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Optimum Design of Chamfer Distance Transforms
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Abstract—The distance transform has found many applications error (MAE) around the boundary of a square of general size
in image analysis. Chamfer distance transforms are a class of (2M) x (2M). The error was normalized by/, which gives
discrete algorithms that offer a good approximation to the desired unequal scale weighting to errors at different points on the

Euclidean distance transform at a lower computational cost. They b d f th dh diff t | Oth
can also give integer-valued distances that are more suitable for ounadary o € square an ence difrerent angles. ers

several digital image processing tasks. The local distances used td9]—[11] followed this approach and extended the analysis to
compute a chamfer distance transform are selected to minimize find the optimal local distances for mean squared error (MSE).

an approximation error. In this paper, a new geometric approach A related problem of estimating discrete lines was analyzed
is developed to find optimal local distances. This new approach in [12]. Verwer [13] found optimal distances under both the

is easier to visualize than the approaches found in previous S
work, and can be easily extended to chamfer metrics that use MAE and MSE by minimizing the error along the boundary

large neighborhoods. A new concept of critical local distances Of @ unit circle thus giving equal emphasis to the errors at
is presented which reduces the computational complexity of the different angles.

chamfgr di_stance transform without increasing the maximum In this paper, we develop a geometric approach to find
approximation error. optimal local distances that has certain new viewpoints and

Index Terms—Chamfer metrics, critical local distances, dis- novel aspects compared with previous approaches. These new

tance transforms. viewpoints are motivated by the major application of multi-
scale morphological filtering. Since the distance transform is a
compact representation of multiscale morphological dilations

L and erosions, our objective is to find local distances for
T HE DISTANCE transform has been applied in mangpameer distance transform that give the best approximations

image analysis tasks including shape description, fegr mytiscale dilations/erosions by disk structuring elements.
ture detection, skeletonization, segmentation, and multiscgle ~ontrast to a previous approach [13], which compared
morphological filtering [1]-[5]. Since the computational coSfe chamfer distance and the Euclidean distance at the same
of the exact Euclidean distance transform is relatively higBoints along a unit circle, we compare the distances along
several fast algorithms have been developed to approximatgil poyndaries of the two balls induced by the two metrics
Some of these algorithms also yield integer-valued distancgs.ihe same scale. (The ball induced by the chamfer metric
which have the additional advantage of making various image polygon, whereas the Euclidean ball is a disk.) Our
analysis tasks more efficient, e.g., skeletonization. A majgp,-5ach is easier to visualize geometrically, shows clearly
class of such algorithms is based on chamfer metrics [3he dependence of the approximation error on individual local

The termchamfer (introduced in [6]) originally referred 10 yisiances, yields simpler error expressions used to find optimal
a sequential two-pass distance transform algorithm develogdy| gistances under various error minimization criteria, and

by Rosenfeld and Pfaltz [1] and later improved and generalizgd, s 1o 4 new concept of critical local distances that offers

by Borgefors [3]. Even though this class of algorithms can al$gqyced computation without increasing the maximum error.
be implemented using parallel or queue-based algorithms, the

word “chamfer” is retained for compatibility with previous
work. Sometimes the word “weighted” is also used to refer to
this class of distance transforms. Given a binary imagef(z,y), let the planar sett’ =
The chamfer distance transform approximates the global di$z. ¥): f(z,y) = 1} represent its foreground or feature set
tance computation with repeated propagation of local distan@¥ letF* represent its the background. The distance transform
within a small neighborhood mask. The approximation err&® £ is defined as
depends upon the size of the neighborhood and the selection . _ _ . c
of the local distances. Borgefors [3] analyzed this problem by p(E)(@y) = mill(r =y = v)llps (w,0) € 5 (1)
finding local distances that minimize the maximum absolutehere || - ||, is the distance under thé” norm, p =
1,2,3,---,00. Thus,D,(F') is a gray-level image with values
Manuscript received October 14, 1996; revised December 4, 1997. This each pixel representing its distance to the nearest pixel

work was supported by the Joint Services Electronics Program under Contiggt gre Thresholding this distance transform at various levels

DAAH-04-96-1-0161 and the National Science Foundation under Grant MIP- . . . .

