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Abstract—The distance transform has found many applications
in image analysis. Chamfer distance transforms are a class of
discrete algorithms that offer a good approximation to the desired
Euclidean distance transform at a lower computational cost. They
can also give integer-valued distances that are more suitable for
several digital image processing tasks. The local distances used to
compute a chamfer distance transform are selected to minimize
an approximation error. In this paper, a new geometric approach
is developed to find optimal local distances. This new approach
is easier to visualize than the approaches found in previous
work, and can be easily extended to chamfer metrics that use
large neighborhoods. A new concept of critical local distances
is presented which reduces the computational complexity of the
chamfer distance transform without increasing the maximum
approximation error.

Index Terms—Chamfer metrics, critical local distances, dis-
tance transforms.

I. INTRODUCTION

T HE DISTANCE transform has been applied in many
image analysis tasks including shape description, fea-

ture detection, skeletonization, segmentation, and multiscale
morphological filtering [1]–[5]. Since the computational cost
of the exact Euclidean distance transform is relatively high,
several fast algorithms have been developed to approximate it.
Some of these algorithms also yield integer-valued distances,
which have the additional advantage of making various image
analysis tasks more efficient, e.g., skeletonization. A major
class of such algorithms is based on chamfer metrics [3].
The termchamfer (introduced in [6]) originally referred to
a sequential two-pass distance transform algorithm developed
by Rosenfeld and Pfaltz [1] and later improved and generalized
by Borgefors [3]. Even though this class of algorithms can also
be implemented using parallel or queue-based algorithms, the
word “chamfer” is retained for compatibility with previous
work. Sometimes the word “weighted” is also used to refer to
this class of distance transforms.

The chamfer distance transform approximates the global dis-
tance computation with repeated propagation of local distances
within a small neighborhood mask. The approximation error
depends upon the size of the neighborhood and the selection
of the local distances. Borgefors [3] analyzed this problem by
finding local distances that minimize the maximum absolute
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error (MAE) around the boundary of a square of general size
The error was normalized by , which gives

unequal scale weighting to errors at different points on the
boundary of the square and hence different angles. Others
[9]–[11] followed this approach and extended the analysis to
find the optimal local distances for mean squared error (MSE).
A related problem of estimating discrete lines was analyzed
in [12]. Verwer [13] found optimal distances under both the
MAE and MSE by minimizing the error along the boundary
of a unit circle thus giving equal emphasis to the errors at
different angles.

In this paper, we develop a geometric approach to find
optimal local distances that has certain new viewpoints and
novel aspects compared with previous approaches. These new
viewpoints are motivated by the major application of multi-
scale morphological filtering. Since the distance transform is a
compact representation of multiscale morphological dilations
and erosions, our objective is to find local distances for
chamfer distance transform that give the best approximations
of multiscale dilations/erosions by disk structuring elements.
In contrast to a previous approach [13], which compared
the chamfer distance and the Euclidean distance at the same
points along a unit circle, we compare the distances along
the boundaries of the two balls induced by the two metrics
at the same scale. (The ball induced by the chamfer metric
is a polygon, whereas the Euclidean ball is a disk.) Our
approach is easier to visualize geometrically, shows clearly
the dependence of the approximation error on individual local
distances, yields simpler error expressions used to find optimal
local distances under various error minimization criteria, and
leads to a new concept of critical local distances that offers
reduced computation without increasing the maximum error.

II. PRELIMINARIES

Given a binary image let the planar set
represent its foreground or feature set

and let represent its the background. The distance transform
of is defined as

(1)

where is the distance under the norm,
Thus, is a gray-level image with values

at each pixel representing its distance to the nearest pixel
of Thresholding this distance transform at various levels

yields the multiscale morphological erosionsof
by the balls of size induced
by the norm, i.e.,
Multiscale dilations of can be obtained from the distance
transform of Among the norms used, the Euclidean norm
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Fig. 1. Local distances for 3� 3, 5 � 5, and 7� 7 neighborhoods. The
unmarked pixels are not used.

