
HAL Id: hal-03586276
https://hal.science/hal-03586276v1

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended RISC-V hardware architecture for future
digital communication systems

Mael Tourres, Bertrand Le Gal, Jeremie Crenne, Philippe Coussy, Cyrille
Chavet

To cite this version:
Mael Tourres, Bertrand Le Gal, Jeremie Crenne, Philippe Coussy, Cyrille Chavet. Extended RISC-
V hardware architecture for future digital communication systems. 2021 IEEE 4th 5G World Forum
(5GWF), Oct 2021, Montreal, Canada. pp.224-229, �10.1109/5GWF52925.2021.00046�. �hal-03586276�

https://hal.science/hal-03586276v1
https://hal.archives-ouvertes.fr

Extended RISC-V hardware architecture for future
digital communication systems

Maël TOURRES1,2, Cyrille CHAVET1, Bertrand LE GAL2, Jérémie CRENNE2 and Philippe COUSSY1

1 - Lab-STICC laboratory (UMR 6285), Université Bretagne Sud, France

2 - IMS laboratory (UMR 5218), Bordeaux-INP, Université de Bordeaux, France

Abstract—The fast deployment of IoT (Internet-of-Things)
devices for a few years has been impressive and the progressive
deployment of 5G will accelerate things even further. Indeed, this
standard opens the door to a new generation of standards aiming
at a convergence of networks and communication protocols
(Wi-fi, LTE, 4G, etc.). These results in the need for flexible
implementations of different families of codes as for instance,
Turbo, LPDC and Polar codes.

In this context, the work presented in this article proposes
to design such flexible ASIP (application-specific instruction
set processor) in an IoT context. The approach discussed is
supported by experimental results obtained on the basis of
a RISC-V architecture to which specific instruction sets have
been added. Results demonstrate a reduction of the required
processing clock cycles up to 47.7%, 29.8%, 16.5% and 9.7% for
Polar, LDPC, NB-LDPC and Turbo (LTE) codes, respectively.

Index Terms—IoT devices, Forward Error Correction codes,
4G, 5G, ASIP, RISC-V.

I. INTRODUCTION

In our widely connected world, the advent of smartphones,

tablets and IoT devices over the past years has resulted in

an explosive growth of data traffic over the networks never

reached in previous generations. Incoming 5G communication

standard [1] associated with new system paradigms such as

for instance Cognitive Radio, foresees to be the foundation

of a deep revolution with new communication scenarios,

communications inter-operability and new applications. These

new applications will emerge to take advantage of wireless

connectivity (e.g. IoT, wireless broadband, Digital/Smart Fac-

tory, Machine-to-Machine. . .). This trend will be characterized

by a convergence of communication networks, merging several

physical layers and different communication standards (e.g.

4G, Wi-Fi, LTE, RFID tags. . .). As an example, the new

5G standard gathers several different radio signals (LTE-A,

Wi-Fi/WISE. . .) in a flexible network. Such heterogeneous

networks have to deal with several different channel codes,

different throughput targets and/or different energy consump-

tion constraints. In a nutshell, this world will rely on multiple

heterogeneous radio networks, allowing dynamic adaptation

in frequency, codes and/or throughputs. These evolutions are

leading to switch from one generation of standard to the next,

at an increasingly rapid pace. This will result in technological

obsolescence issues for the devices unable to adapt them-

selves to their new environment. A solution for the designers

is to propose flexible architectures that could handle these

constraints through re-configurable devices. Moreover, since

most of these devices will be embedded systems, the related

constraints (i.e. reduced cost, area and power consumption)

must also be considered. In this context, the channel decoding,

i.e., Error Correction Code (ECC), component is a critical

part of the systems, since it impacts the quality of services,

power consumption and efficiency of radio resources usage.

In order to master the costs, either in terms of development

cost or power consumption, an adaptive architecture that could

deal with some (or all) of these ECC families is extremely

interesting. This architecture must also be extensible (vari-

ous throughputs/latency targets) and flexible, i.e. supporting

several types of error correction codes (Turbo codes, LDPC,

Polar codes, . . .) that could be changed dynamically (i.e.

on-the-fly). This paper explores, through different ECC use

cases, an innovative approach to design efficient, low-power,

agile and dynamically re-configurable architectures in order

to reduce hardware cost and support multiple standards with

reduced memory footprint for IoT devices. To achieve the

ability of flexibility and high-throughput, while taking account

of low-energy consumption constraints, we explore the de-

sign of an ASIP based solution on the RISC-V Instruction

Set Architecture (ISA) [2]. At the end, this work proposes

a flexible parallel processor architecture able to efficiently

support multiple digital communication standards (e.g. 3G

to 5G, and beyond). The second section is dedicated to a

presentation of the state of the art. Then, in the third section

the most representative error correction codes are introduced.

