lines 10{13, in whih node p of T hasonly one hild q = Æ(p; a). The node Æ(p;:a) annot havehigher level than p beause p has only one hild. Hene,letter a is erased if and only if Æ(p;:a) is a leaf, by de�nitionof the tehnique.Finally, if p has no hildren, i.e. p is a leaf, nothingis done by the algorithm but extrating (p; p0) from thequeue.Corollary 1: Tries T and T 0 have the same number ofinternal nodes that have two hildren and, onsequently,have the same number of leaves. Trie T 0 represents thepre�x ode X2.The orollary implies that X2 = f2(v) j v 2 ADg anbe uniquely reonstruted from T 0. There is an additionalproperty that allows reonstruting AD from X2 withoutonsidering lengths of words in AD. This simpli�es theproedure. The next proposition follows readily from de�-nitions.Proposition 4: If there exists no stopping pair in AD thenfor any v 2 AD, the last letter of v is not erased during theself-ompression to get 2(v).If the deoder has the additional information that thelast letter of t was not erased at ompression time then itan use this fat as a stop riterion. This is also possibleeven if the antiditionary hanges dynamially. Indeed thedeoder just has to stop after proessing the last letter ofthe ompressed text. Therefore there is no need to use thelength of the text to stop deoding.To ensure that the last letter of any v 2 AD is not erasedand to meet the above hypothesis, it is suÆient to elim-inate the only possible stopping pair (f. Proposition 2).To do that, we delete from AD the longest word v1 of suha pair. By Proposition 2 this word does not ontributeto erasing letters in text t during the ompression beausethere is nothing to erase after the last letter.Hene we suppose that in our antiditionary AD thisword is not inluded, or, equivalently, that the branh oftrie T that has this word as unique leaf is pruned. In otherwords, we suppose from now on that antiditionary AD(and obviously all its subsets) has no stopping pair.Algorithm Self-automaton uses the previous hypoth-esis to reonstrut AD from T 0. More preisely, its input isa trie T 0, self-ompressed from trie T , with its transitionfuntion Æ0. Its output is the automaton A(AD), where ADis the antiditionary represented by trie T . It is similar toalgorithm L-automaton. Indeed it makes a breadth-�rsttraversal on states of the trie T . It is possible to do thisbeause, any time a state is reahed, if a hild was \erased"during the exeution of Self-ompress, it is now reated

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 190and added to the queue Q. In order to reate a new hild,funtion Æ must be previously restored, as done in algorith-m L-automaton, by using the failure funtion f . Whena leaf is reahed in the self-ompressed trie, the new stopriterion tells us that there is nothing more to reonstrutin that branh.Trie T an be obtained from the automaton A(AD), out-put of next algorithm, by using a linear time algorithmdesribed in [10℄.The urrent situation in the next algorithm is as follows:when a node p is popped from the queue, trie T has beendeompressed up to the level of p in T , f(p) is de�ned andfuntion Æ is de�ned for all previous nodes, whih inludesnodes at previous level. After proessing p, Æ is also de�nedfor p and the failure funtion f is de�ned on its hildren.Self-automaton (trie T 0)1. i0 root of T 0;2. Q ;;3. for eah a 2 A4. if Æ0(i0; a) is de�ned5. Æ(i0; a) Æ0(i0; a);6. f(Æ(i0 ; a)) i0;7. add Æ(i0 ; a) to Q;8. else9. Æ(i0; a) i0;10. while Q 6= ;11. extrat p from Q;12. if p is not a leaf13. if Æ(f(p); a) is a leaf for a 2 A14. reate p1;15. for eah b 2 A16. if Æ0(p; b) is de�ned17. Æ0(p1; b) Æ0(p; b);18. Æ(p;:a) p1;19. Æ(p; a) Æ(f(p); a));20. f(p1) Æ(f(p);:a));21. add p1 to Q;22. else23. for eah a 2 A24. if Æ0(p; a) is de�ned25. Æ(p; a) Æ0(p; a));26. f(Æ(p; a)) Æ(f(p); a));27. add Æ(p; a) to Q;28. else29. Æ(p; a) Æ(f(p); a));30. else31. for eah a 2 A32. Æ(p; a) p;33. return (Q;A; i0;Q n fleavesg; Æ);Sine there is a bijetion between leaves of T and leavesof T 0, we an assoiate with any leaf q0 of T 0 the samevalue (q) of the orresponding leaf q in T . This is thenumber of bits that the word w(q) leads to erase duringthe ompression of text t. Analogously, as in the previoussubsetion, we an de�ne funtions gain and pruned gainand, as a �rst step, we an run algorithm Simple Pruningon T 0. At the same time we prune orresponding subtreesin T and obtain a trie T1. Doing so, the modi�ed trie T1represents a subset of AD. As a seond step, we an useagain algorithm Self-ompress on T1 to get T 01. Notethat T 01 an be di�erent from the pruned trie T 0 beausepruning subtrees an a�et self-ompression.We an iterate the above two steps for a �xed number oftimes or until the trie stabilizes.

