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Orientation Diffusions
Pietro Perona

Abstract—Diffusions are useful for image processing and com-
puter vision because they provide a convenient way of smoothing
noisy data, analyzing images at multiple scales, and enhancing
discontinuities. A number of diffusions of image brightness have
been defined and studied so far; they may be applied to scalar
and vector-valued quantities that are naturally associated with
intervals of either the real line, or other flat manifolds. Some
quantities of interest in computer vision, and other areas of
engineering that deal with images, are defined on curved mani-
folds; typical examples are orientation and hue that are defined
on the circle. Generalizing brightness diffusions to orientation
is not straightforward, especially in the case where a discrete
implementation is sought. An example of what may go wrong is
presented.

A method is proposed to define diffusions of orientation-like
quantities. First a definition in the continuum is discussed, then
a discrete orientation diffusion is proposed. The behavior of such
diffusions is explored both analytically and experimentally. It
is shown how such orientation diffusions contain a nonlinearity
that is reminiscent of edge-process and anisotropic diffusion. A
number of open questions are proposed at the end.

Index Terms—Orientation analysis, texture analysis, diffusions,
scale-space.

I. INTRODUCTION

A. Why Orientation Diffusions?

CONSIDER the image in Fig. 1. It is quite clear that over
most of the area of this picture the important information

is contained in the orientation of the lines, rather than in the
brightness values.

It is not easy, sometimes not possible, to determine the local
orientation of the image using local operators. In Fig. 2 the
orientations detected using a simple gradient-based method
are shown; such an orientation image is quite noisy. In order
to obtain a more precise determination of orientation one may
use more sophisticated filtering schemes, for example one may
use Gabor-like filters that are tuned to the specific frequency
that is present in the image (see, e.g., [1]), however, by doing
so one gives up locality (such filters are larger), generality
(such filters need to be tuned for a specific frequency), and
one may not be able to detect interesting events such as the
two orientation singularities that are present in the image. It
would be nice to be able to detect a noisy signal using very
local operators, and then “average” this information locally
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Fig. 1. Image of a fingerprint.

Fig. 2. Orientations detected on a detail of the image in Fig. 1 by using the
gradient of a slightly blurred version of the image.

and adaptively in order to achieve both good noise rejection
and localization of interesting singularities.

A similar problem has been faced for a long time by
researchers working on brightness images. Lowpass filtering,
or, equivalently, diffusing the image, has long been seen as
a convenient way of rejecting noise and reconstructing the
underlying data. By analogy, it may be a good idea to blur, or
diffuse, orientation information in order to obtain more reliable
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information based on a neighborhood of each point.
Another reason for diffusing images is that diffusions nat-

urally produce a “scale-space,” i.e., a fine-to-coarse family
of derived images. The main structures present in the image
are easier to detect in the coarser scale portions of the scale-
space, while the finer scale portions, closer to the original
image, are more suitable for localization tasks [2]–[4] (for
a comprehensive review of work on diffusions, see [5]).
It is reasonable to try and define scale-space operators for
orientation images as well.

A number of researchers [6]–[10] have proposed methods
for diffusing, or lowpass filtering, orientation images. These
methods may be, in essence, reduced to a simple three-step
process. First, embed orientation in the plane via the map

second, diffuse in the plane
for a time third, project back to the circle via the map

There are two caveats: In
the cited works the norm of the orientation vectoris not
restricted to be equal to one, rather it is set to represent
image contrast; here we are purely interested in orientation,
therefore we will use norm one vectors. Moreover, some of
the authors referenced above diffuse an “orientation tensor,”
rather than the orientation vector as pointed out in [9, p.
229], the two are equivalent if the quantity being diffused is
an orientation defined in the plane. As it will be shown in
Section II, this process has two effects that may be unwanted:
It is not consistent if it is iterated, and it produces large-scale
changes in the topology of the orientation image with large
jumps in the value of orientation.