(where and is a disk of radius is preferred
as it gives isotropic distance measurements. A faster but
approximate computation of the Euclidean distance transform
can be achieved via chamfer distance transforms [3], which
may also use integer arithmetic. These algorithms start from
the background set and propagate local distances inAt
each step, distance is propagated in a small, usually 33
or 5 5-pixel, neighborhood. The distance to any pixel of

is the sum of local distances of the shortest path starting
from and ending at that pixel. This propagation of the
local distances can be achieved with parallel, sequential, or
queue-based algorithms [4]. If a 3 3 pixel neighborhood is
used at each step of distance propagation, local distances of

and are used for distances between axially and diagonally
neighboring pixels, respectively; see Fig. 1. This set of local
distances is referred to as the chamfer metric Note
that represents the chessboard metric, whereas

gives the city-block metric [1].

III. OPTIMAL LOCAL DISTANCES FOR3 3 NEIGHBORHOOD

A. Error Analysis

For the chamfer metric with regularity constraints [8]
the chamfer distance between the origin and a

planar point is the chamfer norm [3]

(2)

Its induced ball of size is
which is a convex polygon

(octagon) henceforth called thechamfer polygonof size
The goodness of approximation of the disk of radiusby

depends on and examples are shown in Fig. 2.
Note that (2) applies both on the continuous plane as
well as the integer plane The discrete chamfer polygons
are sampled versions of their continuous counterparts, and
for large scales the difference is very small. Our analysis
will be done on the continuous plane because then the error
normalized by the disk radius becomes independent of scale.
Further, it is only meaningful to work with the relative
error because it can be bounded, whereas the absolute error
increases with scale [14].

To find the approximation error, the chamfer polygon should
be compared with a disk of the same scaleHowever, since

(a) (b) (c)

Fig. 2. Approximation to a disk of radiusr = 250 in 2 using balls
of different norms created by chamfer metrics of 3� 3 neighborhood. (a)
Chamfer metric(1; 2) or city-block normk � k1. (b) Chamfer metric(1;1)
or chessboard normk � k1. (c) Chamfer metric(3; 4)=3: (A circle of radius
250 is superimposed on all the balls.)

Fig. 3. Octant part of the chamfer octagon of sizer generated by the 3�
3 chamfer metric(a; b): The end points have coordinatesA = (r=a; 0) and
B = (r=b; r=b):

the chamfer polygon is symmetric with respect to the axes and
the diagonals, the analysis can be limited to the wedge-shaped
planar region and In this
region, the boundary points of the chamfer polygon of
size lie on the line which forms an edge
joining two vertices and as shown in Fig. 3. The acute
angle between the -axis and this edge is equal to

Applying the law of sines to the triangle formed by and
an arbitrary point on the edge yields the length of
the vector connecting the origin and the point on the
edge of the chamfer polygon to be

where is the angle between the vector and the-axis. The
approximation error is the distance difference between the
point on the circle of radius and the corresponding point
on the boundary of the chamfer polygon. This is equal to

which, when normalized by the radiusyields a
normalized error

(3)

The normalized error can also be obtained by comparing the
unit chamfer polygon with the unit circle. Within the interval
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(a) (b)

(c) (d)

Fig. 4. Differences in the errors analyzed by Verwer [12] and our approach,
shown for octant region� 2 [0; �=4]: (a), (b) For local distances(1;

p
2).

(c), (d) For local distances(0:9619;1:3604): In (a) and (c), the dotted curve
is the part of the unit circle, the solid line is the edge of the unit chamfer
octagon (traced by vectors whose chamfer norm is one), and the dashed curve
is traced by vectors whose Euclidean norm equals the chamfer norm of their
corresponding vectors (at same angle) tracing the unit circle. In Figs. (b) and
(d), the solid graph (our approach) shows the absolute Euclidean distance
difference between corresponding points (at same angle) of the circle and the
solid chamfer edges in Figs. (a) and (c), whereas the dashed graph (Verwer’s
approach) shows the difference between the circle and the dashed curve.

when assumes its
maximum value of

However, the maximum error could also occur at or at
Hence, the complete expression for thenormalized

MAE is

(4)