Their associated decoding algorithms are profiled in order to

extract a subset of the most computer intensive instruction

patterns for each code. In the fourth section, these subsets are

transcribed in new ISA instructions to enrich different RISC-V

processors. In the fifth section, the results of our experiments

on different RISC-V cores are presented. Finally, we conclude

this paper and we draw some perspectives for this work.

II. RELATED WORKS

The perspective of potentially connecting billions of hetero-

geneous devices is a challenge. To date, channel decoding is

one of the most critical parts of a network since it impacts

both the quality of service (QoS) and the radio resources

utilization. For instance, ECC typically share an share an

important hardware part with the receiver. Channel decoders

can reduce the required transmission power. Energy efficiency

of devices and networks are thus strongly correlated with

decoders performances. To address the issue of high flexibility,

224

2021 IEEE 4th 5G World Forum (5GWF)

978-1-6654-4308-1/21/$31.00 ©2021 IEEE
DOI 10.1109/5GWF52925.2021.00046

20
21

 IE
EE

 4
th

 5
G

 W
or

ld
 F

or
um

 (5
G

W
F)

 |
97

8-
1-

66
54

-4
30

8-
1/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

5G
W

F5
29

25
.2

02
1.

00
04

6

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on February 23,2022 at 16:07:06 UTC from IEEE Xplore. Restrictions apply.

high throughput and low energy consumption, competing

codes families are being studied: 1) Turbo codes [3] are used in

the 2G, 3G and 4G standards, 2) LDPC codes [4] are employed

in Ethernet, Wi-fi and Wimax, Non-Binary LDPC (LDPC-NB)

[5] applications are found in the CCSDS satellite communica-

tion standard [6] and both binary LDPC and Polar codes [7]

are integrated into the 5G standard. However, development

of such architecture is tedious. Algorithms share very few

similarities so specialized knowledge is required to integrate

multiple ECC in a single device. Usual approaches implement

several dedicated hardware circuits in parallel. Indeed, many

works focused on efficient hardware implementation of single

standard decoding circuits [8]–[10]. A new generation of com-

munications systems entirely designed using software-defined

radio (SDR) blocks have emerged [11]–[14]. The implementa-

tion feasibility of such systems has recently been demonstrated

but only on non-embedded devices, i.e., in base stations with

multi-cores central processing units (CPUs) and/or graphical

processing untis (GPUs). Previous works report efficient im-

plementations in terms of throughput and latency on SDR tar-

get systems for Turbo codes [15], LDPC codes [16] and Polar

codes [17], [18]. Although more flexible and scalable than

application-specific integrated circuit (ASIC)-based designs,

industrial systems have limitations. Energy consumption and

thermal dissipation [19] of these architectures strongly exceed

embedded IoT typical constraints. A number of academic

[20]–[22] and industrial proposals [22] exist that make the

design of optimized hardware architectures possible. Based

on application-specific instruction set processors (ASIP), these

implementations provide the flexibility needed for the ECC

decoding process [23]. However, their benefits are limited as

they are designed considering a worst-case design scenario:

they are generally larger and consume more energy. Specific

and costly development tools and methodologies [24] also

have to be integrated as part of designs trade-offs. To design

systems tailored to IoT constraints i.e. maximizing compu-

tational performances vs. minimizing area costs and energy,

these systems have less processor cores and reduced frequency.

Customizing the processor instruction set architecture (ISA)

to match with targeted codes is de facto a relevant option.

Diverse applications can benefit from this technique. Typical

examples include video processing and artificial intelligence

[25], [26]. As part of the effort, some works propose the

design of processor architectures with an ECC-oriented ISA.

Two main contributions have been reported:

1) In [22] and [21], authors have focused on the design

of efficient programmable architectures for Turbo codes

and LPDC codes, respectively. A number of application

parameters allows to manage intra and inter-standards

(frame size, code structure, speed).

2) In [27] and [28], authors present programmable archi-

tectures to support several and distinct ECC families.

They exploit multi-standards applications scenarios. In

[28], authors describe a low-cost architecture based on a

butterfly network. However this proposal is only focused

on memory and network optimization, the design of the

processor is then out of the scope of this work.

III. ECC DECODING ALGORITHMS

Error-correcting codes are well-known for their high compu-

tational complexity and irregular memory accesses [29], [30].

