——

"o fu//ém, w A z"!g;; 773/}/@‘ ON - BN b K N g

PG

L2237~
NASA~¥M-112996

Database Reorganization in Parallel Disk Arrays
with I/O Service Stealing

Peter Zabback® Ibrahim Onvuksel’ Peter Scheuermann? Gerhard Weikum'
JN =52 e 2
Abstract)2 T el

We present a model for data reorganization in parallel disk systems that is geared rowards load balancing
in an environment with periodic access patterns. Data reorganization is performed by disk cooling. L.e..
migrating files or extents from the hottest disks to the coldest ones. We develop an approximate queueing
model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs

versus benefits of cooling actions.

Index Terms:

database reorganization. load balancing, temporal access patterns. parallel disk systems. approximate queue-

ing model, I/O service stealing

1 Introduction

Database reorganization plays an important role in the performance tuning of dvnamic systems with evolving
access patterns. In this environment it is highly desirable to invoke an on-line database reorganization
scheme in which the reorganization actions are performed concurrently with regular transactions [2. 3}.
Thus. in contrast to off-line reorganization. which is performed while disallowing regular transactions. on-
line reorganization is usually performed incrementally as a lower priority transaction [7T]. In a centralized
database system reorganization is performed in order to reduce the access time (2. 3]. In contrast. the main
objective of data reorganization in parallel database systems is load balancing.

We present a new model for database reorganization in parallel database systems which allows the system

to determine at a given point in time whether a reorganization action is cost beneficial or not. given that

the reorganization itself imposes an additional load on the system. Reorganization is performed dynamically

-Tandem Computers Incorporated. 10100 North Tantau Avenue, Cupertino CA 95014-25342. USA. e-mail:
zabback @patch.tandem.com

*Northern Illinois University, Department of Computer Science, DeKalb, IL 60115, USA. e-mail: onvuksel @cs.niu.edu

!Northwestern University, Department of Electrical Engineering and Computer Science. Evanston, [L 60208, USA. e-mail:
peters Gece.nwu.edu

3 University of the Saarland, Department of Computer Science. P.O. Box 151150. D-66041 Saarbruecken, Germany. e-maii:
weikum Qcs.uni-sb.de

S e
! / \K \ B\ (f) 9

\\. “

by emploving an incremental data migration procecure called disk cooling. Disk cooling migrates data from
“hot” fi.e.. heavilv utilized) disks to “cold™ {i.e.. lightlv urilized) disks.

Our model differs in a number of aspects from other studies proposed in literature for determining optimal
reorganization points in centralized database svstems[6. %]. Although the cost of performing a reorganization
was considered. reorganizations were viewed as occurring instantlyv. thus having no etfect on the overall svsrem
load. In addition. these assumed that the cost of performing a regular transaction always increases in time
if the database is not in a reorganized state.

Our reorganization model is geared towards a workload in which a substantial proportion of the trans-
actions exhibit a periodic pattern of access characteristics. In such a case. it may be beneficial to postpone
a reorganization for a later point in time when there are fewer regular transactions. In our svstem a data
migration request consists of two phases. a read phase. where the hottest disk is accessed. and a write phase.
where the coolest disk is accessed. However. the read phase of a migration action. and hence the entire
cooling action. is not executed if the service quene of the source disk is not empty. Since the source disk
carries the heaviest share of the load. scheduling a reorganization action would most likelv increase the
loadimbalance if the queue at the source disk is nor emptv. The model proposed here is a generalization of
the earlier models introduced in [4. 3]. The model used in [5] did not consider periodic access patterns. In
contrast. in (4] we considered explicitly periodical access patterns. but all reorganization actions were treated
as lower priority requests.

We shall refer to the read requests of the reorganization actions under a no-enqueueing policy as 1/0
service stealing requests. given their analogy to cycle stealing operations in the CPU execution. As part of
our reorganization scheme. we have developed an approximate queueing model for a system with two tvpes
of requests. namely regular requests and 1/O service stealing requests. Using this model. we can determine
the intervals in time when the read and write phases of the reorganization actions will be scheduled. given

the moment in time that the load balance is observed.

