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A Limiting Property of the Inverse of Sampled-Data
Systems on a Finite-Time Interval

Takuya Sogo and Norihiko Adachi

Abstract—If one considers a sampled-data system derived from a con-
tinuous-time system with a relative degree of one or two on a finite-time
interval, it is not simple to predict the behavior of the output of the in-
verse of the sampled-data system as the sampling period goes to zero. This
is because the number of sample points increases while the zeros of the
pulse-transfer function tend to the boundary between the stable and un-
stable areas. This paper shows that the output of the sampled-data inverse
systems converges to the output of the continuous-time inverse systems in-
dependently of the stability of zeros.

Index Terms—Inverse systems, iterative learning control, limiting zeros,
nonminimum phase systems, sampled-data systems.

I. INTRODUCTION

Stable inverse systems or stable zeros of transfer functions are often
required in many kinds of control problems defined on the infinite time
horizon. However, since there is no simple relation between zeros of
the pulse-transfer function of sampled-data systems and zeros of the
transfer function of continuous-time systems, the behavior of the zeros
of sampled-data systems has drawn much attention from researchers.
Several approaches to determine the stability of zeros or avoid unstable
zeros have been presented [1]–[10]. On the other hand, when control
problems are defined on a fixed finite-time interval[0; tf ], one can
admit unstable systems unless signals become too large inside[0; tf ].
One such finite-time control problems is, for example, iterative learning
control which is a trial-based iterative method to improve the transient
response on a short time interval [11], [12]. When continuous time sys-
tems or their inverse systems are considered on[0; tf ], the peak of the
signals is simply determined by the distance between the imaginary
axis and poles or zeros, respectively. However, when sampled-data sys-
tems with a sampling period� are considered on[0; tf ], the peak of
the signals depends on the variable�. This relationship is not simple
because� changes both the number of sample points inside[0; tf ] and
the location of poles and zeros. Furthermore, the zeros as a function
of � are much more complicated than the poles. For example, con-
sider the continuous time systemsG1(s) = (s� 1)=s2 andG2(s) =
(2s � 3)=f(s + 1)(s+ 2)(s + 3)g. Then, the sampled-data systems
derived from each with a sampler and a zero-order hold areH1(z) =
f(2 � �)�(z � (2 + �)=(2 � �))g=f2(z � 1)2g andH2(z) =
f(�)(z�q1(�))(z�q2(�))=f(z�exp(��))(z�exp(�2�))(z�
exp(�3�))g, respectively, whereq1(�) = 1 + 3�=2 + O(�2) and
q2(�) = �1 + 5�=2 + O(�2) [8], [9]. Consider the inverse sys-
temsH�11 (z) andH�12 (z) on f0; 1; . . . ; tf=�g wheretf=� is as-
sumed to be a natural number and givefyd(0); yd(�); . . . ; yd(tf )g
that is the sampled-data of a functionyd(t) toH�11 (z) andH�12 (z) as
their inputs. Then, the unstable zeros for a small� make the output of
the inverse systems increase exponentially. However, it is not easy to
determine whether the output of the inverse systems diverges or con-
verges inside[0; tf ] when� goes to zero, because all the zeros tend to
points on the unit circle, i.e., the boundary between the stable and un-
stable areas, while the number of sample points increases inside[0; tf ].
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It should be noted that this property of zeros is common for systems
whose relative degree is one or two [2], [8], [9]. In this paper, we will
discuss such a limiting problem on the fixed time interval for systems
with a relative degree of one or two. We will demonstrate that the output
of the sampled-data inverse systems converges to the output of the con-
tinuous time inverse systems independently of the stability of the zeros
when� goes to zero.

II. M ATHEMATICAL PRELIMINARIES

Consider a linear continuous-time single-input–single-output
(SISO) system

d

dt
x(t) =Acx(t) + bcu(t)

y(t) =cx(t) (1)

wherex 2 Rn, u 2 R, andy 2 R and a sampled-data system derived
from (1) with a zero-order hold and a sampler with a sampling period
�. Then, we have

x((k + 1)�) =A�x(k�) + b�u(k�)

y(k�) =cx(k�) (2)

whereA� = expAc� andb� =
�

0
exp(Ac� )bcd� . Assume that

the transfer functionG(s) = c(sI � Ac)
�1bc is expressed as

G(s) =
K(s� 
1)(s� 
2) � � � (s� 
m)

(s� p1)(s� p2) � � � (s� pn)
: (3)