The improvement of both efficiency and flexibility have been

the subject of a continuous effort for decades. Research works

have demonstrated that efficient hardware implementations

and integration of ECC decoder are possible. For most ECC

families, low complexity implementations are achieved with

8-bit fixed-point number representation and arithmetic. It is

demonstrated in [31]–[37] that this fixed-point data format

only slightly impacts on processing results. In this work, we

consider four families of ECC:

• Turbo codes - Turbo codes [3] are found in 2G, 3G

and 4G LTE standards and may be candidates for the

future 6G [38]. Their decoding algorithm consists of

tracking/routing two mesh networks which are connected

to a data interleaver [15], [39]. Fixed data widths of

8 or 16 bits are used. Considered algorithm is a max-

log-MAP [40]. Involved arithmetic operations are ad-
ditions, subtractions, multiplications, minimum search-
ing/computations and maximum.

• LDPC codes - Low Density Parity Check (LDPC) codes

are commonly found in ground radio frequency (RF) stan-

dards (Wi-fi, Wimax and 5G). Their decoding algorithms

can be summarized as a nest of loops where data and

information are computed and shared across a network.

This network is implemented using a bipartite graph

topology [41], [42]. All computations manipulate 8-bit in-

teger data. Considered algorithm is a Horizontal-Layered

Min-Sum (HL, MS) [15], [16]. Involved arithmetic op-

erations are addition, saturated subtractions, minimum
searching, masking and bit-wise operations/selections.

• Polar codes - Polar codes are a recent family of ECC [7].

These codes have been integrated into the 5G standard

to provide protection of control frames. Polar codes

decoding are performed by using a recursive path over

a binary tree [7], [17], [43]. Data accesses are mostly

regular. However, the computing parallelism is reduced

while the decoding tree is being traversed. Considered

algorithm is a Successive-Cancellation (SC) [17]. Our

version of the SC-List algorithm is not fully implemented

yet. Involved logical and arithmetic operations in the

decoding process are additions, saturated subtractions,

minimum searching and masking.

• Non-binary LDPC codes - Instead of conventional bi-

nary coding, non-binary LDPC codes are a transposition

of LDPC codes to the Galois Field i.e. GF (n) with

n > 2. This extension provides a significant improvement

in the decoding process but leads to an increase in compu-

tation complexity. Their decoding performance motivated

their usage into the CCSDS satellite communication stan-

dard [6]. Decoding algorithms are designed with nested

loops. It brings regularity in memory accesses by taking

225

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on February 23,2022 at 16:07:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Proposed workflow for identification, extraction and integration
of specific instructions in processor cores. (HDL : Hardware Description
Language)

advantage of GF representation. Considered algorithm is

a Min-Sum (MS) [44]. Involved operations are additions,

saturated subtractions, minimum searching and XOR.

Optimized software descriptions of the selected ECC decoding

algorithms have been entirely designed in this work. Leverag-

ing previous works [15], [17], [41], [45], we target a general-

purpose processor integration. All algorithmic descriptions

were subject to extensive analysis with hand-crafted optimiza-

tions to avoid complex operations and conditional branches.

They have been validated through the simulation of BER/FER

performances. Similarly to the hardware decoders found in

the literature (with the exception of Turbo codes), they handle

8-bit arithmetic data representation and manipulation. From

these optimized codes, programs executions and patterns de-

tection have been performed to extract and translate the most

suitable instructions. They were implemented in hardware as

dedicated processor instructions afterward. The set of extracted

patterns and resulting instructions are shown in Table I. In this

table, the mnemonics of the proposed instructions and their

algorithmic descriptions are listed.

IV. DETAILED WORKFLOW FOR RISC-V CORES

In the previous section, the main operations performed in

the different ECC families have been introduced. With the

observation of very similar instructions, our fine-grained code

analysis allowed us to extract and highlight common points

between the studied families. Consequently, the idea of sharing

such common parts in dedicated instructions is confirmed.

TABLE I
LIST OF INSTRUCTION MNEMONIC AND ASSOCIATED IMPLEMENTATION

(UNDERLINED : NOT IN RISCY’S XPULPV2 ISA). TURBO NOT

INTEGRATED IN RISCY. (RD : DESTINATION REGISTER, RS : SOURCE

REGISTERS)

Mnemonic/instructions Implementation

L
D

PC

ld.subsat(rD, rS1, rS2)

Res = rS1 – rS2
Res = (Res >127)? 127 :

(Res <-127)? -127 : Res
rD = Res

ld.abs(rD, rS1) rD = (rS1 >= 0)? rS1 : - rS1
ld.max (rD, rS1, rS2) rD = (rS1 >rS2) ? rS1 : rS2
ld.min (rD, rS1, rS2) rD = (rS1 >rS2) ? rS2 : rS1
ld.nMess (rD, rS1, rS2) rD = (rS1 == 1) ? rS2 : - rS2

Po
la

r

pl.f (rD, rS1, rS2)

min1 = abs(rS1)
min2 = abs(rS2)
min1 = min(min1 , min2)
sign = (rS1 <0) ˆ (rS2 <0)
rD = (sign == 0)? min1 : -min1

pl.r (rD, rS1, rS2)
rD = (rS2) ? 0 :