94-21677. The associate editor coordinating the review of this manuscript dnd™ 0 ylelds the multiscale morph0|09lcal erosioasof I’

approving it for publication was Dr. Josef Bigun. by the ballsrB, = {(x,): ||(z,v)||, < r} of sizer induced
The authors are with the School of Electrical and Computer Engine%y the ## norm, i.e.,.F © 7’Bp — {(x,y): Dp(F)(x,y) > 7,}'

ing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail; - o . .
afmal@eg.gatech_edu). o ¢ Multiscale dilations ofF' can be obtained from the distance

Publisher Item Identifier S 1057-7149(98)06814-6. transform of £°. Among the norms used, the Euclidean norm

I. INTRODUCTION

Il. PRELIMINARIES

1057-7149/98%$10.001 1998 IEEE



1478 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 10, OCTOBER 1998

(b)

I . Fig. 2. Approximation to a disk of radius = 250 in Z? using balls

e ¢ ¢ ¢ of different norms created by chamfer metrics 0fx33 neighborhood. (a)
; : Chamfer metric(1,2) or city-block norm|| - ||1. (b) Chamfer metriq1,1)
e d cd e or chessboard norf- || . (c) Chamfer metrig3,4)/3. (A circle of radius

250 is superimposed on all the balls.)

Fig. 1. Local distances for & 3, 5 x 5, and 7x 7 neighborhoods. The
unmarked pixels are not used.

(wherep = 2 and B, is a disk of radiusr) is preferred
as it gives isotropic distance measurements. A faster but B
approximate computation of the Euclidean distance transform
can be achieved via chamfer distance transforms [3], which
may also use integer arithmetic. These algorithms start from
the background seft' and propagate local distancesiih At

each step, distance is propagated in a small, usually 3 L(® (x:y)
or 5 x 5-pixel, neighborhood. The distance to any pixel of 4’

F is the sum of local distances of the shortest path starting 0 9
from F° and ending at that pixel. This propagation of the !
local distances can be achieved with parallel, sequential, or O A

queue'based algorithmg [4] Ifax33 piXQl neighborh_OOd is Fig. 3. Octant part of the chamfer octagon of sizgenerated by the X%
used at each step of distance propagation, local distances efiamfer metriqa, b). The end points have coordinatés= (r/a,0) and

a andb are used for distances between axially and diagonafy= (r/0.7/b).

neighboring pixels, respectively; see Fig. 1. This set of local

distances is referred to as the chamfer metrichb). Note the chamfer polygon is symmetric with respect to the axes and

that (a,b) = (1, 1) represents the chessboard metric, whereti®e diagonals, the analysis can be limited to the wedge-shaped

(a,b) = (1,2) gives the city-block metric [1]. planar region{(z,y): x > 0,y > 0, andx > y}. In this
region, the boundary poinis:, ) of the chamfer polygon of

IIl. OPTIMAL LOCAL DISTANCES FOR3 x 3 NEIGHBORHOOD sizer lie on the line(b — a)y + ax = » which forms an edge
joining two verticesA and B, as shown in Fig. 3. The acute

A. Error Analysis anglef; between thec-axis and this edge is equal to
For the chamfer metri€a, b) with regularity constraints [8] 0 — tan—1 r/b ~ tan-! a
a < b < 2a, the chamfer distance between the origin and a Lo rla—r/b) " b—a)’

planar point(z,y) is the chamfer norm (3] Applying the law of sines to the triangle formed By A, and

(2, )l(apy = max(|z], |y|)a + min(|z|, |y|)(b — a). (2) an arbitrary point(x,y) on the edgedB yields the length of
the vector connecting the origin and the pofat ) on the

Its induced ball of sizer > 0 is 7By = edge of the chamfer polygon to be

{{z,1): (=, ¥)llep < 7}, which is a convex polygon .
(octagon) henceforth called thehamfer polygonof size r. L(§) = 7sin(61)
The goodness of approximation of the disk of radiudy asin(f + 61)

