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Selecting Inputs for Modeling Using Normalized Higher Order Statistics and
Independent Component Analysis

Andrew D. Back and Thomas P. Trappenberg

Abstract—The problem of input variable selection is well known
in the task of modeling real-world data. In this paper, we propose a
novel model-free algorithm for input variable selection using inde-
pendent component analysis and higher order cross statistics. Ex-
perimental results are given which indicate that the method is ca-
pable of giving reliable performance and that it outperforms other
approaches when the inputs are dependent.

Index Terms—Higher order statistics, independent component
analysis, input variable selection.

I. INTRODUCTION

I N many real-world modeling problems, for example in the
context of biomedical, industrial, or environmental systems,

a problem can occur when developing multivariate models and
the best set of inputs to use are not known. This is particularly
true when using neural networks. In this case, unrequired inputs
can significantly increase learning complexity. Input variable
selection (IVS) is aimed at determining which input variables
are required for a model. The task is to determine a set of inputs
which will lead to an optimal model in some sense. Problems
which can occur due to poor selection of inputs include the fol-
lowing.

• As the input dimensionality increases, the computational
complexity and memory requirements of the model in-
crease.

• Learning is more difficult with unrequired inputs.
• Misconvergence and poor model accuracy may result from

additional unrequired inputs.
• Understanding complex models is more difficult than

simple models which give comparable results.
Methods of input variable selection can be categorized

into model-basedand model-freemethods [1].Model-based
methods typically involve selecting a model, choosing the
inputs to use, optimizing the parameters, and then measuring
some cost function. The inputs are changed and then the proce-
dure is repeated. A test is used to choose which inputs to use
based on these results. Model-based input variable selection
schemes are often linked to the idea ofpruning networks
[2]–[11]. Neural-network pruning methods based on principal

Manuscript received September 14, 1999; revised May 16, 2000 and De-
cember 13, 2000.

A. D. Back and T. P. Trappenberg were with the RIKEN Brain Science Insti-
tute, Saitama 351-0198, Japan (e-mail: andrew.back@usa.net).

T. P. Trappenberg is now the Department of Experimental Psychology,
University of Oxford, Oxford OX1 3UD, U.K. (e-mail: Thomas.Trappen-
berg@psy.ox.ac.uk).

Publisher Item Identifier S 1045-9227(01)02046-X.

component analysis (PCA) have also been proposed. Leenet
al. [15], [16] investigated the idea of using PCA to remove
variables which have the lowest variance.

Model-freemethods are based on performing a statistical
test between the subsets of input variable(s) and the desired
output(s) from the model. A very good example of a model-free
IVS method based onmutual informationis given in [1]. In
contrast to other model-based methods, the idea in this case
was to develop a framework for selecting inputs which was
not based on a particular model. Relevant inputs are found by
estimating the mutual information between the inputs and the
desired outputs. This approach requires the numerical estima-
tion of the joint and marginal densities. A measure of mutual
information is obtained by calculating the Kullback–Leibler
distance from the estimated densities. The work we present in
this paper follows along similar lines and we also present a
model-free method.

We follow the convention adopted previously, of using the
term “model-free,” even though for the method we present here,
there are a few parameters left to estimate. The terminology
comes from the idea that model-based methods implement a full
prediction/classification model in order to select the input vari-
ables, while model-free methods refer to techniques that have ei-
ther no parameters or only a small number in comparison to the
intended model [1]. Moreover, model-free methods can often be
viewed as having the express purpose of selecting the input vari-
ables (or groups of variables) to which some observed output
variable is causally related. Model-based methods are, on the
other hand, methods which select inputs based on how well they
can lead to some model meeting a performance criterion. These
differences have lead to the commonly used convention of ter-
minologies which we continue to use here.

In this paper we address the issue of possible dependence be-
tween observed input variables. Dependent inputs usually leads
to an overestimation of the number of inputs required, which,
for neural network models is not desirable. We propose the use
of independent component analysis (ICA) as a technique for de-
riving effective model-free input variable selection algorithms.
In order to assess the dependence between inputs and the desired
system output, we use a method based on higher order cross cor-
relations, normalized in such a manner as to allow their direct
comparison.