B. Representing Orientation

Before trying to define orientation diffusions we need to
clarify the concept of orientation. Orientations may be associ-
ated with points on a circle; however, one has to be aware of
the fact that there are two main “types” of orientation. After
being rotated by 180, a brightness step edge looks different;
however, a line will look the same. The step edge is -
periodic, while the line is 180periodic. Hue is -periodic
as well. There may be quantities that are -periodic, for
example cross-junctions as depicted in Fig. 3.

Granlund and Knuttson [9] have proposed to embed each
one of these periodic quantities in the circle by
appropriate scaling of the orientation variable. For example,
the map maps line orientation onto the circle, as shown
in Fig. 3 (center). Analogous embedding may be done on the
complex plane as by appropriate choice of the constant
As a result we may think of any orientation in a unified way
as a quantity that is defined on the circle. In the rest of this
paper we will therefore not need to worry any longer about
the problem of which orientation we are using and we will use

as our variable representing orientation.

II. CONTINUOUS SPACE

The most straightforward idea for extending brightness
diffusions to an orientation image is to ignore the fact
that is defined on the circle, rather than an interval of the

Fig. 3. There are different kinds of oriented structures in images. Some are
2�-periodic, some are�-periodic, others may have even smaller periods.
This dishomogeneity is more apparent than real; as Granlund, Knuttson, and
collaborators have suggested, whatever its length the period may be mapped
onto the circle thus obtaining a unified representation.

line, and proceed as in the conventional linear diffusion case

(1)

Is this a good idea? In this section it will be shown that this
is indeed a good method in the continuous case, and that it
is related to the traditional embed-diffuse-project method that
was sketched in the introduction. At the end of the section
it will be shown, however, that a naive discretization of this
method does not work; discrete orientation diffusions will be
introduced in Section III.

As discussed in the introduction, a popular way of diffusing
orientation is to diffuse the components of an orientation
vector (equivalently, an orientation tensor) that is embedded
in a Euclidean space.

Definition 1: Call the operator that maps the func-
tion into the function by the sequence of
embedding, diffusion and projection

embedding

diffusion

phase projection

where indicates (this notation will be used through-
out the paper), and is a positive constant determining the
velocity of the diffusion.

Observation 1: This technique does not have the semigroup
property, i.e., it is not necessarily true that when
we have See the example in
Fig. 4. If one wants a consistent behavior one has to use both
phase and magnitude of as the initial condition of
further diffusion.

Observation 2: This technique may produce results that are
“topologically wrong.” In Fig. 4, fourth and fifth columns, it is
demonstrated that it may “unwind” an orientation loop while
smoothing it. In the process, around location 45 the orientation
suddenly jumps by

It is possible, however, to define a related diffusion that
preserves the semigroup property. The main problem with
the traditional “plane-embedding” definition of orientation
diffusions stems from the fact that the result of the diffusion in
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Fig. 4. Example of violation of the semigroup property. The diffusion is performed on the 1-D orientation signal represented in the far-left column (each
signal is represented twice: as an angle [top row), and as a polar plot (bottom row)]. The signal is equal to� (equivalently��) at the boundaries, and
undergoes a full rotation between the thirtieth and the sixtieth sample. The second to fifth columns show the result of applyingD

0

[90] four times,D0

[120]
three times, etc., so that the total diffusion time is constant:t = 360 time units. The last two columns present diffusion results that are qualitatively very
different from the one in the second column. The third column shows a behavior that is close to critical. Notice that the result of diffusing the signal in
the plane (the last column) is “wrong” because as a result of the diffusion the2� loop has disappeared, and the signal just oscillates around�: Compare
with the result of applyingD04[90]; where the kinks are smoothed while the topology of the loop is preserved.

the plane is projected back onto the circle only once, at the end
of a time interval. As it may be noticed in Fig. 4 the result
of repeating short diffusions and projection cycles is more
“correct” than what is obtained via a single cycle composed
of a long diffusion followed by a projection.

One might think of taking this last observation to the limit:
alternate vanishingly short diffusion phases with projections
onto the circle in order to obtain a consistent behavior.