(rS1 <0) ? 1 : 0

pl.addsat (rD, rS1, rS2)

Res = rS1 + rS2
Res = (Res >127)? 127 :

(Res <-127)? -127 : Res
rD = Res

pl.subsat (rD, rS1, rS2)

Res = rS1 - rS2
Res = (Res >127)? 127 :

(Res <-127)? -127 : Res
rD = Res

L
D

PC
-N

B ldn.add32u sat64(rD, rS1, rS2)
res = rS1 + rS2
rD = (res >64) ? 64 : res

ldn.min (rD, rS1, rS2) same as ld.min

ldn.add32s sat64(rD, rS1, rS2)

res = rS1 + rS2
res = (sum >64) ? 64 :

(sum <- 64) ? -64 : res
rD = Res

ldn.sub32s sat64(rD, rS1, rS2)

res = rS1 - rS2
res = (sum >64) ? 64 :

(sum <- 64) ? -64 : res
rD = Res

Tu
rb

o
C

od
e tb.subsat (rD, rS1 ,rS2) same as pl.subsat

tb.addsat (rD, rS1 ,rS2) same as pl.addsat
tb.max (rD, rS1, rS2) same as ld.max

tb.scale(rD, rS1, rS2)

sign = rs1 >0
A = abs(rs1)
B = A >>2
C = A - B
rD = (sign==0)? -C :C

A. Detailed design flow

In order to prototype and validate the set of selected instruc-

tions, the design approach presented in Fig. 1 is used. It should

be noticed that each ECC kernel has been tailored to expose

repetitive patterns of instructions, that can be extracted as one

instruction (as previously described). First and foremost, lists

of ECC-dependent instructions have been specified based on

the following requirements (Figure 1-B,C):

• Instructions must fit within the standardized ISA’s in-

struction specification (i.e RISC-V’s R-type [2]), with

operations having a maximum of two inputs and one

output. This constraint ease providing an homogeneous

support for a large variety of processors cores.

• The instructions are one cycle only, do not introduce any

additional latency and avoid pipeline stalls.

The selected instructions will be synthesized in hardware to

226

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on February 23,2022 at 16:07:06 UTC from IEEE Xplore. Restrictions apply.

be integrated in the different targeted cores, implementing the

necessary arithmetic and logic operations in Register Transfer

Level (RTL) as shown by D in Fig. 1. Then, a flexible and

adaptable processor core is selected to allow us to enrich its

ISA with our new RTL instructions. The RISC-V ISA family is

among the most suited for architectural research, and benefits

from a rich eco-system that helps time-consuming designs

steps. Indeed, a lot of contributions helped to demonstrate the

relative maturity of this novel ISA in the field of generic and

optimized processor designs for IoT-based applications [46].

As previously explained, the proposed custom instructions

are described at the RTL level. These hardware resources

(used to describe the set of defined customs instructions)

are implemented into RISC-V based processors (Figure 1-

G). In parallel, to take advantage of these newly integrated

instructions, the compilation workflow is updated accordingly

(i.e. GCC 10.21 with modifications to binutils (Figure 1-E)).

Finally, software ECC kernels are updated (Figure 1-F) to

accommodate the customs set of instructions.

B. Targeted RISC-V cores

Regarding the architectural choice of RISC-V cores, many

open-source cores are available. Each one offers differ-

ent architectural features such as number of pipeline lev-

els, ALU complexity, availability and size of memory

caches. . . Moreover, some of them provide out-of-order capa-

bilities or several parallelism degrees such as DLP (Data Level

Parallelism), TLP (Thread Level Parallelism) and ILP (Instruc-

tion Level Parallelism). Although each core is theoretically

extensible and customizable enough to accommodate custom

dedicated instructions, their relative architectural complexity

may hinder this operation. In this paper, four cores have

been selected out of the multiple carefully evaluated RISC-

V processors. This selection was based on their different

architectural characteristics, general performances and rela-

tive size. These four cores are used to measure the gains

resulting from our proposed approach. They all support the

RV32-IMC instruction set (I-Integer, M-Multiplier&Divider,

C-Compressed) and one to several pipeline stages. The RISCY

core also benefits from a dedicated ISA extension namely

XpulpV2 dedicated to support signal processing features. To

guarantee the homogeneity of the tests, the instruction set

is restricted to the RV32I specification of the RISC-V ISA

and the various cores are strictly set up (if possible) in their

standard configuration.

• PicoRV32 [47] - A low-complexity core mainly designed

for simple applications. It is a very fast RISC-V core

implementing a single in-order pipeline architecture.