Then, since there exists a positive constant�0 such thatcb� 6= 0 for
all � 2 (0; �0), the pulse-transfer functionH(z) = c(zI�A�)

�1b�
can be expressed as

H(z) =
cb�(z � q1(�)) � � � (z � qn�1(�))

(z � exp(p1�)) � � � (z � exp(pn�))
: (4)

Next, consider a system (1) with the initial conditionx(0) = 0 on a
finite-time interval[0; tf ]. Then, the input–output mapping defined by
(1) is expressed asy = Su (u; y 2 L2[0; tf ]) where

Su =
t

0

ceA (t��)bcu(�)d�: (5)

Moreover, assume that the sampling period� satisfies� = tf=N ,
whereN is a natural number. Then, the input–output relationship on
the sample pointsf0;�; 2�; . . . ; tf ��; tfg is

w� = ��v� (6)

where

v� = [u(0) u(�) � � � u(tf) ]
T (7)

w� = [ y(0) y(�) � � � y(tf ) ]
T (8)

�� =

0 0

m�(1)
...

. . .

m�(N) � � � m�(1) 0

(9)

where the Markov parameterm�(i) (i = 1; . . . ; N ) is defined as
m�(i) = cAi�1

� b�.
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Note thatcb� 6= 0 for almost all� > 0. Then, we have the inverse
system

x((k + 1)�) =fA� � b�(cb�)
�1cA�gx(k�)

+ b�(cb�)
�1y((k + 1)�)

u(k�) =� (cb�)
�1cA�x(k�)

+ (cb�)
�1y((k+ 1)�)

(k =0; . . . ; N � 1): (10)

By letting u(N�) = 0, (10) defines a mapping fromw� to v�. We
can denote the mapping as�+�, the Moore-Penrose generalized inverse
�+� of ��, which is the mapping fromw� to the minimizer of(w� �
��v�)

T(w� � ��v�) with the minimum norm.
In the following discussions, we will use the sampling operator�� :

L2[0; tf ] ! RN+1 and the zero-order hold operator�� : RN+1 !
L2[0; tf ], defined as follows:

��[u] = [u(0)u(�) � � � u((N � 1)�) u(tf)]
T (11)

[��v](t) =

v(k) if t 2 [(k � 1)�; k�]

k = 1; 2; . . . ;
t

�

v
t

�
+ 1 if t = tf

: (12)

We define the following notations:kuk1 = supfju(t)j; t 2 [0; tf )g,
jvjN
1

= supfjvij; i = 1; 2; . . . ; N(= tf=�)g, Ck[0; tf ] de-
notes set ofk-th continuously differentiable functions on[0; tf ].
Note that��v = ��S��v and if u� 2 Ck[0; tf ] (k � 1) then
lim�!0 k����u

� � u�k1 = 0.
In the following sections, we consider the inverse discrete-time

system with sampled data of a fixed functiony� defined in[0; tf ] as
the input, i.e.,�+���y

� or (10) whosey((k + 1)�) is substituted
with y�((k + 1)�).

III. T HE MAIN RESULTS

In this section, we present the limit of�+���y
� as� ! 0.

Theorem 1: Assume thatn � m = 1 or 2 and there existsu� 2
Cn�m�1[0; tf ] such thaty� = Su�. Then

k���
+

���y
� � u�k1 ! 0 (13)

as� ! 0.
Remark 1: The convergence (13) is presented only on[0; tf ), while

the function���+���y
��u� is defined on[0; tf ]. However, this is the

best result because from the definition of�+� we have[���+���y
� �

u�](tf) � u�(tf), which is independent of�.
It should be noted that the result of Theorem 1 is independent of the

stability of the zeros ofH(z); �+���y
� converges even if some zeros

go to the unit circle from the outside.
If a functiony�(t) (t 2 [0; tf ]) satisfies the assumption in Theorem

1, u� can be obtained such thaty� = Su� by using the following
continuous-time inverse system of (1)

d

dt
x(t) =fAc + bcF

�1cAcgx(t) + bcF
�1 d

dt

n�m

y(t)

u(t) =F�1cAn�m
c x(t) + F�1

d

dt

n�m

y(t) (14)

whereF = cAn�m�1
c bc andx(0) = 0. LetS�1 be the input–output

mapping of (14) on[0; tf ]. Then,u� = S�1y�; (13) is equivalent to
k���

+

���y
� � S�1y�k1 ! 0. This means that the discrete-time

inverse system (10) converges to the continuous-time inverse system
(14) as� ! 0.