This paper is organized as follows. In Section II, we propose
an input variable selection algorithm. In Section III, we give
simulation examples which indicate the peformance of the al-
gorithm. Conclusions are given in Section IV.
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II. ICAIVS—A N ICA INPUT VARIABLE SELECTION

ALGORITHM

A. Assumptions

The usual IVS problem can be described mathematically as
follows. A system receives input from the variables

and produces an output

(1)

It is assumed that the system can be approximated arbitrarily
well by a linear or nonlinear functional map. To estimate
measurements are taken with the as-
sumption that

(2)

The usual model building approach is to apply an input vari-
able selection procedure to obtain a set of model inputs

where ideally . Hence a model can be written
as

(3)

where is a functional map parametrized by
However, it is clear that the above assumptions may not be

valid in practice. It is likely that the measurements are not a
strict superset of actual inputs to the system. It seems likely
that we would more often observe data which has beenfilteredin
some manner, relative to the true inputs. For example, suppose
there exists then the observed data may
be written as

(4)

where is a multivariate filter. A simpler variation of this is
where no temporal filtering of the signals is involved, giving

(5)

where in this case is a mixture matrix containing scalar terms
only.

In this situation, it is important to recognize that there does
not exist any subset such that
Moreover, due to the components of appearing in due
to there will tend to be an overestimation of the number of
inputs required.

To avoid this overestimation problem the observed signals
need to be inverse filtered or demixed, so as to obtain an estimate
of the postulated This will then allow an input variable se-
lection method to be applied with less chance of overestimating
the number of signals. Thus we have

(6)

(7)

where is an estimate of and is a sparse matrix which
selects the desired subset of inputs to the model according to a
particular algorithm.

However, while we require we may have no explicit
knowledge of . Recently, this seemingly difficult problem
of estimating and hence from only the observed output

measurements has been solved. A family of mathematical
techniques known as ICA or blind source separation has been
shown to give exactly the solution we require [12], [13]. Based
on the assumption of either temporal or spatial independence
of the channels, ICA estimates a demixing matrix and the input
signals. One ICA method is to estimate the mutual information
between the signals and adjust the estimated matrixto give
outputs which are maximally independent. We consider this
approach below as a means of providing an improved method
of input variable selection.

B. Determining Statistical Dependence

We propose to use ICA to make the input variables as mu-
tually independent as possible. Moreover, using ICA allows us
to derive model-free IVS algorithms based on statistical depen-
dence tests. The basic strategy we suggest is to apply ICA to
estimate the independent inputsfrom and then derive a sta-
tistical test to determine the desired subset of input variables.

One approach for determining statistical dependence is to
estimate the mutual information between two signalsand
given by

(8)

This is also known as the cross-entropy or the Kull-
back–Leibler divergence between the joint probability density
function (pdf) of given by and the product of
the marginal pdfs , . This may be implemented by
estimating the pdfs in terms of the cumulants of the signals, for
example, using the Gram-Charlier expansion.

Estimating mutual information is difficult however, due to
the large amount of data that may be required and not knowing
the order of cumulants to use. Fourth-order cumulants are com-
monly used, but this may not be sufficient to form an accurate
approximation. Indeed, to approximate a pdf far from gaussian,
it is probable that a very large number of terms will be required
[14].

Since we only require a relatively simple binary decision to
be made about the dependence or otherwise of signals, it is not
necessary to compute a precise value for the mutual information.
Instead, the higher order cross cumulants1 of multiple variables
can be used directly up to some suitable order, to determine the
statistical dependence of the signals.

C. Normalized Higher Order Cross Correlations

We propose to determine the input variables required for a
given modeling problem using the simple approach of:

1) making the inputs as independent as possible;
2) testing all possible2 input combinations to find the re-

quired subset.
The method used to find the required inputs uses higher order

cross cumulants, up to a specified order among the individual

1In contrast to the often quoted first-order cross cumulant measure
c (� ; . . . ; � ); of n variables or themth-order cumulant of a single
variable. Since we are seeking to determine the statistical dependence between
variables not just the correlation between variables, it is necessary to use higher
order cross cumulants.