Definition 2: Call the -th power of i.e., the
operation of applying times. Then we may define as the
limit obtained applying many times for very short intervals,
as follows:

It turns out that this strategy generates a diffusion that has the
semigroup property.

Proposition 1: The diffusion

enjoys the semigroup property.
Proof: We want to prove that

Starting from the definition of and dividing the limit into
two limits one may verify this fact.

How do we calculate this diffusion in practice? It is possible,
of course, to alternate short diffusion cycles with projections,
as described above. There is a more natural implementa-
tion though. It is possible to prove that one may compute

by solving the usual heat diffusion equation:

Proposition 2: Call the solution of the diffusion
equation

(2)

and suppose that it is twice differentiable (the symbolhere
indicates the “Laplacian” on the circle, one may calculate it
by taking formally the spatial derivatives of

Then
Proof: Let’s start by taking a first-order Taylor expansion

of :

(We may take any determination of the complex log in the
following calculations, provided that it is always the same).

We may compute aside the Laplacian of
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Let’s now expand in Taylor series the complex log of
remembering that .

Therefore

(3)

From this and from the definition of

and therefore

(4)

A caveat is that the derivatives in the Laplacianshould
be taken keeping in mind that theta is periodic, and therefore
that

In order to implement this diffusion on a computer one
has to discretize it both in space and time. Unfortunately, is
not clear how to discretize this diffusion on a lattice in
and : what is the discrete version of the Laplacian? Plain
finite differences will not do for approximating the spatial
derivatives of

One could think of using a plain finite-difference approxima-
tion of the Laplacian of (2) as is commonly done for brightness
diffusions (for simplicity of notation a single space coordinate

is used here):

(5)

This equation is easy to interpret: the variableis incremented
at the location by an amount that is proportional to the sum of
the difference of with its neighbors and

While this is a perfectly natural discretized algorithm when
the quantity to be diffused is defined on a flat manifold, it leads
to an ambiguity on the circle. Suppose that two adjacent lattice
locations and have associated orientations

and say. The difference may
be represented in two ways: and For now this
representation ambiguity is only apparent since both notations
denote the same element of the circle. However, as soon as
we multiply these quantities by a small scalarin order to
calculate the increment to be applied toas a consequence of
the diffusion, we find ourselves in the embarrassing position of
having to choose between a counterclockwise small increment,
and a clockwise larger increment (see Fig. 5).

Fig. 5. The difference between two orientations may be expressed by two
different notations, one positive and one negative, that denote, however, the
same quantity. When such difference is multiplied by a small scalar we have
an ambiguity.

Another problem is how to “bias” the diffusion to keep the
solution sufficiently close to some constant “data” terms
Also in this case finite differences, or distances, have
to be computed. This is another case where the differential
definition of “distance” that is implicit in (2) is not helpful.

Also, is not clear how to define the diffusion in general. The
hypothesis that the solution is twice differentiable makes the
differential formulation useless in practice.

III. D ISCRETE SPACE

In the previous section we have found a simple expression
for the “natural” diffusion of orientation on a continuous
spatial domain. We have seen that it is not possible to obtain
the discrete version of this diffusion on a spatial lattice by
simply taking spatial finite differences in order to approximate
the spatial derivatives of

In order to solve this problem we need to take one step back
and derive the notion of diffusion of orientation by revisiting
the relationship between diffusions and variational problems.

First of all recall that the common diffusion equation
where is a real-valued function defined on

the plane (line), may be obtained as the “gradient descent”
solution of the Euler equation of an energy, or cost, functional

The discrete analog (for the sake of convenience we may
use one discrete spatial coordinateof such a cost function
is The gradient descent strategy
for minimizing such a cost function consists in the algorithm

(6)

where is a “velocity” parameter.
Observe that the quantity is a discretiza-

tion of and
Moreover, the cost function or “energy” function is composed
of the sum of pairwise terms i.e., it is the sum
of the costs or energies associated to each pair of neighboring
locations.