VII. ConlusionWe have desribed DCA, a text ompression method thatuses some \negative" information about the text, repre-sented in terms of antiditionaries. The advantages of thesheme are:� it is fast at deompressing data,� it is fast at ompressing data for �xed soures,� it has a synhronization property in the ase of �nite an-tiditionaries, property that leads to eÆient parallel om-pression and to searh engines on ompressed data.In the previous setions we presented some stati DCAshemes in whih the text to be ompressed needs to besanned twie. Starting from these stati shemes, severalvariations and improvements an be proposed. These vari-ations are all based on lever ombinations of two elementsthat an be introdued in our model:� statisti onsiderations,� dynami approahes.These are lassial features that are often inluded in otherdata ompression methods.Statistial onsiderations are used in the onstrutionof antiditionaries. If a forbidden word is responsible for\erasing" few bits of the text in the ompression algorithmof Setion II and if its \desription" as an element of theantiditionary is \expensive" then the ompression ratioimproves if it is not inluded in the antiditionary. Thisidea has been partially exploited in previous setion. Onthe ontrary, one an introdue into the antiditionary aword that is not forbidden but that ours very rarely inthe text. In this ase, the ompression algorithm will pro-due some \errors" or \mistakes" in prediting the nextletter. In order to have a lossless ompression, enoder anddeoder must be adapted to manage suh errors. Typialerrors our in the ase of antiditionaries built for �xedsoures as well as in the dynami approah.Even with errors, assuming that they are rare with re-spet to the maximum length of words of the antidi-tionary, our ompression sheme preserves the synhroniza-tion property of Theorem 3. The use of errors beomesneessary for some arti�ial strings like 1m0 if one wantsto use a stati aproah. Without errors and with a statiapproah, the algorithms desribed in previous setion areunable to ompress suh strings.Antiditionaries for �xed soures have also an intrinsiinterest. A ompressor generator, or ompressor ompil-er, an reate, starting from words obtained from a soureS, an antiditionary that an be used to ompress all oth-er words from the same soure S. Error management isessential for this kind of appliation. Having a �xed anti-ditionary makes the ompression fast beause basi oper-ations are just table lookups.In the dynami approah, we onstrut the antidi-tionary and enode the text at the same time. The an-tiditionary is onstruted (also with statistial onsidera-tion) by onsidering the whole text previously sanned orjust a part of it. The antiditionary an hange at anystep and the algorithmi rules for its onstrution must besynhronized between enoder and deoder.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 191File original size ompressed size(in bytes) (in bytes)bib 111261 35535book1 768771 295966book2 610856 214476geo 102400 79633news 377109 161004obj1 21504 13094obj2 246814 111295paper1 53161 21058paper2 382199 2282pi 513216 70240prog 39611 15736progl 71646 20092progp 49379 13988trans 93695 22695Fig. 3. Compression ratios on �les of the Calgary Corpus.We have realized prototypes of the ompression and de-ompression algorithms. They also implement the dynamiversion of the method. They have been tested on the Cal-gary Corpus (see Figure 3), and experiments show that weget ompression ratios equivalent to those of most ommonompressors (suh as pkzip for example).We are onsidering several generalizations:� Compressor shemes and implementations of antidi-tionaries on more general alphabets or on other types ofdata (images, sounds, et.),� Use of lossy ompression espeially to deal with images,� Combination of DCA with other ompression shemes;for instane, using both ditionaries and antiditionarieslike positive and negative sets of examples as in LearningTheory,� Design of hips dediated to �xed soures.Several problems onerning the data ompression she-me are still open. We list some of them.� Are balaned soures dense inside the family of Markovsoures? A positive answer would raise the question ofadapting the sheme so that it beomes universal forMarkov or ergodi soures. Can self ompression be usedto settle this question?� Are there eÆient algorithms to build good antiditionar-ies for syntati soures, generated for instane by gram-mars? This raises a question of oding on a binary alpha-bet.� What is the average of the maximum length of minimalforbidden words in texts of length n generated by an er-godi soure having entropy H?� How many times on the average should pruning and selfompressing be iterated before the proess stabilizes (seeprevious setion)? We would expet a maximum of lognsteps. Is the stabilized trie optimal?AknowledgmentsWe thanks M.P. B�eal, M. Cohn, F.M. Dekking, R. Grossiand J. A. Storer for useful disussions and suggestions.