2 Data Redistribution in Parallel Disk Systems

We have implemented an intelligent file manager. called FIVE. for parallel disk systems that can perform
striping on a file-specific or global basis as desired by the application. and in addition achieves load balancing
by judicious file allocation and redistribution of data (4. 5]. In order to perform load balancing, our file system

keeps track of the following related statistics [3]:

o the heat of files {or extents, i.e., smallest units of data migration) and disks. where the heat is de-
termined as the number of block accesses to a file or disk per time unit, as measured by statistical

observation over a moving window of a certain length.

e the temperature of files (extents), which is defined as the ratio between heat and size.

An extent is a file fragment which consists of all rthe striping units of a file rhat are Allucated to rie sae
disk in a single allocation unit [7]. Note that rhe heat metrie captures the mumber of block accesses e to
regular requests. and thus we obtain the following relarionship berween the hear of a disk 1. H . ud the

mean arrival rate of regular requests. A,

H,
,\,-:': (l)
it

where R is the average request size measured in terms of the number of blocks accessed.

The above formula assumes that the access patterns of files. hence disks. are fixed in time. In practice.
we encounter many environments which exhibit periodical. predicrable access patterns. [n our model for
database reorganization these periodic patterns can be incorporated by identifving a number of intervals
such that the heat of a file stays constant accross an interval. but i allowed to vary across them. As in 4.

we define the weighted heat of file k as:

WEFH; =Y Hp, xit, =t 1] ()
j=1

where

n is the numbers of intervals

t, —t,-1 is the length of interval j

ey is the heat of file k in interval j
Correspondingly. the weighted heat of disk ¢ is defined as:

WDH,:ZH,‘,xu}—r,_l) 13

=1
where £, is the heat of disk i in interval j. H, , is computed as the accumulated heat in interval j of all
files that reside on disk i. Note that arrival rate A is also a function of the interval in time: we assume that

R. the average request size. is constant across all intervals. but as the heat of the disk changes. we obtain

Him
—

form=1,....n.
= n

now A, =

2.1 Temporal Disk Cooling Algorithm

In order to perform dynamic heat redistribution we employ in our svstem a dynamic load balancing procedure
called disk cooling. Basically, disk cooling is a greedy procedure which tries to determine the best candidare.
i.e.. tile (or extent) to remove from the most utilized disk. i.e.. the disk with the highest weighted heat. in vrder
to minimize the amount of data being moved while obtaining the maximum gain. The (weighted) temperature
metric is used as the criterion for selecting the files (extents) to be reallocated because temperature reflects the

benefit/cost ratio of the reallocation. The file to he moved is reallocated to the disk with the lowest wetghted

[VVVVVVVY

. - T T TYvYRY VI
i ! | l
‘ I L | — — - - e - "
i ! |
! ‘ ‘ baaal !
! t | l ; I
| | | ‘ ‘
: | | ‘ | \ B |
‘ ' . ' —_— time
now cooling cooling cooling coonling
attempted attempted started tinished
heat curve —
without cooiimg | temporary permanetit
t T T t heat ‘ ‘ ‘ l heat
— —~ - Cheatcurve nereise decrease

with cooling

Figure 1: Impact of cooling on ~hot” disk

heat. In the case of an extent. in order to facilitate intra-request parallelism. an additional constraint Is
observed. namely that the target disk should not already hold an extent of the corresponding file.

[n our svstem the disk cooling procedure is implemented as a background daemon which is invoked at
fixed intervals of time. The procedure checks first if a given trigger condition is satisfied or not [53]. If the
trigger condition is false. the system is considered load balanced and no cooling action is performed.

A cooling action will be executed only if our estimate of its henefit exceeds its additional cost, with both
measures taking into account this temporal access pattern. In order to estimate the cost/benefit of a cooling
action we make use of the weighted disk heat variance (WDHV) as an explicit objective function [4]. WDHV
is defined as follows:

.
n

D
WDHV(H) =Y Y (H —H.,) x(t;=t-1) (4)
J=1 =1
where
D is the number of disks in the parallel system
H, is the mean disk heat (over all disks) in interval ;

The benefit of the cooling action is measured by examining the load balance of the system before and
after the potential reorganization. This benefit, denoted by B. is computed as the difference W DHV. .. —
W DHViyture, where WDHV,,,, is the weighted disk heat variance before the potential cooling process
and WDHV},ure is the weighted disk heat variance that potentially would result if the extent were to be
moved to the target disk. In order for the cooling to be scheduled. its benefit B must exceed the extra

cost. denoted by E. introduced by the reorganization process itself. The cooling process 1s executed in two