By analogy, we may be able to obtain a definition of a
diffusion of orientation-like quantities on a discrete lattice if
we manage to define the pairwise energy of two orientations.
There are many reasonable definitions. If one uses the physical
analogy with the energy associated to two superimposed
magnets oriented as and then the pairwise energy is
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The same result is obtained
from modeling the energy associated to a spring of zero resting
length that is attached to the points and of a circle, and
again by modeling the energy that is associated to a point
mass that slides on a circle and that is subject to gravity; this
is represented in Fig. 6.

If we adopt this definition then our total cost is
We may minimize such “energy” or

“cost” by gradient descent as follows:

This is the “right” way to discretize orientation diffusions.
We present the following observations.
Observation 3: The expression

may be seen as the discretization of the Laplacian for
orientation-type variables

Observation 4: Similarly, one may think of as
the “right” way to compute the finite difference on the circle.
Observe that, according to this definition, the “distance” (one
may think of it as a force) between zero andis zero. This is
due to the fact that a small perturbation of the value of either
angle produces only a negligible second-order change in the
value of the associated energy.

Observation 5: On a square-connected bidimensional lat-
tice the above definition of discrete laplacian generalizes to

(7)

(8)

where is the set of neighbors of the lattice location
This definition, using a 3 3 neighborhood structure,

was used in the experiments presented in this paper. One
caveat is that this 2-D definition is not rotation-invariant.

Observation 6: The energy used here is intuitive because it
has a ready physical interpretation. It is by no means the only
possible choice. Interesting computational behaviors may be
obtained using different energy functions.

Observation 7: A contrast-invariant orientation scale-
space, i.e., one that is invariant with respect to any monotonic
change of image contrast may be obtained if the
initial conditions of the orientation diffusion are obtained by
measuring the orientation of the iso-brightness curves in the
image, or, more realistically, by first smoothing the image
a little by mean curvature motion and then extracting the
orientation of the iso-brightness curves. Orientation diffusion
is obviously contrast-invariant.

IV. BIASED DIFFUSION

At times it is useful to bias the diffusion with some data
term We may exploit the energy based derivation of
finite differences in this case as well

(9)

Fig. 6. Energy associated to a pair of locations on the straight
line (top), and to a pair of orientations (bottom). Notice that
2 sin2(�A � �B=2) = 1 � cos(�A � �B); therefore both physical
systems are governed by the same energy.

where denotes either the Laplacian, or its discrete version
as derived above.

V. NONLINEARITY IN THE INTERACTION

Observe the nonlinearity that is intrinsic in this diffu-
sion scheme. While in the brightness diffusion the energy is
quadratic, and therefore the flux, i.e., the amount of brightness
flowing through a surface in the unit time, is proportional to the
difference between neighbors, in the orientation diffusion that
we just defined the flux is and therefore depends
nonlinearly on the difference This is reminiscent of
the nonlinear probability density, energy and diffusion terms
proposed by Geman and Geman [11], Blake and Zisserman
[12], Perona and Malik [13], and others.

Notice that when one has maximum flux,
i.e., maximum interaction between neighboring orientations,
while when the flux is zero. In this latter case
the two nodes of the lattice do not interact, as if a discontinuity
process [11], [12] had intervened. As pointed out earlier, the
energy function that is used here is by no means the only
possibility, although it may be thought of as the simplest, or
the most “natural” one. More aggressive nonlinear behaviors
may be obtained using, e.g., an energy that is the square of
the ‘natural’ one.

One further observation: If the flux was not zero when
neighboring lattice locations differ by the flux would be
discontinuous there: because of symmetry it needs to change
sign when the difference passes from from to

VI. UNCERTAINTY

It is often the case that orientations may be measured with
a variable level of accuracy. For example, an image may
contain strongly oriented structure (edges, wood texture) and
unoriented patches as well (sand texture, clouds, flat sky). As a
result the data that the diffusion is “filtering” or “interpolating”
has a variable degree of reliability.