7B, depends oru and b; examples are shown in Fig. 2.where§ is the angle between the vector and thexis. The
Note that (2) applies both on the continuous pldR& as approximation error is the distance difference between the
well as the integer plan&”. The discrete chamfer polygonspoint on the circle of radius and the corresponding point
are sampled versions of their continuous counterparts, ang the boundary of the chamfer polygon. This is equal to

for large scales the difference is very small. Our analysjs_— L(#), which, when normalized by the radiusyields a
will be done on the continuous plane because then the erfermalized error

normalized by the disk radius becomes independent of scale. r — L(6) sin(6;)
Further, it is only meaningful to work with the relative £(6)= R T (R Y 0<0< /4
error because it can be bounded, whereas the absolute error ! 3)

increases with scale [14].
To find the approximation error, the chamfer polygon shoulthe normalized error can also be obtained by comparing the
be compared with a disk of the same scal¢iowever, since unit chamfer polygon with the unit circle. Within the interval
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Fig. 4. Differences in the errors analyzed by Verwer [12] and our approach, a=0.9619, b=1.3604 a-0.9619, b-1.3604
shown for octant regio® € [0, w/4]. (a), (b) For local distancefl, v/2). 07 8
(c), (d) For local distance).9619,1.3604). In (a) and (c), the dotted curve 7
is the part of the unit circle, the solid line is the edge of the unit chamfer Z6
octagon (traced by vectors whose chamfer norm is one), and the dashed cutye, %5
is traced by vectors whose Euclidean norm equals the chamfer norm of the§r'3‘ E,
corresponding vectors (at same angle) tracing the unit circle. In Figs. (b) and §3
(d), the solid graph (our approach) shows the absolute Euclidean distancé® 2
difference between corresponding points (at same angle) of the circle and th& w2
solid chamfer edges in Figs. (a) and (c), whereas the dashed graph (Verwer's® 1
approach) shows the difference between the circle and the dashed curve. 002 04 38 0 1,
0 10 %\ONGLI: 30 40 45
) , ) ®
0 <_ 0 < 7r/4, when ¢ = 7r/2 = b1, |E(9)| assumes its Fig. 5. Edge geometry and normalized errors fox 3 chamfer metrics. (a),
maximum value of (b) Euclidean local distancés, v/2). (c), (d) Local distancel, 1.3420,. (e),
(0 (f) Optimal local distance§0.9619,1.3604). In (a), (c), and (e), the solid line
max |E(9)|| —|1_ Sm( 1) —|1_ 1 represents the chamfer polygon, dashed line represents the circle, and dotted
0<6<w/4 a /a2 + (b _ a)? ’ lines are drawn at angles of 1020°, 30°, 40°, and 45.

However, the maximum error could also occuat 0 or at  yhich is controlled by the local distanéeis to be optimized,
¢ = 7/4. Hence, the complete expression for thamalized ¢ expression (4) reduces to

MAE is

V2 1 }
F.x(1,b) = ma 1-—|, 1 - —=|;. 6
Emax(aa b) ( ) X{‘ b 1+ (b — ]_)2 ( )
The diagonal corner of the normalized chamfer octagon should
B 1 1 1 V2 1 be moved in such a way that the error occurringfat=
- a|” b [T 2+ b—a2|( w/4 becomes equal to the maximum error occurring for
~ 0 < 8 < w/4. By equating the two error expressions in (5),
=0 4=r/s 0<6<m/4 we get
4
) 46 — (8 + 4V2)b% 4+ (9+8V2)b? — (44+8V2)b+4 =0.
B. Optimal Local Distances Under the MAE Criterion (6)