2Or as many input combinations as required.
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terms. This statistical measure can be used to establish the in-
dependence or otherwise of non-Gaussian signals. These cumu-
lants are defined as

where the cross cumulant vectors are between the inputs
at time and the output . For convenience,

we will use the notation . There are two
broad cases that can be considered at this point:

1) models with only instantaneous inputs. In this case we use
;

2) models with delayed inputs. Here we test input variable
against the

system output , by examining the points in the
cross-cumulant space given by elements of the vector

.
Our aim is to combine various cumulant measurements and

thereby apply a decision function to determine the relative de-
pendence of each input subset on the model output(s). Note,
however, that if we wish to combine the cumulant measures, it is
necessary to normalize them first. The reason for this is that the
numerical scale between cumulants of different order are unre-
lated. Only the relative values between the cumulants within the
same order are essential to determine their importance.

Hence we normalize3 each of the cumulants in order to com-
pare and combine them in a reasonable manner. The following
normalization steps are applied to the cumulants:

1) Zero mean signals: .
2) For cumulants using second and higher even cross-order

terms, normalize as:
3) Sign of data: sgn
4) Renormalize individual cumulants. This step is nec-

essary in order to compare the cumulants with
each other. In the same manner as normalizing
autocorrelations, we may use the normalization:

3For example, correlation functions normalized to a maximum value of one
are independent of the actual magnitude scaling of the input variables. Similarly,
we would like to normalize the cumulants such that the cumulant slices will not
change if the input variables are scaled in a similar manner.

Doing these normalizations will allow us to combine various
cumulant estimators for the decision function.

D. The ICAIVS Algorithm

Based on the above results, it is now possible to derive an al-
gorithm for selecting the desired inputs to a given model. Inputs
can be selected based on the prespecified level of dependence
allowed between input subsets and the desired output.

The algorithm can be described as follows.

1) For each cross-cumulant statistic, determine the average
level of dependence implied by the magnitude of the
statistic.

2) Compare each input in turn to this average.
3) Inputs which are significantly different from the average

value are candidates for inputs to the model.
Hence, for ICA transformed inputs consid-

ering the subsets of inputs,
where is the th element of , hence we obtain

the rule

otherwise
(9)

otherwise
(10)

where
th element of at time ;

logical OR function;
threshold value chosen for each subset.

Selection of is aimed at choosing subsets of input vari-
ables that are indicated as statistically different from the other
input variable subsets. Hence one method of doing this is to use
the usual test.

This rule means that if any of the cross cumulants for any
given input subset are above a set threshold level, that particular
input subset is deemed to be required for the model. The test
is applied across all subsets of inputs, however in the equations
above, only one input is actually shown.

E. Computational Complexity

For cross cumulants betweenvariables, we normally need
to test for all cross-orders of cumulants up to the second power,
which would be tests. For input variables, this implies
testing all possible subsets up to the set ofvariables which
leads to a total number of tests given by

(11)

(12)

While the test scales poorly, in practice, we may not need to
test all possible combinations of inputs to establish whether a
variable is required or not. Low cross-order terms can be tested
initially and higher cross-orders can be restricted to variables
found to be not required by the lower order tests. If the tests
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of the lower orders suggest thatvariables are not required we
have only to test those cross cumulants in the next order in which
these variables are involved. In other words, we can reduce all
the tests which consists only of variables already known to be
required. If we restrict the test to cumulants with second-order
powers in any individual variable we have only to make

(13)

tests in the order of cross cumulants. The term is the
number of cross cumulants to reach the second power.

Remarks:

1) The proposed algorithm relies on the existence of a statis-
tically observable dependency between the true input vari-
ables and the output of the system.

2) One example of variables which may be observable
through mixtures is noise. ICA has been shown to be in
particular suitable for demixing noise from measurements.
Our method is therefore very suitable for noisy data. We
therefore expect this method to be useful in a wide domain
of practical applications.

3) PCA is often used to select inputs, but this is not always
useful, since the variance of a signal is not necessarily re-
lated to the importance of the variable. The features selected
may have nothing to do with the problem.

4) In contrast to the use of PCA for input variable selection
[15], [16], the variables we remove are those which are in-
dependent of the output, which is quite different from re-
moving those with low variance.

5) Nonlinear functions may show zero second-order correla-
tions and so it is necessary to use higher order statistics to
estimate the dependence between variables. Hence, we as-
sume non-Gaussian signals in order for the higher order cu-
mulants to be nonzero.

6) The proposed algorithm is closed form and is guaranteed to
give the dependence or otherwise of the input signals on the
output variable.