The proof of Theorem 1 will be established in the following sequence
of lemmas1; all assumptions in Theorem 1 will be preserved. Since we
have

k���
+

���y
� � u�k1 �j�+���y

� � ��u
�jN
1

+ k����u
� � u�k1

=j�+�(��Su
� � ��S����u

�)jN
1

+ k����u
� � u�k1: (15)

What we have to show is

j�+�(��Su
� � ��S����u

�)jN
1
! 0 (16)

as� ! 0.
First, we consider the case ofn �m = 1 andN � N matrix�1�

such that�+�(N;N + 1) = �1��2� where�+�(N;N + 1) indicates
the matrix�+� without itsN+1-th row;�2� is anN�(N+1)matrix
defined as

�2� =
1

�

�1 1 0
. . .

. . .

0 �1 1

: (17)

Consider the inverse system (10) on the infinite interval and
the pulse-transfer functionH(z)�1. Then, we can see that the
decomposition of�+�(N;N + 1) given above corresponds to
H(z)�1 = H1(z)

�1H2(z)
�1 where

H1(z)
�1 =

�(z � exp(p1�)) � � � (z � exp(pn�))

cb�(z � 1)(z � q1(�)) � � � (z � qn�1(�))

(18 )

H2(z)
�1 =

(z � 1)

�
: (19)

Lemma 1: Assumen � m = 1 and consider theN � N matrix
�1� defined as

�1� =

m1�(0) 0
...

. . .

m1�(N � 1) � � � m1�(0)

(20)

where Markov parametersm1�(i) (i = 0; . . . ; N � 1) are defined as
m1�(i) = 1=2�j

C
H1(z)

�1zi�1dz (C: a simple path enclosing all
poles) Then,sup j�1�vj

N
1
=jvjN

1
; v 2 RN < +1 for � 2 (0; �0).

Proof: See Appendix.
Lemma 2: Assume n � m = 1. Then, j�2�(��Su

� �
��S����u

�)jN
1
! 0 as� ! 0.

Proof: See Appendix.
Next, we consider the case ofn �m = 2 andN �N matrix�3�

such that�+�(N;N+1) = �3��4��5� where�4� is anN�(N�1)
matrix defined as

�4� =

0 0

1 0

�1 1
. . .

...
. . .

. . . 0

(�1)N � � � �1 1

(21)

1Theorem for the case ofn �m = 1 has been proved in [13], [14]; the ap-
proach was based only on a state-space representation. In this paper, we present
a refined proof which uses an asymptotic property of zeros of the pulse transfer
function.
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Fig. 1. Left:u = � � � y with u . Right:y � y = S� � � y � y .

and�5� is an(N � 1)� (N + 1) matrix defined as

�5� =
1

�2

1 �2 1 0
. . .

. . .
. . .

0 1 �2 1

: (22)

We can see that the decomposition of�+�(N;N +1) given above cor-
responds toH(z)�1 = H3(z)

�1H4(z)
�1H5(z)

�1 where

H3(z)
�1 =

�2(z + 1)(z � exp(p1�)) � � � (z � exp(pn�))

cb�(z � 1)2(z � q1(�)) � � � (z � qn�1(�))
; (23)

H4(z)
�1 = 1=(z + 1) andH5(z)

�1 = (z � 1)2=�2.
Lemma 3: Assumen � m = 2 and consider theN � N matrix

�3� defined as

�3� =

m3�(0) 0
...

. . .

m3�(N � 1) � � � m3�(0)

(24)

where Markov parametersm3�(i) (i = 0; . . . ; N � 1) are defined as
m3�(i) = (1=2�j)

C
H3(z)

�1zi�1dz (C: a simple path enclosing
all poles). Then,sup j�3�vj

N

1
=jvjN

1
; v 2 RN < +1 for � 2

(0; �0).
Proof: See Appendix.

Lemma 4: Assumen � m = 2. Then, j�4��5�(��Su
� �

��S����u
�)jN
1
! 0 as� ! 0.

Proof: See Appendix.
We are now ready to establish Theorem 1. We have seen that

�+�(N;N + 1) = �1��2� or �3��4��5�. If n � m = 1 or 2,
we can obtain (16) from Lemma 2 with Lemma 1, or Lemma 4 with
Lemma 3, respectively.