For this reason, it is useful at times to incorporate in
the diffusion a measure of two kinds of uncertainty: 1) the
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Fig. 7. Results of running orientation diffusion. The original image is shown at top left. The corresponding orientation, computed from the brightness gradient,
is shown at top right. The orientation image (top-right) was used as the initial conditions of the diffusion. The second and third rows show the resultsof
running the diffusion for five and 50 iterations (left and right columns). The second row shows the orientation and the third the energy.

uncertainty of the data in the bias term; and 2) the degree of
approximation with which the diffusion has estimated local
orientation.

There are a number of different approaches to this problem.
We examine here some simple ideas.

A. Uncertainty in the Data

At times a model of the uncertainty with which orientation
may be measured in the image is available, and this may
vary throughout the image. Consider for instance the image
in Fig. 1: In the white background region it is very difficult
to make out any orientation, while in the fingerprint area

orientation is relatively easy to measure almost everywhere.
One may want to incorporate this information in the diffusion
process.

One way to represent uncertainty in the data is via a
probability density function The “cost” in the sys-
tem composed by a deterministic orientationand such an
uncertain orientation may be calculated as the expectation
of the energy

(10)
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Fig. 8. Detail of the diffusion shown in Fig. 7. Zero, 5, 10, and 30 iterations are shown in rows 1–4. Orientation (left column) and energy (right column)
are shown. The arrows that are superimposed on the energy and orientation images show orientation using two different conventions. Since, in fingerprints,
the orientation of interest is of the line kind (see Fig. 3), such orientation may be shown via double-headed arrows that are parallel to the lines in theprint
(right column images), and as single-headed arrows that show the unified representation of orientation of the circle. In this case the single-headed arrows are
oriented as2�, where� is the orientation of the underlying line. Notice the two singularities that merge and disappear briefly after iteration 10.
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Fig. 9. The causal behavior of orientation diffusion is evident in this experiment where an image composed of random orientations was diffused. Notice that
the orientation singularities are points and that they disappear, usually in pairs, as diffusion progresses. No “birth” of singularities may be observed.
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Fig. 10. Detail of the experiment of Fig. 9. The two singularities in the center of the picture merge and disappear.

It is often reasonable to assume that is distributed
uniformly in the interval i.e.

for in the interval, and zero elsewhere.
In this case

(11)

From this we may derive the expression for the bias term in
the diffusion

(12)

Observe that what we have obtained is very similar to the
previous diffusion; we have just added a constant weight term

that accounts for the certainty of the data.
As one would expect when (no uncertainty) then

and when (maximal uncertainty) then

In the case that an uncertainty is also associated with the
diffused then one obtains an additional multiplicative term

B. Uncertainty in the Value of the Diffusion

The local energy may be useful to calculate the “reliability”
of the value of and the distance of
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from the underlying data :

where the uniform probability density described in the previ-
ous section is assumed for convenience.

The probabilistic interpretation of these energies is not clear.
However, they prove to be useful, e.g., for detecting and
locating the singularities in the orientation as discussed in
Section VII and as shown in Fig. 7.

VII. EXPERIMENTS

A. Smoothing of Orientation

The lattice implementation of the orientation diffusion, with
the discrete Laplacian, as described by (8), was tested on the
striped portion of the fingerprint image shown in Fig. 1. The
intitial conditions of the diffusion, i.e., the initial orientation,
were calculated from the gradient of the image brightness
(orientation of the gradient plus shown in Fig. 2. The
boundary conditions were adiabatic (i.e., zero-gradient).

The results of running the diffusion may be seen in Fig. 7.
Notice that the diffusion has the desired effect of smoothing
orientation. The two singularities of orientation that are present
in the fingerprint would be difficult to detect in the original
image using a local operator. They are clearly visible in the
smoothed orientation image after 50 iterations (second row,
second column of Fig. 7); they may be easily detected and
extracted from the corresponding energy image (third row,
second column of Fig. 7).