• IBEX [46], [48] - Initially known as micro-RISCY, this

RISC-V core is more balanced (performance vs complex-

ity) architecture. It implements a 2-stage in-order pipeline

architecture in its basic version (small).

• SCR1 [49] - This last evaluated core presents good per-

formances for a reasonably low hardware complexity and

1GCC 7.2 for the RISCY core tool-chain

a controlled energy consumption. It is implemented with

an architecture integrating 3-stages of in-order pipelines

in its basic (base) configuration.

• RISCY [50] - A well-designed and more capable RISC-

V core implementing a set of customs instructions target-

ing regular arithmetic optimizations and low power DSP

(XpulpV2). It is a 4-stage single-issue in order pipeline

architecture, developed as a part of the PULP project [51].

These four RISC-V compliant cores (have been selected to)

allow a fair evaluation of our proposed ISA extension. Indeed,

their architectural characteristics will enable the evaluation

of benefits and costs in different application contexts. The

obtained results are presented and analyzed in the next section.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the impacts of our proposal on

the decoding speed/latency and throughput performances of

the selected cores. These are measured via the execution of the

ECC presented in section 3. Results are put in perspective with

the hardware complexity increase (on FPGA target) induced

by the ISA enrichment of the selected RISC-V cores. First, the

initial software descriptions of the decoding algorithms have

been executed on each core, to obtain a reference in terms

of execution time. Then, the modified kernels (i.e. updated

with calls to our custom instructions) have been executed to

measure their impacts on the performances.

Timing/temporal performances -The results obtained dur-

ing our experimentation are presented in a synthetic way in

the Table II. This table presents for each core the number

of clock cycles for the base codes (i.e. without the custom

instructions) and the number of clock cycles gained with

the modified codes (i.e. with the custom instructions). It can

be noticed that the proposed approach allows us to almost

systematically optimize the performances, however we also

observe that these gains are not homogeneous over all the

configurations. For example, as shown for the LDPC code,

performance gains can range from 26% for the IBEX core,

down to 3.2% on the RISCY core. This volatility is explained

by different compilation flows (and software libraries) for each

core. It should be noted that RISCY has a tool-chain entirely

optimized for control applications. This explains why for com-

plex codes (e.g. LDPC-NB) we see a noticeable degradation

in the number of processing clock cycles with our Instruction

Set Extension (ISE). Previously selected instructions were

found in the XpulpV2 Instruction Set Extension of the RISCY

core (see Table II). Thus, to avoid duplication, some of our

instructions were not integrated (ld.subsat(), pl.f(), . . .).

Impact on hardware cost - In Table III, the impact of

the instruction set extension on the hardware complexity of

the cores is provided. Processors have been implemented

on an FPGA device (XC7K325FFG900-2) by using Xilinx

Vivado 2018.2. The results presented in this section have

been obtained after the placement and routing steps. Original

versions of the processors and the enriched versions have been

implemented in order to measure the direct impact (of the

new instructions), and also the induced impact (instruction

227

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on February 23,2022 at 16:07:06 UTC from IEEE Xplore. Restrictions apply.

TABLE II
REQUIRED CLOCK CYCLES PER ECC DECODING KERNEL EXECUTION

DEPENDING ON RISC-V CORE. (NUMBERS SPACED FOR CLARITY. MOD.
IS SHORT FOR MODIFIED. MINUS SIGN REPRESENT THE NUMBER OF

RETIRED CLOCK CYCLES)

LDPC
(int8)

POLAR
(int8)

LDPC NB
(uchar)

TURBO
(int)

Base 219 543 1 331 700 3 480 560 2 568 651
PicoRV Mod.

(Δ)
-30 924

(-11.3%)
-574 685
(-47.7%)

-351 359
(-7.1%)

-67 706
(-2.6%)

Base 83 983 516 817 1 408 610 1 029 657
IBEX Mod.

(Δ)
-25 054

(-29.8%)
-213 570
(-41.3%)

-233 685
(-16.5%)

-100 122
(-9.7%)

Base 76 629 418 572 1 312 194 937 707
SCR1 Mod.

(Δ)
-19 071

(-24.9%)
-137 810
(-32.9%)

-145 112
(-11%)

-42 709
(-4.5%)

Base 50 533 280 923 791 437 n.a.
RISCY Mod.

(Δ)
-2 635

(-5.2%)
-99 245

(-35.3%)
+139 358
(+17.6%)

n.a.

decoders, multiplexing in the ALU,. . .). The results obtained

are reported in the Table III. These results only display the

hardware overhead measured for each instruction set and core.