Let us first consider the chamfer metfit; v/2) because this By solving (6) we geb = 1.342. This gives a MAE of 5.38%;
represents the true (Euclidean) distances between neighboseg also Fig. 5(c) and (d).
pixels. By (4), the MAE is 7.61% and occursat 7/8; see If both ¢ andb are to be optimized, they should be selected
also Fig. 5(a) and (b). The values= 1 andb = /2 place so that both axial and diagonal corners of the unit chamfer
the vertices of the unit chamfer octagon on the unit circle. 8ctagon are outside the unit circle by the same amount and
better choice of local distances should put the vertices outsithe absolute error occurring at the corners of the normalized
the unit circle. For example, if axial vertices are to remain athamfer octagon is the same as the absolute error occurring at
the circle(a = 1) and the position of the diagonal verticesmidpoints of the edges. This occurs when the triarigieB of
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TABLE |
ERRORS FORCHAMFER DISTANCE TRANSFORMS BASED ON 3 X 3 NEIGHBORHOOD
(a,b) MAE MSE | Area Diff. | Comments
(1,1) 41.407 % | 16.976% 27.31% | Chess-board metric
(1,2) 29.289 % | 22.269% 36.34% | City-block metric
(1, \/5) 7612 % 5.610% 9.97% | Euclidean local distances
(3,4)/3 6.066 % | 3.690% 4.51% | A common choice
(1,1.3420) 5.381 % | 3.810% 5.12% | Optimal for min MAE with a =1
(0.9619,1.3604) | 3.957 % 2.718% 2.70% | Optimal for min MAE
(70,99)/72.77 3959 % | 2.719% 2.71% | Integer approx. for min MAE
(0.9489,1.3419) | 5.391 % | 2.369% 0% | Optimal for min MSE with Area Diff.=0
(70,99)/73.78 5400 % | 2.369% 0.01% | Integer approx. for min MSE

Fig. 3 is isosceles. In this case L0 = E(n/8) = —E(n /4). For the 3x 3 neighborhood, in the octant region of Fig. 3,
This givesb = v/2a and 6, = 67.5°. Furthermore, solving the area of the corresponding part of the chamfer octagon is

E(x/8) = —F(0), we obtain 1/2ab, whereas the corresponding disk sector has aréa
: o Hence, forcing azero area differencds equivalent to the
1 67. '
-t 8“12( %) 0.9619 = b= vZa = 1.3604 constraint
These optimal local distances give a MAE of 3.96%; see also ab=4/x.

Fig. 5(e) and (f). The optimal local distances and the corre-
sponding values of the MAE derived via our approach aboveFor each case, the optimak,b) were found using the
are different from the values obtained by Verwer [13]. Fig. @ptimization toolbox of MTLAB. We have experimentally
further explains the difference between the two approachedound that all three approaches above yield very similar values
for the optimal(a, b) and the minimum MSE. We have selected
C. Optimal Local Distances Under the MSE Criterion approach 3, which gave = 0.94885,b = 1.34188, and
o = 2.369%. Choosing the zero area difference constraint
is consistent with our original motivation to optimize cham-
R distance transforms for multiscale morphological filtering
where the chamfer balls (polygons) should best approximate
o 4 (m/4) E2(0) do the disks. Table | shows the MAE, MSE, and relative area
e /0 () differences between the chamfer octagon and the disk of same
scale for various choices df, b).

It is possible to find optimal local distancés),(b) by
minimizing the MSE. Working in the same octant planar regi
as for the MAE, the normalized MSE is equal to

a

™

g 4sin(6b,) 1
Ta? cos(6) + sin(6) D. Integer Local Distances
ﬁ _ ﬁ In practice, for faster implementation, integer-valued local
- —2alog Csc( +91) COt( +91) @) distancesA and B are used, and the computed distance
csc(bh) — cot(0y) ) transform is divided by a normalizing constaht which

can be real-valued. We refer to such a metric(dsB)/k.
We have experimented with three approaches to minimize ti¢ resulting chamfer distances are obviously the same as
MSE, as follows. the ones obtained using real-valued local distan¢¢s and
1) Unconstrained minimization of MSE. B/k. Integer local distances can be obtained from any real-
2) Minimization of MSE under the zero mean error convalued counterparts by multiplying the latter withand then
straint f§/4 E(9) df = 0; this gives an unbiased rounding. One can arbitrarily choose the valug:oé.g., 100,
MSE and is the same approach as in [9], [10], anahd set the integer distances equalAo= round (ka) and
[13] although our resulting optimalz,b) are different B = round (kb). This may result in a suboptimum selection
because our error functioB(6) is different. because the roundoff error may be large @)y may not be
3) Minimization of MSE under a new constraint of zeroery close tdi/a. We are proposing a new approach where we
area difference, where we forced the area differenfiest selectd from a desired integer range, say< 100, such
between the chamfer polygon and the disk at same sctiat the roundoff errotAb/a — round(Ab/a)| is minimum.
to be zero. Then we setB = round(Ab/a) andk = A/a. For example,
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o