Referenes[1℄ J. G. Cleary T. C. Bell and I. H. Witten, Text Compression,Prentie Hall, 1990.[2℄ J. Gailly, \Frequently asked questions in data ompression,"2000, FAQ, URL http://www.faqs.org/faqs/faqs/ompression-faq/.[3℄ J. Gailly M. Nelson, The Data Compression Book, M&T Books,New York, NY, 1996.[4℄ J. A. Storer, Data Compression: Methods and Theory, Com-puter Siene Press, 1988.[5℄ T. C. Bell I. H. Witten, A. Mo�at, Managing Gigabytes, VanNostrand Reinhold, 1994.[6℄ C. Shannon, \Predition and entropy of printed english," BellSystem Tehnial J., vol. January, 1951.[7℄ A. Restivo M.-P. B�eal, F. Mignosi, \Minimal forbidden wordsand symboli dynamis," in STACS'96, C. Pueh and R. Reis-huk, Eds., number 1046 in Leture Notes in Computer Siene,pp. 555{566. Springer-Verlag, Berlin, 1996.[8℄ A. Restivo M.-P. B�eal, F. Mignosi and M. Siortino, \Minimalforbidden words and symboli dynamis," Advanes in Appl.Math., vol. To appear.[9℄ A. Restivo M. Crohemore, F. Mignosi, \Minimal forbiddenwords and fator automata," in MFCS'98, J. Gruska L. Brimand J. Slatu�ska, Eds., number 1450 in Leture Notes in Com-puter Siene, pp. 665{673. Springer-Verlag, Berlin, 1998.[10℄ M. Crohemore, F. Mignosi, and A. Restivo, \Automata andforbidden words," Inf. Proess. Lett., vol. 67, no. 3, pp. 111{117, 1998.[11℄ A. Restivo M. Crohemore, F. Mignosi and S. Salemi, \Textompression using antiditionaries," in ICALP'99, J. GruskaL. Brim and J. Slatu�ska, Eds., number 1664 in Leture Notes inComputer Siene. Springer-Verlag, Berlin, 1999.[12℄ C. Cho�rut and K. Culik, \On extendibility of unavoidable sets,"Disrete Appl. Math., vol. 9, pp. 125{137, 1984.[13℄ A. V. Aho and M. J. Corasik, \EÆient string mathing: anaid to bibliographi searh," Commun. ACM, vol. 18, no. 6, pp.333{340, 1975.[14℄ M. Crohemore and W. Rytter, Text algorithms, Oxford Uni-versity Press, 1994.[15℄ V. Diekert and Y. Kobayashi, \Some identities related to au-tomata, determinants, and m�obius funtions," Report 1997/05,Universit�at Stuttgart, 1997.[16℄ J. Berstel and D. Perrin, \Finite and in�nite words," in AlgebraiCombinatoris on Words, D. Perrin J. Berstel, Ed. CambridgeUniversity Press, To appear.[17℄ Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa, \Pat-tern mathing in text ompressed by using antiditionaries," inCPM'99, M. Crohemore and M. Paterson, Eds. 1999, number1645 in Leture Notes in Computer Siene, pp. 37{49, Springer-Verlag, Berlin.[18℄ M. P. B�eal, Codage Symbolique, Masson, 1993.[19℄ R. Ash., Information Theory, Trats in mathematis. Inter-siene Publishers, J. Wiley & Sons, 1985.[20℄ R. G. Gallager, Information Theory and Reliable Communia-tion, J. Wiley and Sons, In., 1968.[21℄ R. G. Gallager, Disrete Stohasti Proesses, Kluver Ad.Publ., 1995.[22℄ J. L. Snell J. G. Kemeny, Finite Markov Chains, Van NostrandReinhold, 1960.[23℄ R. S. Ellis, Entropy, Large Deviations, and Statistial Mehan-is, Springer Verlag, 1985.[24℄ C. Hanart M. Crohemore, \Automata for mathing patterns,"in Handbook of Formal Languages, Volume 2, Linear Model-ing: Bakground and Appliation, A. Salomaa G. Rozenberg,Ed. Springer-Verlag, 1997.[25℄ R. Krihevsky., Universal Compression and Retrieval, KluverAademi Publishers, 1994.[26℄ M. Crohemore and R. V�erin, \On ompat direted ayliword graphs," in Strutures in Logi and Computer Siene,G. Rozenberg J. Myielski and A. Salomaa, Eds., number 1261in Leture Notes in Computer Siene, pp. 192{211. Springer-Verlag, Berlin, 1997.

IEEE SPECIAL ISSUE ON LOSSLESS DATA COMPRESSION, VOL. XX, NO. Y, MONTH 2000 192Maxime Crohemore is professor and headof the Computer Siene Researh Laborato-ry at the University of Marne-la-Vall�ee (loseto Paris). His researh interests are algorithm-s on textual data, inluding pattern mathingproblems and data ompression, and ompu-tational biology. He has o-authored the book"Text Algorithms" and is a steering ommitteemember of the annual onferene "Combinato-rial Pattern Mathing".Filippo Mignosi is professor at the Depart-ment of Mathematis and Appliations of theUniversity of Palermo. His researh interestsinlude ombinatoris on words and on moregeneral informational strutures, formal lan-guages, automata theory, algorithms and dataompression. He is visiting Brandeis Universi-ty with a N.A.T.O. fellowship.Antonio Restivo is professor at the Depart-ment of Mathematis and Appliations of theUniversity of Palermo. He is the hair of theboard of mathematial and omputer sienestudies, Faulty of Siene. His researh in-terests inlude automata theory, formal lan-guages, ombinatoris on words, oding theo-ry, algorithms and data ompression. He is thesienti� national oordinator of the researhprojet \Modelli innovativi di alolo: metodisintattii e ombinatori", MURST, Italy.Sergio Salemi is researh fellow at the De-partment of Mathematis and Appliations ofthe University of Palermo. His researh inter-ests inlude automata theory, ombinatoris onwords, oding theory, programming languages,algorithms and data ompression.