B. Scale-Space and Causality

In Fig. 8, a detail of the previous experiment is shown.
The detail corresponds to a portion of the image surrounding
the bottom-left orientation singularity of the fingerprint. The
original orientation image (top right) is quite messy, however,
after five iterations of the diffusion process (second row) most
of the picture is already smooth. In the energy image (second
row, left) a number of high-energy locations are visible. The
rightmost one is due to a misaligned orientation which is
realigned between iterations five and ten. Three more, due to
“fundamental” singularities in orientation, are clearly visible.
The bottom-left two singularities display an interesting and
commonly observed behavior: They merge and vanish shortly
after iteration ten. By iteration 30, only one singularity has
remained, the one that is present in the data at a coarse scale,
i.e., the delta singularity.

In the scale-space literature this behavior is calledcausal;
singularities may disappear, but not appear, as a result of
running the diffusion forward in time. When a singularity is
found at a certain time, its “cause” may always be found at
previous times.

In order to better explore whether the causality behavior
that one observes in Fig. 8 is intrinsic to the equation, we have
run a number of experiments using randomly oriented initial

conditions. Violations of causality were never observed. One
such experiment is shown in Fig. 9. A detail of Fig. 9 showing
two singularities merging is shown in Fig. 10.

VIII. D ISCUSSION AND CONCLUSIONS

It was shown that the usual definition of diffusion, such
as is used on brightness data in computer vision, may be
extended trivially to the case of orientations in the continuous
case; however, the discrete case is particularly problematic.
A common definition of orientation diffusion, obtained by
embedding orientation in the plane, and then diffusing, was
shown not to enjoy the semigroup property and to produce
large-scale degradations of the topology of the solution.

A definition of orientation diffusion was suggested; it is
based on gradient descent of an energy function inspired by
the model of simple physical systems. It is defined on a
lattice and it may be implemented with simple calculations
on 2-cliques. Experiments conducted on the image of a fin-
gerprint demonstrate that this diffusion de-noises orientation
data effectively.

The scale-space behavior of this equation was explored ex-
perimentally. Our empirical observations may be summarized
in the following three conjectures.

1) The generic singularities are points rather than lines.
2) The diffusion has the causality property, in that point-

singularities may disappear but never appear.
3) The point-singularities disappear by either merging with

other singularities or by flowing off the boundary of the
diffusion.

No proof of these conjectures is known to the author.
A few further questions remain open.

1) The definition of the orientation diffusion in the contin-
uum was given for smooth solutions only. It is quite
useless as such. It would be important and probably
interesting to try and extend the definition to the case
where solutions are allowed to have singularities, i.e.,
points where the orientation is discontinuous. At such
points the energy function diverges, e.g., in the neigh-
borhood of a point from which orientations radiate
outwards, the energy diverges with the cube of the
distance from such point. However, it is not clear that
the velocity with which the solution of the diffusion
evolves should be infinite; one would expect that ori-
entations symmetrically radiating from a point would
be a stable equilibrium for the equation. Unlike the
case of brightness diffusions we would therefore have
a number of nontrivial stable equilibria, and some such
equilibria might be “dynamic” in that the corresponding
“orientation flux” would be nonzero.

2) While the definition of singularities in the continuous
case is clear, the term “singularity” only has an intuitive
meaning in the discrete case (i.e., when the domain
of definition of the orientation function is a lattice). It
is unclear wether a rigorous and meaningful definition
might be found.

3) Singularities come in different varieties: points from
which orientations radiate outwards, points that are
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encircled by orientations, parabolae, etc. Many of these
were observed by Granlund and collaborators. It would
be interesting to collect a complete taxonomy of such
singularities, and relate this taxonomy to the scale-space
behavior of pairs of singularities. This would parallel
the catastrophe theory that was developed in the case of
brightness for linear scale-space [2], [14]–[16]. Work on
harmonic maps and liquid crystals, e.g., [17], may shed
some light on this issue.
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