given the optimal real local distancés b) for minimum MAE act. b1 4142, 0-22361 3t bt 4142, o= 2961
(see Table I) wheré/a = /2, the search for an optimum °’
integer A yields A = 70 (see Fig. 6), which in turn gives
B =99, k=172.77, and MAE = 3.958%. In Table | we also 2.
provide an integer approximation to the real local distancéss
that minimize the MSE. 02
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IV. OPTIMAL LOCAL DISTANCES FOR5 x 5 NEIGHBORHOOD o 02 04 06 08 1

X-AXIS

2
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For a 5x 5 neighborhood three local distances are used: @ ?S)G"b

the distances to the horizontal and vertical neighbors, the
distanceb to the diagonal neighbors, and the distande the 2-0.9866, b=1.4142, 0-2.2082 3-0.9866, b-1.4142, 0-2.2062
off-diagonal knight's move neighbors (see Fig. 1). The other’
local distances in 5 5 neighborhood are redundant becausei:?
they can be expressed in terms @fb, and c. The chamfer 2,
polygon of sizer > 0 generated with these local distances has.
16 sides. Since it is symmetric with respect to the axes anek
the diagonals, the error analysis can be limited to the octarit
shown in Fig. 7. From the geometry of Fig. 7 it can be found ° o o2 o4 o o8 »
that the angle®; and 6, are given by o KORRCE SR

N
@0

N

% ABSOLUTE ERROR
ou

o
33

. c d

6, = tan ! L =tan ! (8) o @
1= tan 7’/a _ 27,/6 = tan c—2a Fig. 8. Edge geometry and normalized errors foxt 5 chamfer metrics. (a),
(b) Euclidean local distanced, v/2,+/3). (c), (d) Optimal local distances

o frfb=rfc . i {c—b (0.9866, /2, 2.2062).
f2 = tan <727’/c—r/b>_tan <2b—c' 9

By using the law of sines in the triangles of Fig. 7, we findccurs at the peak of the bigger lobe corresponding to the edge
that lengths of the vectors tracing the two edgeS andCB  AC which is controlled by the local distancesandc. These

of the chamfer polygon are local distances should be selected so that both corners of the
-sin(6;) edge are pushed out of the unit circle by the same amount
L, 6 € [0°,26.65°] making the triangleDAC isosceles, i.e.c = v/5a. In this
L) = { @50 +61) (10) case,—E(0°) = E(13.28°) = —E(26.56°). This yields the
rsin(fs) ;
6 € [26.65°,45°]. optimal value of

(c—b)sin(@ + 6>)’
1+ cos(13.28°)
qg =

= 0.9866
2

These expressions are then used to minimize the normalized
error E(8) =1 — L(#)/r under various error criteria.

If exact Euclidean distanced, v/2,v/5) are used as local which in turn gives the optimal value ef = v/5a = 2.2062
distances, the corners of the unit chamfer polygon will be and an MAE of 1.36%. For minimizing the MAE, the value
the unit circle. The error plots for this chamfer metric are giveof b is not critical because it is associated with the smaller
in Fig. 8(a) and (b). These real-valued local distances give arror lobe. Once: and ¢ are selected to optimally place the
MAE of 2.67% occurring af = 13.28°. The error is always longer edgeAC across the unit circleb can be selected in

positive and consists of lobes of different heights. The MAEBuch a way that the MAE is smaller than 1.36%. A possible
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TABLE I
ERRORS FORCHAMFER DISTANCE TRANSFORMS BASED ON 5 X 5 NEIGHBORHOOD

(a,b,c) MAE MSE | Arca Diff. | Comments
(1,v2,V5) 2675 % | 1.623 % 2.79 % | Euclidean local distances
(5,7,11)/5 1942 % | 1.117 % 0.79 % | A common choice