B. Optimal Local Distances Under the MAE Criterion

Let us first consider the chamfer metric because this
represents the true (Euclidean) distances between neighboring
pixels. By (4), the MAE is 7.61% and occurs at see
also Fig. 5(a) and (b). The values and place
the vertices of the unit chamfer octagon on the unit circle. A
better choice of local distances should put the vertices outside
the unit circle. For example, if axial vertices are to remain on
the circle and the position of the diagonal vertices,

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Edge geometry and normalized errors for 3� 3 chamfer metrics. (a),
(b) Euclidean local distances(1;

p
2). (c), (d) Local distances(1;1:3420;. (e),

(f) Optimal local distances(0:9619;1:3604): In (a), (c), and (e), the solid line
represents the chamfer polygon, dashed line represents the circle, and dotted
lines are drawn at angles of 10�, 20�, 30�, 40�, and 45�:

which is controlled by the local distanceis to be optimized,
the expression (4) reduces to

(5)

The diagonal corner of the normalized chamfer octagon should
be moved in such a way that the error occurring at

becomes equal to the maximum error occurring for
By equating the two error expressions in (5),

we get

(6)

By solving (6) we get This gives a MAE of 5.38%;
see also Fig. 5(c) and (d).

If both and are to be optimized, they should be selected
so that both axial and diagonal corners of the unit chamfer
octagon are outside the unit circle by the same amount and
the absolute error occurring at the corners of the normalized
chamfer octagon is the same as the absolute error occurring at
midpoints of the edges. This occurs when the triangle of
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TABLE I
ERRORS FORCHAMFER DISTANCE TRANSFORMS BASED ON 3 � 3 NEIGHBORHOOD

Fig. 3 is isosceles. In this case,
This gives and Furthermore, solving

, we obtain

These optimal local distances give a MAE of 3.96%; see also
Fig. 5(e) and (f). The optimal local distances and the corre-
sponding values of the MAE derived via our approach above
are different from the values obtained by Verwer [13]. Fig. 4
further explains the difference between the two approaches.

C. Optimal Local Distances Under the MSE Criterion

It is possible to find optimal local distances by
minimizing the MSE. Working in the same octant planar region
as for the MAE, the normalized MSE is equal to

(7)

We have experimented with three approaches to minimize the
MSE, as follows.

1) Unconstrained minimization of MSE.
2) Minimization of MSE under the zero mean error con-

straint this gives an unbiased
MSE and is the same approach as in [9], [10], and
[13] although our resulting optimal are different
because our error function is different.

3) Minimization of MSE under a new constraint of zero
area difference, where we forced the area difference
between the chamfer polygon and the disk at same scale
to be zero.

For the 3 3 neighborhood, in the octant region of Fig. 3,
the area of the corresponding part of the chamfer octagon is

, whereas the corresponding disk sector has area
Hence, forcing azero area differenceis equivalent to the
constraint

For each case, the optimal were found using the
optimization toolbox of MATLAB . We have experimentally
found that all three approaches above yield very similar values
for the optimal and the minimum MSE. We have selected
approach 3, which gave and

Choosing the zero area difference constraint
is consistent with our original motivation to optimize cham-
fer distance transforms for multiscale morphological filtering
where the chamfer balls (polygons) should best approximate
the disks. Table I shows the MAE, MSE, and relative area
differences between the chamfer octagon and the disk of same
scale for various choices of

D. Integer Local Distances

In practice, for faster implementation, integer-valued local
distances and are used, and the computed distance
transform is divided by a normalizing constant, which
can be real-valued. We refer to such a metric as
Its resulting chamfer distances are obviously the same as
the ones obtained using real-valued local distances and

Integer local distances can be obtained from any real-
valued counterparts by multiplying the latter withand then
rounding. One can arbitrarily choose the value ofe.g., 100,
and set the integer distances equal to round and

round This may result in a suboptimum selection
because the roundoff error may be large and may not be
very close to We are proposing a new approach where we
first select from a desired integer range, say such
that the roundoff error is minimum.
Then we set and For example,
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Fig. 6. Search for semioptimal integer valued local distances for minimum
MAE. Along theY -axis, the absolute difference betweenA

p
2 and its rounded

value is plotted.

given the optimal real local distances for minimum MAE
(see Table I) where the search for an optimum
integer yields (see Fig. 6), which in turn gives

and MAE 3.958%. In Table I we also
provide an integer approximation to the real local distances
that minimize the MSE.