IV. NUMERICAL EXAMPLES AND INTERPRETATION OF THEMAIN

RESULT

ConsiderG2(s) given in Section I on the finite-time interval[0; 5]
with u�(t) = 5t + 1 andy� = Su�. Then, the pulse transfer func-
tion H2(z) has the unstable zeroq1(�) for a small sampling period
as shown in Section I. Fig. 1 showsu = ���

+

���y
� with u� and

y�y� = S���
+

���y
�

�y� for� = 0:5 and 0.25. When� = 0:5, the
unstable zero makes the signalu very large at the right end of the time
interval; this causes intersample ripples as shown in the right figure.

However, when� is shrunk to 0.25, we can observe that the signalu is
near the ideal inputu� and therefore the intersample ripples are elimi-
nated.

The main result shown in this paper implies that the solution of an
optimal control problem minimizing t

0
fy(t)� y�(t)g2dt or the in-

verse problem findingu(t) such thaty� = Su can be approximated
by the solution of the finite-dimensional optimal control problem mini-
mizing j��v���y

�j2, namely�+���y
� when the relative degree is 1

or 2. This property is favorable for iterative learning control [11], which
is a method to realize precise output tracking on[0; tf ] by repetitive
improvement based on experimental input–output data; inter-sample
residuals of the output can be reduced simply by shrinking the sam-
pling period� as far as precise output tracking is achieved only on the
sample points.

V. CONCLUDING REMARKS

We demonstrated that when the relative degree is one or two, the
inverse of sampled-data systems approximates to the inverse of contin-
uous-time systems independently of the stability of the zeros. It should
be noted that such a property is uncommon for a relative degree greater
than two, because there is at least one zero that converges to a point
exterior to the unit circle [2].

APPENDIX I
PROOF OF LEMMA 1

Since the first equation shown at the bottom of the next page holds
true, the system( �A�;�b�; �c�;�=cb�) is converted to the controllable
canonical form.

~A�;

r0(�)
...

rn(�)

; [ 0 � � � 0 �

cb
] ;

�

cb�
(25)

wherej ~A�j = maxf1; jq1(�)j; . . . ; jqn�1(�)jg. Since we can see
jrj(�)j=� � +1 (j = 0; . . . ; n), we have

r0(�)
...

rn(�)

� �M1� (26)

where �M1 is a positive constant;j�j indicates the Euclidean norm and its
induced norm. From the Taylor expansion of the intrinsic zero, namely
qi(�) = 1+ 
i�+O(�2) [8], we havej ~A�j � 1+ �M2� � e

�M �



764 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 5, MAY 2001

for � 2 (0; tf ), where �M2 is a positive constant. Note that there exists
a positive constant�M3 > 0 such thatj�=cb�j < �M3 for almost all
� > 0. Then, we have[�1�v]1 � �M3jv1j and

[�1�v]k �
�M1

�M3

�M2
e(k�1)

�M � � 1

�maxfjvj j; j = 1; . . . ; k � 1g+ �M3jvkj

for k = 2; . . . ; N . Those inequalities imply that
sup j�1�vj

N
1=jvjN1; v 2 RN < +1 because

e(k�1)
�M � � 1 � e(N�1)

�M � � 1 < eT
�M � 1.

APPENDIX II
PROOF OF LEMMA 2

Note that
[Su](t) =

t

0
cAc

�

0
eA (���)bcu(�)d� + cbcu(� ) d� . Then, we

have the second equation shown at the bottom of the page, for
k = 0; 1; . . . ; N �1, where�k 2 [k�; (k+1)�]. Moreover, we have

j[�2�(��S(u
� � ����u

�))](k)j

� sup
t2[0;t ]

cAc

t

0

eA (t��)bcd� + cbc

� ku� � ����u
�k01

wherekuk01 = supfju(t)j; t 2 [0; tf ]g. Sinceku� � ����u
�k01 !

0 as�! 0, we havej�2�(��Su
� � ��S����u

�)jN1 ! 0.

APPENDIX III
PROOF OF LEMMA 3

Since we haveqi(�) = 1+
i�+O(�2) (i = 1; . . . ; n�2) [15] for
the intrinsic zeros andqn�1(�) = �1+ m

i=1 
i �
n
i=1 pi �=3+

O(�2) for the discretization zero [9], there exists a constantM4 such
that maxf1; jq1(�)j; . . . ; jqn�1(�)jg � eM � for � 2 (0; tf ).
Therefore, we can see thatsup j�3�vj

N
1=jvjN1; v 2 RN < +1 in

the same manner as the proof of Lemma 1.