(0.9866,v2,2.2062) | 1.356 % | 0.804 % 0.70 % | Optimal for min MAE

(34,48,76)/34.45 1.358 % | 0.804 % 0.70 % | Integer approx. for min MAE

(0.9802, 1.4060, 2.2046) | 2.023 % | 0.708 % 0 % | Optimal for min MSE with Area Diff.=0

(30,43,67)/30.57 2024 % | 0.777 % 0.16 % | Integer approx. for min MSE

such range fow is a=1, b=1.4142, c=2.2361, d=3.1623, e=3.6056 a=0.9935, b=1.4142, 6=2.2361, d=3.1419, €=3.6056
\/5 1 12 12
1<T<_:>1'3953<b<\/§' . 1
a

0.8

o
®

This procedure of finding the value bfis similar to that used §
in [3]. Fig. 8(b) and (d) shows the error plots for the optimai

o
@»

0.6

% ABSOLUTE ERROR

chamfer metric(0.9866,v/2, 2.2062). Y -

To find optimal (a,b,¢) under the MSE criterion subject » B}
to a zero area difference constraint we need to perform a° v Rop ® 00 v Roew ® o ®
numerical minimization (using WrLAB) of the expression (@) (b)

/4 . .
0/ (1__ L(9)/7’)2 do, where L(9) IS given by (10)- The Fig. 9. Normalized errors for 7x 7 chamfer metrics. (a) Euclidean
constraint that the areas of the chamfer polygon and disk pastal distances (1, v2, V5, v10,+/13). (b) Optimal local distances

in the octant region of Fig. 7 are equal leads to (0.9935.v2,/5,3.1419, V13).
b+a «
oabe 8 used to implement the distance transform. The corners of
the chamfer polygon are in the same directions as the local

The resulting local distances are given in Table Il. These locgktance vectors. Starting from theaxis and going counter-
distance satisfy the regularity conditions, found in [8], for thgjgckwise, the locations of the vertices of the unit chamfer

metric corresponding to the 5 5 chamfer mask. polygon are at
As mentioned before, practical implementations use integer- 1 31 5 1 3 9 11
valued local distance$A, B,C) and divide the final dis- (_70)7 (E’Zl)’ (_’_)7 (_7_>7 (573)
a Cc C c e

tance by a constarit. We denote such a chamfer metric by
(A, B,C)/k. The best combination of integer local distancel the local distances are the exact Euclidean distances, the
for any set of real local distances can be found by varyirgprners of the unit chamfer polygon will be on the unit circle;
one of the local distances over a desired integer range dhé error plots for this case are shown in Fig. 9(a) and (b).
finding other integer local distances with ratios close to tH MAE of 1.29% occurs a# = 9.22°. The error plot
ratios of the real local distances. For ax55 neighborhood, consists of a dominant lobe and three smaller lobes. The two
such optimal combinations of integer local distances amaiddle lobes are not significant and can be combined into one
normalizing constant are given in Table Il. without affecting the maximum error. This fusion of the lobes
is achieved by eliminating the local distance corresponding
to the corner between them; this should be the local distance
c. Note that in [3] elimination of the local distance was
proposed. Local distancesandd control the first major error

In the rest of this paper, chamfer metrics based on largghe  Following the analysis given in the previous sections,
neighborhoods will be analyzed. Some results concerning tg optimal value ofa is

geometry of large chamfer masks have been obtained in [7].

V. OPTIMAL LOCAL DISTANCES FOR
7 x 7 AND LARGER NEIGHBORHOODS

In this paper, we optimize such large chamfer masks by o= 1+ sin(90° — 9.22°) — 0.9935

minimizing the maximum absolute error. The optimal local 2

distances under other error criteria can be easily found fhich gives a maximum absolute error of 0.65%. The optimal
following the analysis presented in earlier sections. value ofd is d = v/10a = 3.1419. The values ofb, ¢, and e

The 7 x 7 neighborhood has five nonredundant localre not critical and can be selected so that the maximum error
distances shown in Fig. 1. The corresponding chamfer polygamains within bounds dictated layandd. One such choice
has 32 sides if all of the local distancesb, ¢, d, ande are could be the exact Euclidean local distanées v/2, ¢ = /5,
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TABLE I
MaxiMuM ABSOLUTE ERROR FOR CHAMFER DISTANCE TRANSFORMS WITH OPTIMAL LOCAL DISTANCES