IV. OPTIMAL LOCAL DISTANCES FOR5 5 NEIGHBORHOOD

For a 5 5 neighborhood three local distances are used:
the distance to the horizontal and vertical neighbors, the
distance to the diagonal neighbors, and the distanceto the
off-diagonal knight’s move neighbors (see Fig. 1). The other
local distances in 5 5 neighborhood are redundant because
they can be expressed in terms of and The chamfer
polygon of size generated with these local distances has
16 sides. Since it is symmetric with respect to the axes and
the diagonals, the error analysis can be limited to the octant
shown in Fig. 7. From the geometry of Fig. 7 it can be found
that the angles and are given by

(8)

(9)

By using the law of sines in the triangles of Fig. 7, we find
that lengths of the vectors tracing the two edges and
of the chamfer polygon are

(10)

These expressions are then used to minimize the normalized
error under various error criteria.

If exact Euclidean distances are used as local
distances, the corners of the unit chamfer polygon will be on
the unit circle. The error plots for this chamfer metric are given
in Fig. 8(a) and (b). These real-valued local distances give an
MAE of 2.67% occurring at The error is always
positive and consists of lobes of different heights. The MAE

Fig. 7. Analysis of edges of the chamfer hexadecagon of sizer generated
by the 5� 5 chamfer metric(a; b; c): The end points have coordinates
A = (r=a; 0); B = (r=b; r=b);C = (2r=c; r=c); andD = (r=(c� b); 0):

(a) (b)

(c) (d)

Fig. 8. Edge geometry and normalized errors for 5� 5 chamfer metrics. (a),
(b) Euclidean local distances(1;

p
2;
p
5): (c), (d) Optimal local distances

(0:9866;
p
2; 2:2062):

occurs at the peak of the bigger lobe corresponding to the edge
which is controlled by the local distancesand These

local distances should be selected so that both corners of the
edge are pushed out of the unit circle by the same amount
making the triangle isosceles, i.e., In this
case, This yields the
optimal value of

which in turn gives the optimal value of
and an MAE of 1.36%. For minimizing the MAE, the value
of is not critical because it is associated with the smaller
error lobe. Once and are selected to optimally place the
longer edge across the unit circle, can be selected in
such a way that the MAE is smaller than 1.36%. A possible
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TABLE II
ERRORS FORCHAMFER DISTANCE TRANSFORMS BASED ON 5 � 5 NEIGHBORHOOD

such range for is

This procedure of finding the value ofis similar to that used
in [3]. Fig. 8(b) and (d) shows the error plots for the optimal
chamfer metric

To find optimal under the MSE criterion subject
to a zero area difference constraint we need to perform a
numerical minimization (using MATLAB ) of the expression

where is given by (10). The
constraint that the areas of the chamfer polygon and disk parts
in the octant region of Fig. 7 are equal leads to

The resulting local distances are given in Table II. These local
distance satisfy the regularity conditions, found in [8], for the
metric corresponding to the 5 5 chamfer mask.

As mentioned before, practical implementations use integer-
valued local distances and divide the final dis-
tance by a constant We denote such a chamfer metric by

The best combination of integer local distances
for any set of real local distances can be found by varying
one of the local distances over a desired integer range and
finding other integer local distances with ratios close to the
ratios of the real local distances. For a 55 neighborhood,
such optimal combinations of integer local distances and
normalizing constant are given in Table II.

V. OPTIMAL LOCAL DISTANCES FOR

7 7 AND LARGER NEIGHBORHOODS

In the rest of this paper, chamfer metrics based on larger
neighborhoods will be analyzed. Some results concerning the
geometry of large chamfer masks have been obtained in [7].
In this paper, we optimize such large chamfer masks by
minimizing the maximum absolute error. The optimal local
distances under other error criteria can be easily found by
following the analysis presented in earlier sections.