As with the previous table, we also show the percentage

increase vs. the cost of the architecture without our custom

instructions. First, we observe a difference in the cost of

integrating the instructions into the processor cores. Indeed,

the data presented in Table III demonstrate that this cost

strongly depends on the considered RISC-V core and its

associated design flow. Thus, the integration of instructions

specific to LDPC codes increases the cost of the IBEX (small)

architecture by 120 (+4, 9%) LUTs (Look-Up Table) , while

on a PicoRV32 core it increases by more than 250 (+25%)

LUTs. These disparities coming from the seemingly same RTL

descriptions (the PicoRV32 core is described in Verilog, others

cores in System-Verilog) show a strong adhesion between the

considered instruction set and the target core, without a clear

trend. This is linked to the fact that each core is generated on

different synthesis chains, making a fair analysis of the results

complex. However, we can suppose that probably during the

logical optimization stage, the synthesizer likely merges or

duplicates some resources according to design constraints that

still need to be explored. The second observation is related to

the hardware cost of the extension of the cores. Apart from the

experiments carried out on the PicoRV32 core, and for which

the overhead is 20% to 25%, the overhead of the instructions

remains limited. When compared to the improvements in

execution times, it demonstrates the interest of the proposed

approach and selected instructions sets selected. The impact

of these instructions strongly depends on the experience of the

designer to optimize the quality of integration on the targeted

core.

VI. CONCLUSION

Digital embedded systems rely upon reliable, flexible, scal-

able and energy-efficient communications. Software solutions

are currently being studied, as they avoid the pitfalls in

terms of flexibility and scalability of ASIC/FPGA solutions.

However, their overall high power consumption incurs a severe

TABLE III
ADDITIONAL HARDWARE COSTS RESULTING FROM INTEGRATION OF

DEDICATED INSTRUCTIONS IN LUT(LOOK-UP TABLE).

BASE LDPC LDPC-NB POLAR TURBO
PicoRV32
(1 pipe)

1010
+250

(+25%)
+203

(+20%)
+122

(+12.8)
+295

(+23.5%)
IBEX
(2 pipes)

2446
+120

(+4.9%)
+255

(+10.4%)
+138

(+5.6%)
+248

(+10.1%)
SCR1
(3 pipes)

3984
+193

(+4.8%)
+275

(+6.9%)
+140

(+3.5%)
+312

(+7.8%)
RISCY
(4 pipes)

11156
+165

(+1.5%)
+300

(+2.7%)
+189

(+1.7%)
n.a.

drawback to match the energy requirements of low energy

footprint of embedded systems. In this article, the followed

approach firstly aims at evaluating the performances (in terms

of throughput and latency) of the main families of modern

ECC codes targeting well-known embedded RISC-V processor

cores. In order to improve the adequacy between these custom-

tuned algorithms and the embedded processor architectures,

an extension of their standard instruction set with carefully

designed custom instructions is proposed. Achieving a fully

functional architectural extension of the selected cores, we

demonstrated an almost systematic performance increase for

all considered algorithms. Indeed, with the addition of a small

number of scalar instructions, the decoding performances of

ECC algorithms are significantly improved when focusing

on RISC-V low-power class cores. Results demonstrate a

reduction of the required processing clock cycles up to 47.7%,

29.8%, 16.5% and 9.7% for Polar, LDPC, NB-LDPC and

Turbo (LTE) codes, respectively. ECC’s decoding algorithms

are highly sensitive to concurrent calculations and exhibit

dramatic speed increase when exploited on SIMD-based solu-

tions. To obtain further optimization, the next step is to explore

the integration of parallelization mechanisms through the use

of SIMD instructions (such as in related works focusing on

high-end multi-core or many-core targets). Finally, an (in-

depth) evaluation and optimization of energy consumption will

also be taken into account.

REFERENCES

[1] S. Baek, D. Kim, M. Tesanovic, and A. Agiwal, “3GPP new radio
release 16: Evolution of 5G for industrial internet of things,” IEEE
Communications Magazine, vol. 59, no. 1, pp. 41–47, 2021.

[2] RISC-V technical specification, https://riscv.org/technical/specifications,
April 2021.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proceedings of
the IEEE International Conference on Communications (ICC), Geneva,
Switzerland, May 1993, pp. 1064–1070.

[4] R. Gallager, “Low-density parity-check codes,” 1962.
[5] C. Poulliat, M. Fossorier, and D. Declercq, “Design of non binary LDPC

codes using their binary image: algebraic properties,” in Proceedings
of the IEEE International Symposium on Information Theory (ISTC),
Seattle, WA, USA, July 2006, pp. 93–97.

[6] Consultative Committee for Space Data Systems (CCSDS), CCSDS
231.1-O-1 - ORANGE BOOK - SHORT BLOCK LENGTH LDPC
CODES FOR TC SYNCHRONIZATION AND CHANNEL CODING,
Washington, DC, USA, April 2015.

[7] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, July 2009.

228

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on February 23,2022 at 16:07:06 UTC from IEEE Xplore. Restrictions apply.