Neighborhood Size 3x3 5%x5 77 9x9 11x11 | 13x13 | 156x 15

Approximation Error | 3.9566% | 1.3557% | 0.6498% | 0.3760% | 0.2439% | 0.1707% | 0.1259%

TABLE IV
RepucTION oF CoMPUTATION COMPLEXITY WITH THE USE OF CRITICAL LOCAL DISTANCES

Neighborhood Size | 7x7 | 9x9 1 11x11 | 13x13 | 15x15 | 17x17 | 19x19 | 21x21 | 23x23

% Reduction 25% | 33% | 50% 50% 61% 64% 68% 69% 4%

ande = \/_ Fig 9(0) and (d) shows the error p|ot3 for the o 9x9 with all unique local distances 21x21 with all unique local distances
above optimal local distances. )

In general, a smaller approximation error can be achlevé)q /
by using a larger neighborhood but at the cost of a slowi_ars ro Hoos | |
implementation. For 2P + 1) x (2P + 1) neighborhood, 5o« | |

©
N

ERROR
o o
o o o
S ® =

% ABSOLUTE

P =1,23,---, the nonredundant local distances correspofe® j | 00d]
to the vectors connecting origin with the following pixels: £°¢ | f\ ~ /\ oo
01} IR A A N A (S
| YN RPN |
{(z,y) € 72 |z < P,|ly| £ P, and ged(z,y) =1} % 10 '2\?\(1&\ 30 o o a5 %
where “gcd” stands for “greatest common divisor.” As pointed @)

out in [2], These local distances form the Farey sequence. If 99 with critical local distances
all of these local distances are used, the error plot consists of
a major lobe and some minor lobes. The first lobe, assomagec
with the edge of the chamfer polygon joining the positive %o_s |
axis and the corner in the direction efin~!(1/P), is the £, |
major lobe because this edge is the largest of all the polyg;;hra J;“
edges. It can be proved that <§oz;“

014

tan~! (%) > <tan_1 (%) — tan_l(n; 1)), y

71:2,3,"',])

20
ANGLE

(d)

Fig. 10. Error plots for large neighborhoods when selected local distances

an—1! — 1/(1 2y r ina func- are used. (a) For & 9 neighborhood with all nonredundant local distances. (b)
becaused(tm u)/du /( Tu ) S a decreas g func- For 21 x 21 neighborhood with all nonredundant local distances. (c) Fer 9

tion for > 0. The optimal selection of local distancesg neighborhood with critical local distances. (d) For 2121 neighborhood
which control the vertices in the directions of positive with critical local distances.

axis andtan=!(1/P), gives the following minimum value of

normalized MAE: Fig. 10(a) and (b) shows the error plots for two large
. — cos(0.5tan"1(1/P)) neighborhoods when all of the nonredundant local distances
min {lnax |E(8, P)|} = . Lo
(a,b,e,) 1 +cos(0 5tan~1(1/P)) are used. These plots show that there are many insignificant
(11) small error lobes which can be combined without increasing
the MAE. We propose that, for a neighborhood of gj2& +
Table 1Il gives these lower error bounds for different neight) x (2P + 1), only the local distances corresponding to the
borhood sizes. Thus, one can get a good approximation fofiowing set of direction vectors should be used:
the Euclidean distance transform by using a suitably large
neighborhood for local distance calculations, but at the expense {(z,y) € Z*: max(|z|, |y|) = P, andged(z,y) = 1}.
of more computations. However, there is another possibility
to increase the speed of chamfer distance transform ba3éese local distances are critical because excluding one of
on large neighborhoods. As seen in the case ok 77 these can increase the maximum absolute error. Fig. 10(c)
neighborhood, some of the nonredundant local distances carabd (d) shows the error plots with critical local distances
excluded from local distance computations without increasimgly. Using these critical local distances, oriy’ distance
the maximum absolute error. This requires fewer computatioegaluations are required for each pixel. The computational
at each step of the distance propagation and hence fasestuction offered by our approach over any other approach
implementation. that uses all nonredundant local distances is given in Table IV.
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