The 7 7 neighborhood has five nonredundant local
distances shown in Fig. 1. The corresponding chamfer polygon
has 32 sides if all of the local distances and are

(a) (b)

Fig. 9. Normalized errors for 7� 7 chamfer metrics. (a) Euclidean
local distances (1;

p
2;

p
5;

p
10;

p
13): (b) Optimal local distances

(0:9935;

p
2;

p
5; 3:1419;

p
13):

used to implement the distance transform. The corners of
the chamfer polygon are in the same directions as the local
distance vectors. Starting from the-axis and going counter-
clockwise, the locations of the vertices of the unit chamfer
polygon are at

If the local distances are the exact Euclidean distances, the
corners of the unit chamfer polygon will be on the unit circle;
the error plots for this case are shown in Fig. 9(a) and (b).
An MAE of 1.29% occurs at The error plot
consists of a dominant lobe and three smaller lobes. The two
middle lobes are not significant and can be combined into one
without affecting the maximum error. This fusion of the lobes
is achieved by eliminating the local distance corresponding
to the corner between them; this should be the local distance

Note that in [3] elimination of the local distance was
proposed. Local distancesand control the first major error
lobe. Following the analysis given in the previous sections,
the optimal value of is

which gives a maximum absolute error of 0.65%. The optimal
value of is The values of and
are not critical and can be selected so that the maximum error
remains within bounds dictated byand One such choice
could be the exact Euclidean local distances
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TABLE III
MAXIMUM ABSOLUTE ERROR FORCHAMFER DISTANCE TRANSFORMS WITH OPTIMAL LOCAL DISTANCES

TABLE IV
REDUCTION OF COMPUTATION COMPLEXITY WITH THE USE OF CRITICAL LOCAL DISTANCES

and Fig. 9(c) and (d) shows the error plots for the
above optimal local distances.

In general, a smaller approximation error can be achieved
by using a larger neighborhood but at the cost of a slower
implementation. For a neighborhood,

the nonredundant local distances correspond
to the vectors connecting origin with the following pixels:

and

where “gcd” stands for “greatest common divisor.” As pointed
out in [2], These local distances form the Farey sequence. If
all of these local distances are used, the error plot consists of
a major lobe and some minor lobes. The first lobe, associated
with the edge of the chamfer polygon joining the positive-
axis and the corner in the direction of is the
major lobe because this edge is the largest of all the polygon
edges. It can be proved that

because is a decreasing func-
tion for The optimal selection of local distances,
which control the vertices in the directions of positive-
axis and gives the following minimum value of
normalized MAE:

(11)

Table III gives these lower error bounds for different neigh-
borhood sizes. Thus, one can get a good approximation of
the Euclidean distance transform by using a suitably large
neighborhood for local distance calculations, but at the expense
of more computations. However, there is another possibility
to increase the speed of chamfer distance transform based
on large neighborhoods. As seen in the case of 77
neighborhood, some of the nonredundant local distances can be
excluded from local distance computations without increasing
the maximum absolute error. This requires fewer computations
at each step of the distance propagation and hence faster
implementation.

(a) (b)

(c) (d)

Fig. 10. Error plots for large neighborhoods when selected local distances
are used. (a) For 9� 9 neighborhood with all nonredundant local distances. (b)
For 21� 21 neighborhood with all nonredundant local distances. (c) For 9�

9 neighborhood with critical local distances. (d) For 21� 21 neighborhood
with critical local distances.

Fig. 10(a) and (b) shows the error plots for two large
neighborhoods when all of the nonredundant local distances
are used. These plots show that there are many insignificant
small error lobes which can be combined without increasing
the MAE. We propose that, for a neighborhood of size

only the local distances corresponding to the
following set of direction vectors should be used:

and

These local distances are critical because excluding one of
these can increase the maximum absolute error. Fig. 10(c)
and (d) shows the error plots with critical local distances
only. Using these critical local distances, only distance
evaluations are required for each pixel. The computational
reduction offered by our approach over any other approach
that uses all nonredundant local distances is given in Table IV.
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