<teps. the tirst corresponding tothe read phase of the acrion. where the hot disk is accessed. and the weite
phase of the action. during which the cold rarget disk is accessed. The readtand wrre: phases mrrodace
additional amount of heat on the source and target disks which can be compured by dividing the size of the
file textent)to be moved by the corresponding duration of the phase. The read phases correspond to 1/0
stealing requests and. as discussed in Section 3. the response time ofan /O stealing request is equal to 1ts
service rime. denored by 1/us. Thus the durarion of a read phase is estimated as 1/p,. Figure 1 tlustrares
the remporal heat changes on the source disk with and without cooling. The permanent heat reduction
due to the read phase is already accounted for in the benetit B: on the other hand. to determine the exrra
cost itemporary heat increase in Figure 1) we also need 1o determine the interval in rime when the cooling

started.
2.2 Estimating the intervals of the cooling action

Assuming that the cooling daemon is invoked at time now an iterative procedure is invoked in order ro
determine the intervals in time. denoted bv m and n. when the read and write phases will be actuallv
scheduled and executed at the corresponding service quenes. Let us assurne that the cooling daemon is
invoked during time interval j. ie. ¢, =1 < now < f,. Using the mean arrival rate of regular requests
during interval j. A, . and the arrival rate of the disk cooling requests. A,. the approximate queueing model
developed in Section 3 is used first to determine A.ss. the effective arrival rate of the read actions of the
corresponding cooling requests. We assume. for simplicity. that the trigger condition is always satisfied. i.e..
some heat imbalance is always present. Thus. the mean arrival rate of disk cooling requests in our syvsteni.

which correspond to the service stealing requests in the queneing model. is fixed and can be calculated as:

1

time between successive daemon invocations

The interval m where the read part of the the cooling request would be scheduled is determined as by

the following iterative procedure. Notice that this procedure may require to recompute the value of A.sy.

compute A,fs using equation (9):

while (interval = NOT_FOUND) do

e Case 11 (tj—) < {now+1/A.55) < t):
m = j: interval := FOUND:

e Case 2: ({t; <(now+ 1/Aepy) < ty4i) and (A -1 < Ar)

m:= j + L: interval := FOUND:

¢ Else:

Reiterate procedure to compute \.gr using Aoy and A

Recompute now = now + (i * A where i = min{k now ~(k*) >, b

endwhile

The computation of the interval n. where the write phase of the cooling request would be scheduled. is
substantially simpler. Since the target disk is cool we can schedule the corresponding reorganization request
as soon aspossible. Thus. if the reading phase was executed in interval m. the write phase will be scheduled
in the same interval m or in interval m + 1 [9].

Having determined the intervals m and n. we can compute E. the extra cost due to cooling. as follows.
We add two “dummy” intervals to the load balancing cvcle to account for the read and write phases of the
cooling action. During such a dummy interval the heat of each disk. except for the disk which is the subject
of the read or write. correspondingly. is taken to be the same as the heat of the disk during the time interval
when the corresponding read or write phase started. Thus. the terms in E can be computed as follows:

D D

E=Y% (H,, — H!) = read_duration + 3 (H, — H!') = write_duration

=1 =
where =

H = H; .. + ertent_size/read_duration. if i=s
im —) H,,, otherwise

H' = H, ., + ectent_size/write_duration. if i=t
Lo H; ., otherwise

\lore details of our temporal disk cooling procedure are given in [9].

3 An Approximate Queueing Model for I/0O Service Stealing

I/0O service stealing requests are issued periodically by the reorganization process whenever a load imbalance
is observed. and they correspond to the read phases of the cooling actions. In this section we present an
approximate queueing model for deriving the overall utilization and effective arrival rate. A.ss. of I/0 service
stealing requests in a two class system consisting of regular and reorganization requests. The behavior of

the two classes of requests is characterized as follows:

1. regular requests: these requests have a mean arrival rate A.. The interarrival time of these requests is

assumed to be exponentially distributed. The mean service rate of these requests is given by p,.