7) Spurious correlations or dependencies may exist between
unrelated variables and hence could lead to falsely included
inputs, e.g., generated by coupled systems.

8) It is important to distinguish between a nonlinear mixing
process and a nonlinear model. The method proposed here
assumes linear mixing and hence it will not be strictly valid
for the difficult case of nonlinear mixing. However, in many
practical situations, linear mixing appears to be a reason-
able approximation to what is observed. While the former
presents some difficulties, the latter situation can be ade-
quately dealt with by the model and is demonstrated through
examples in Section III.

III. SIMULATION EXAMPLES

A. Example 1

In this example, we show the effect of using higher order cross
cumulants as a means of detecting dependence among variables.
Here 15 mutually independent binary independent, identically
distributed (i.i.d.) signals were generated. Some of these inputs
can be regarded as noise. Three signals, and were used

Fig. 1. Input variable selection Experiment 1 results: (a) without using ICA,
seven inputs were selected, (b) using ICA the required inputs 2, 6, and 9 are
correctly selected.

as inputs to a system with output. The nonlinear model is
described by

(14)

The input signals are not observable directly, but passed
through a random mixing matrix , such that we can observe

. We apply the proposed algorithm for input variable
selection to the observed variablesand to the signals recovered
after application of ICA.

In Fig. 1(a), the results are shown for the case in which only
the higher order statistics of cross-cumulants are used to deter-
mine the relevance of the inputs without first demixing the in-
puts. It is clear that when ICA is not used, the number of inputs
are overestimated, viz., seven inputs were found to be relevant
to the model.

In Fig. 1(b), the results are shown for the case of including the
demixing before applying the statistical tests. Here, when ICA
is used, the number and rank of inputs are estimated correctly.
Examination of the normalized cross cumulants shows that the
dependent inputs have markedly higher values than those which
are independent of the output.

These results are as expected. The first case has dependencies
randomly spread across all observed inputs. Hence the number
of inputs are overestimated. Note that the ranking can not be di-
rectly compared to the true rank which is obtained in the second
case.

It is especially interesting to observe that the dependence
is not always obvious with the second-order statistics, but the
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Fig. 2. Results for Experiment 2 on input variable selection. Here the
cumulants are shown after thresholding according to the test described in the
text. Shown are the thresholded cumulants (a)c (k) and (b) c (0; k),
k = 1; . . . ; p, respectively.

higher order cumulants serve a role in identifying all the re-
quired inputs.

B. Example 2

Suppose we observe a multivariate time series
consisting of dependent variables , and

an output from a system to be identified. For the purposes
of this example, suppose and the output is the result of
a functional model given by

(15)

where is defined in this example, as

The input dependencies in arise due to some true signals
becoming mixed, according to

(16)

The results from this experiment are observed in Fig. 2 where
the necessary inputs to the model are easily selected. Although
not shown here, when ICA is not used,all inputs were identi-
fied in this case as being required. Thus, the algorithm success-
fully identified just the inputs required from the measured data.
As indicated in Section II-E, when ICA is employed, it is often
possible to reduce the number of tests required in terms of cu-
mulant orders by first testing low cross-order terms initially.

IV. CONCLUSION

To effectively model and predict multivariate time series data
it is important to use only inputs actually required and remove
those inputs not required. If unrequired inputs are used signif-
icant problems can occur, especially in problems of high input
dimensionality. Invariably it will be considerably more difficult
to estimate a given model and the accuracy of the model will
also suffer. Computational burden will also be increased dramat-
ically due to the increased difficulty in learning. The problem of
input variable selection normally assumes that it is possible to
select the required optimal set of inputs directly from the set of
measured data. However we have shown that this assumption is
easily violated. In this case, overestimation of the number of in-
puts typically occurs [1].

In this paper, we proposed a new method for performing input
variable selection which helps to solve the above problem. The
method is based on the recently introduced method of inde-
pendent component analysis. This approach permits a relatively
straightforward statistical test to be derived for model free input
variable selection. We applied the proposed algorithm to some
examples which showed that it is capable of successfully iso-
lating the inputs required for a model, even when the measured
data itself is mixed and would normally lead to overestimating
the number of inputs required. It is apparent that ICA provides
a useful tool for accurately estimating the inputs required in
building complex models, particularly with noisy input data as
observed in many practical situations.
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