[8] S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou, “25
years of turbo codes: From Mb/s to beyond 100 Gb/s,” in Proceedings of
the IEEE International Symposium on Turbo Codes Iterative Information
Processing (ISTC), Hong Kong, China, December 2018, pp. 1–6.

[9] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A
survey of FPGA-based LDPC decoders,” IEEE Communications Surveys
Tutorials, vol. 18, no. 2, pp. 1098–1122, December 2016.

[10] P. Giard, G. Sarkis, A. Balatsoukas-Stimming, Y. Fan, C.-y. Tsui,
A. Burg, C. Thibeault, and W. J. Gross, “Hardware decoders for
polar codes: An overview,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada,
August 2016, pp. 149–152.

[11] D. Wubben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and impact of cloud computing
on 5G signal processing: Flexible centralization through Cloud-RAN,”
IEEE Signal Processing Magazine, vol. 31, no. 6, November 2014.

[12] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud RAN for mobile networks - a technol-
ogy overview,” IEEE Communications Surveys Tutorials, vol. 17, no. 1,
pp. 405–426, 2015.

[13] Intel corp., INTEL 5G Vision (Network, Cloud Client), February 2017.
[14] Fujitsu Inc., “The benefits of Cloud-RAN architecture in mobile network

expansion,” Fujitsu Network Communications Inc., Tech. Rep., 2015.
[15] B. Le Gal and C. Jego, “Low-latency and high-throughput software

turbo-decoders on multi-core architectures,” Annals of Telecommunica-
tions, Springer, vol. 75, pp. 27–42, February 2020.

[16] ——, “Low-latency software LDPC decoders,” in Proceedings of the
IEEE International Workshop on Signal Processing Systems (SIPS),
Lorient, France, October 2017.

[17] B. Le Gal, C. Leroux, and C. Jego, “Multi-Gb/s software decoding of
polar codes,” IEEE Transactions on Signal Processing (TSP), vol. 63,
no. 2, pp. 349–359, January 2015.

[18] M. Léonardon, A. Cassagne, C. Leroux, C. Jégo, L.-P. Hamelin, and
Y. Savaria, “Fast and flexible software polar list decoders,” Journal of
Signal Processing Systems, vol. 91, no. 8, pp. 937–952, August 2019.
[Online]. Available: https://doi.org/10.1007/s11265-018-1430-3

[19] V. Pignoly, B. Le Gal, C. Jégo, B. Gadat, and L. Barthe, “Fair compari-
son of hardware and software LDPC decoder implementations for SDR
space links,” in Proceedings of the IEEE International Conference on
Electronics Circuits and Systems Conference (ICECS), November 2020.

[20] T. V. Aa, M. Palkovic, M. Hartmann, P. Raghavan, A. Dejonghe, and
L. Van der Perre, “A multi-threaded coarse-grained array processor
for wireless baseband,” in Proceedings of the IEEE Symposium on
Application Specific Processors (SASP), June 2011, pp. 102–107.

[21] M. Alles, T. Vogt, and N. Wehn, “Flexichap: A reconfigurable asip for
convolutional, turbo, and ldpc code decoding,” in Proceedings of the
International Symposium on Turbo Codes and Related Topics (ISTC),
Lausanne, Switzerland, September 2008, pp. 84–89.

[22] P. Murugappa, A. Baghdadi, and M. Jézéquel, “Parameterized area-
efficient multi-standard turbo decoder,” in Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), Greno-
ble, France, March 2013, pp. 109–114.

[23] C. Chavet and P. Coussy, Advanced Hardware Design for Error Cor-
recting Codes. Springer, 2014.

[24] M. Léonardon, C. Leroux, P. Jääskeläinen, C. Jégo, and Y. Savaria,
“Transport triggered polar decoders,” in Proceedings of the IEEE Inter-
national Symposium on Turbo Codes Iterative Information Processing
(ISTC), vol. 2018, Hong Kong, China, December 2018, pp. 1–5.

[25] S. Payvar, M. Khan, R. Stahl, D. Mueller-Gritschneder, and J. Boutellier,
“Neural network-based vehicle image classification for IoT devices,” in
Proceedings of the IEEE International Workshop on Signal Processing
Systems (SiPS), Nanjing, China, October 2019, pp. 148–153.

[26] R. Porter, S. Morgan, and M. Biglari-Abhari, “Extending a soft-core
RISC-V processor to accelerate CNN inference,” in Proceedings of the
International Conference on Computational Science and Computational
Intelligence (CSCI), December 2019, pp. 694–697.

[27] S. U. Reehman, C. Chavet, P. Coussy, and A. Sani, “In-place memory
mapping approach for optimized parallel hardware interleaver architec-
tures,” in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Grenoble, France, March 2015.