2. I/0 service stealing requests: these lower priority requests are issued periodically by an incremental
reorganization process. We assume a constant interrarrival time 1/)\; and a mean service rate u, for

these requests.

For I/0 service stealing requests two additional restrictions apply:

. If an I/O service stealing request arrives and rthe <ervice quene is not empry. the reguest is disrevarded

bv the scheduler of the queue.

2. 1/0 service stealing requests are svichronous. i.e.. a new 1/0 service stealing request is not enguened
until the execution of the previous one is finished. Thus. at any point in time there is at most one [/0

service stealing request in the svstem.

From the discussion above it is clear that the response time of an 1/0 service stealing request is equal to
its service time. i.e.. 1/p,. We proceed now to derive the formulae for the effective arrival rate of I/0 service
stealing requests. A, ss. as seen by the service center. and the overall svstem utilization. p.

The probability that an I/O service stealing request finds the service queue empty is given bv L — p.
Thus. we obtain:

/\,.flel—;)lx,\y 16)

This is in etfect a recursive formula since p depends on A, ;. [n order to eliminate the inherent recursion
in formula (6). we adopt an approximation now and freat the svstem as a regular M/G/1 queue with two
classes of prioritized requests [1] : regular requests have high prioritv. while the service stealing requests have
low priority. Thus. we assume that the interarrival times for both regular requests and [/O service stealing
requests are exponentially distributed. Note that in our actual svstem implementation the stealing requests
have constant interrarrival times (see equation 3).

The utilization p, due to requests with priority / in an M/G/1 queue with i priority classes is given by:
o= A/, (M)

Furthermore. under the exponential interarrival times assumption. the overall utilization p of the svstem can

be expressed as the sum:

Ao A
P=prtps=—+ 7 (%)
iy Iy

Note that p depends only on the mean arrival and service rates of the two classes of requests. and is

independent of the service time distributions. From equation (R) we obtain:

Ar
Aeff = (/)——> X . (9
fr

Finally. substitution of equation (9) into equation (6) vields:
As + ‘ll- X fig
p= _—_— (10)
As =+ gt
In [9] we report on an experimental validation of rthis model and show that the maximum error of A. gy
ranges from 1% to 5% depending upon the arrival rates . and A, of regular and I/O stealing requests.
Acknowledgment

Peter Scheuermann has been supported in part by NSF under grant IR1-9303583 and by NASA-Ames under
grant NAG2-846.

References

Rk

21

3]

7]

8]

L. Kleinrock. Queneing Systems John Wilev & Sons. 1976.

E Omiecinski. L. Lee and P. Scheuermann. "Performance Analvsis of a Concurrent File Reorganization
Algorithm for Record Clustering.” [EEE Transaction on Knowledge and Data Engineering. Volume 6.
No.2. April 1994, pp. 265-357.

B. Salzberg and A. Dimock. ~Principles of Transaction-based On-line Reorganization.” Proceedings of

the 18th International Conference on Very Large Databases. 1992. pp. 311-320.

P. Scheuermann. G. Weikum and P. Zabback. ~Adaptive Load Balancing in Disk Arravs.” Proceedings
of the 4th International Conference on Foundations of Data Orgamization and Algorithms (FODO. 1993.

pp. 345-360.

* P. Scheuermann. G. Weikumn and P. Zabback. ~Disk Cooling in Parallel Disk Svstems.” [EEE Datu

Engineering Bulletin \ol.17 No.3. Sept. 1994. pp. 29-40.

B. Shneiderman. “Optimum Data Base Reorganization Points.” Communications of ACM. Volume 16.

No. 6. June 1973. pp. 362-365.

G. Weikum. P. Zabback and P. Scheuermann. “Dvnamic File Allocation in Disk Arrays.” Proceedings

of ACM SIGMOD International Conference on Management of Data. 1991. pp. 106-415.

S.B. Yao. K.S. Das and T. Teorey, “A Dynamic Database Reorganization Algorithm.” ACM Transac-

tions of Database Systems. Vol. 1. No. 2, June 1976. pp. 139-174.

P.Zabback. [. Onvuksel. P.Scheuermann and G. Weikum. ~Temporal Database Reorganization wirh
[/O Service Stealing,” Technical Report. Northwestern University. Dept. of Electrical and Compurer

Engineering, 1996.