APPENDIX IV
PROOF OF LEMMA 4

Consider anN � 1(tf=� � 1)-dimensional vectorw� which
satisfiesjw�j

N�1
1 < +1 and jv�jN�21 ! 0 as� ! 0, where

v� = [w�(1)� w�(2) � � �w�(N � 2)� w�(N � 1)]T. Then,
j�4�w��j

N
1 tends to 0 as� ! 0. This is because we have the third

equation, shown at the bottom of the page, which implies the fourth
equation shown at the bottom of the previous page.

To establish the lemma, we will show that�5���S��, where�� =
u������u

� has the same limiting property asw�� given above. Let
�� = S��. Then

�
(2)
� (t) =

d2

dt2
S�� =cA2

c

t

0

eA (t��)bc��(�)d�

+ cAcbc��(t)

�
(3)
� (t) =

d3

dt3
S�� =cA3

c

t

0

eA (t��)bc��(�)d�

+ cA2
cbc��(t) + cAcbc

d

dt
u�(t):

H�1
1 (z) =

�

cb�
1 +

r0(�)zn�1 + r1(�)zn�2 + � � �+ rn(�)

(z � 1)(z � q1(�)) � � � (z � qn�1(�))

[�2�(��S(u
� � ����u

�))](k)

=
[S(u� � ����u

�)]((k+ 1)�)� [S(u� � ����u
�)](k�)

�

= cAc

�

0

eA (� ��)bc(u
� � ����u

�)d�+ cbc(u
�(�k)� u�(k�))

[�4�w��](k) =

0 k = 1

w�(1)� k = 2

(�1)k (k�1)=2
i=1 � fw�(i)� w�(i+ 1)g k = 3; 5; . . .

w�(k � 1)�

+(�1)k k=2
i=1� fw�(i)� w�(i+ 1)g k = 4; 6; . . .

j[�4�w��](k)j �max jw�(1)j�;
(tf=�� 1)

2
� jv�j

N�2
1

;

jw�(k � 1)j�+
tf
�

� jv�j
N�2
1

:
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[�5���S��](k) =
��((k� 1)�)� 2��(k�)+ ��((k+ 1)�)

�2

=�
(2)
� (k�)+

�
(3)
� ((k+  �

k )�)�

6
�

�
(3)
� ((k� ��k )�)�

6

By using the Taylor expansion of��((k � 1)�) and��((k + 1)�),
we have the equation shown at the top of the page, where
k = 1; 2; . . . ; N � 1 and  �

k ; �
�
k 2 [0; 1]. Since��(k�) =

��((k+ 1)�) = 0 andk��k01=� � k(d=dt)u�k01, we have

�
(2)
� (k�)

�
� sup

t2[0;t ]

cA2
c

t

0

eA (t��)bcd�
d

dt
u�

0

1

and by the mean-value theorem

�
(2)
� ((k+ 1)�)

�
�
�
(2)
� (k�)

�

= cA3
c

(k+� )�

0

eA ((k+� )���)bc��(�)d�

+ cA2
cbc��((k+ ��k )�)

� sup
t2[0;t ]

cA3
c

t

0

eA (t��)bcd� + cA2
cbc k��k

0
1

(27)

where��k 2 [0; 1]. Sincek(d=dt)u�k01 is bounded andk��k01 tends

to 0, we can see that�(2)� (�) � � � �
(2)
� ((N � 1)�) has the same lim-

iting property asw��. Moreover, we have

�
(3)
� ((k+  �

k )�)

� sup
t2[0;t ]

cA3
c

t

0

eA (t��)bcd� + cA2
cbc k��k

0
1

+ jcAcbcj
d

dt
u�

0

1

(28)

and

�
(3)
� ((k+ 1 +  �

k+1)�)� �
(3)
� ((k+  �

k )�)

� 2 sup
t2[0;t ]

cA3
c

t

0

eA (t��)bcd� + cA2
cbc k��k

0
1

+ jcAcbcj sup
jt �t j��

d

dt
u�(t1)�

d

dt
u�(t2) : (29)

Since (d=dt)u� 2 C0[0; tf ], we can see that

�
(3)
� ((1 +  �

1 )�)�=6 � � � �
(3)
� ((N � 1 +  �

N�1)�)�=6 has the
same limiting property asw��.

Similarly, we can also see that
�
(3)
� ((1� ��1 )�)�=6 � � � �

(3)
� ((N � 1� ��N�1)�)�=6

does likewise.
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