[28] A. Sani, P. Coussy, and C. Chavet, “A dynamically reconfigurable ECC
decoder architecture,” in Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
March 2016, pp. 1437–1440.

[29] C. Chavet, F. Lozachmeur, T. Barguil, A. S. Hussein, and P. Coussy,
“Solving memory access conflicts in LTE-4G standard,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, UK, May 2019, pp. 1518–1522.

[30] H. Harb and C. Chavet, “Fully parallel circular-shift rotation network for
communication standards,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 67, no. 12, pp. 3412–3416, May 2020.

[31] H. Michel and N. Wehn, “Turbo-decoder quantization for UMTS,” IEEE
Communications Letters, vol. 5, no. 2, pp. 55–57, February 2001.

[32] A. Singh, E. Boutillon, and G. Masera, “Bit-width optimization of
extrinsic information in turbo decoder,” in Proceedings of the Interna-
tional Symposium on Turbo Codes and Related Topics (ISTC), Lausanne,
Switzerland, September 2008, pp. 134–138.

[33] T. T. Nguyen Ly, “Efficient Hardware Implementations of LDPC De-
coders, through Exploiting Impreciseness in Message-Passing Decoding
Algorithms,” Ph.D. dissertation, Université de Cergy Pontoise, 2017.

[34] M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, “Quan-
tized message passing for LDPC codes,” in Proceedings of the Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, November 2015, pp. 1606–1610.

[35] Z. Shi and K. Niu, “On uniform quantization for successive cancellation
decoder of polar codes,” in Proceedings of the IEEE Annual Interna-
tional Symposium on Personal, Indoor, and Mobile Radio Communica-
tion (PIMRC), Washington, DC, USA, September 2014, pp. 545–549.

[36] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Transactions
on Signal Processing, vol. 63, no. 19, pp. 5165–5179, October 2015.

[37] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Transactions on Communications, vol. 58, no. 5, May 2010.

[38] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard, “Protograph-
based interleavers for punctured turbo codes,” IEEE Transactions on
Communications, vol. 66, no. 5, pp. 1833–1844, May 2018.

[39] A. Cassagne, T. Tonnellier, C. Leroux, B. Le Gal, O. Aumage, and
D. Barthou, “Beyond Gbps turbo decoder on multi-core CPUs,” in
Proceedings of the International Symposium on Turbo Codes and
Iterative Information Processing (ISTC), September 2016, pp. 136–140.

[40] B. Le Gal and C. Jego, “Low-latency and high-throughput software turbo
decoders on multi-core architectures,” Annals of Telecommunications,
Springer, Sepember 2019.

[41] B. Le Gal and C. Jego, “High-throughput LDPC decoder on low-power
embedded processors,” IEEE Communication Letters, vol. 19, no. 11,
pp. 1861–1864, November 2015.

[42] J. Andrade, G. Falcao, V. Silva, and L. Sousa, “A survey on pro-
grammable LDPC decoders,” IEEE Access, vol. 4, July 2016.

[43] X. Zhou, Y. Shen, X. Tan, X. You, Z. Zhang, and C. Zhang, “An
Adjustable Hybrid SC-BP Polar Decoder,” in Proceedings of the IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu,
China, 2018, pp. 211–214.

[44] E. Boutillon, L. Conde-Canencia, and A. Al Ghouwayel, “Design
of a GF(64)-LDPC Decoder Based on the EMS Algorithm,” IEEE
Transactions on Circuits and Systems Part 1 Fundamental Theory and
Applications, vol. 60, no. 10, pp. 2644–2656, 2013.

[45] B. Le Gal and C. Jego, “High-throughput FFT-SPA decoder implemen-
tation for non-binary LDPC codes on x86 multicore processors,” Journal
of Signal Processing Systems, vol. 92, pp. 37–53, March 2020.

[46] D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand,
and L. Benini, “Slow and steady wins the race? A comparison of
ultra-low-power RISC-V cores for Internet-of-Things applications,” in
Proceedings of the International Symposium on Power and Timing Mod-
eling, Optimization and Simulation (PATMOS), Thessaloniki, Greece,
September 2017, pp. 1–8.

[47] PicoRV32 RISC-V Core, https://github.com/cliffordwolf/picorv32,
March 2021.

[48] Ibex RISC-V Core, https://github.com/lowRISC/ibex, March 2021.
[49] SCR1 RISC-V Core, https://github.com/syntacore/scr1, March 2021.
[50] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,

E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-
V core with DSP extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, February 2017.

[51] RISCY RISC-V Core, https://github.com/pulp-platform/pulpissimo,
April 2021.

229

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on February 23,2022 at 16:07:06 UTC from IEEE Xplore. Restrictions apply.

