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A Limiting Property of the Inverse of Sampled-Data It should be noted that this property of zeros is common for systems
Systems on a Finite-Time Interval whose relative degree is one or two [2], [8], [9]. In this paper, we will

discuss such a limiting problem on the fixed time interval for systems

Takuya Sogo and Norihiko Adachi with a relative degree of one or two. We will demonstrate that the output

of the sampled-data inverse systems converges to the output of the con-
tinuous time inverse systems independently of the stability of the zeros

Abstract—if one considers a sampled-data system derived from a con- whenA goes to zero.

tinuous-time system with a relative degree of one or two on a finite-time
interval, it is not simple to predict the behavior of the output of the in-
verse of the sampled-data system as the sampling period goes to zero. This Il. M ATHEMATICAL PRELIMINARIES

is because the number of sample points increases while the zeros of the ) ) . ) ) . .
pulse-transfer function tend to the boundary between the stable and un- ~ Consider a linear continuous-time single-input-single-output
stable areas. This paper shows that the output of the sampled-data inverse (SISO) system

systems converges to the output of the continuous-time inverse systems in-

dependently of the stability of zeros. d
I . _— (t) =Aca(t) + beu(t)
Index Terms—nverse systems, iterative learning control, limiting zeros, dt
nonminimum phase systems, sampled-data systems. y(t) =ca(t) (1)

wherez € R",u € R, andy € R and a sampled-data system derived

from (1) with a zero-order hold and a sampler with a sampling period
Stable inverse systems or stable zeros of transfer functions are offenThen, we have

required in many kinds of control problems defined on the infinite time

horizon. However, since there is no simple relation between zeros of ((k+ DA) =Aax(kA) + bau(kA)

the pulse—trar)sfer funct_ion of sgmpled-data systems a_nd zeros of the y(EA) =ca(kA) @)

transfer function of continuous-time systems, the behavior of the zeros

of sampled-data systems has drawn much attention from researclw%rel_‘A — exp A.A andba = jOA exp(AoT)bodr. Assume that

Several approaches to determine the stability of zeros or avoid UnSta[m?transfer functio(s) = ¢(sI — A.)" b, is expressed as

zeros have been presented [1]-[10]. On the other hand, when control

problems are defined on a fixed finite-time intery&l¢;], one can K(s—v)(s—72) (s — Ym)

admit unstable systems unless signals become too large {fsigé. G(s) = ‘

One such finite-time control problems is, for example, iterative learning

control which is a trial-based iterative method to improve the transienhen, since there exists a positive constansuch thai:ba # 0 for

response on a short time interval [11], [12]. When continuous time sysit A € (0, ), the pulse-transfer functioH (z) = ¢(z] — Ax)"'ba

tems or their inverse systems are considerefioty], the peak of the can be expressed as

signals is simply determined by the distance between the imaginary

axis and poles or zeros, respectively. However, when sampled-data sys-

tems with a sampling period are considered off), ¢ ], the peak of

the signals depends on the variatle This relationship is not simple

because\ changes both the number of sample points infides] and  Next, consider a system (1) with the initial conditiof0) = 0 on a

the location of poles and zeros. Furthermore, the zeros as a functiimite-time interval[0, ¢ ;]. Then, the input—output mapping defined by

of A are much more complicated than the poles. For example, cdi) is expressed as= Su (u,y € L,[0,1,]) where

sider the continuous time systei@s(s) = (s — 1)/s> andG»(s) =

(25_— 3)/{(s+ 1)(s + 2)(s + 3)}. Then, the sampled-data systems Su = /" ce A () dr )

derived from each with a sampler and a zero-order holddare) = o

{2 MAGE- 2+ A>/<2 ~ A)}/{2(z = 1)*} and Ha(z) =

FA) (= (D) (z=q2(A))/{(= —eXp(—A))(z—exp(_QA))(;_ Moreover, assume that the sampling peridcsatisfiesA = t,/N,

exp(—3A))}, respectively, where, (A) = 1 + 3A/2 + O(A%) and whereXN is a natural number. Then, the input—output relationship on

@A) = -1+ 5A/2 + O(A?) [8], [9]. Consider the inverse sys- the sample point§0, A, 2A, ...ty — A t,} is

temsH; '(z) and Hy ' (2) on {0,1,...,t;/A} wheret;/A is as-

sumed to be a natural number and g{\;@(o),yd(A), ya(ti)} wa = Cava (6)

that is the sampled-data of a functigg(t) to H, *(z) andH;1 (z) as

their inputs. Then, the unstable zeros for a smathake the output of where

the inverse systems increase exponentially. However, it is not easy to

|. INTRODUCTION

(s =p1)(s=p2)--- (5= pn) )

cha(z = qi(A) -+ (2 = gu=1(A))

oAz —eppd)y P

H(z)=

determine whether the output of the inverse systems diverges or con- va =[u(0) w(A) - u(ty)]" ()
verges insid¢0, ¢ ;] whenA goes to zero, because all the zeros tend to wa =[y(0) y(A) - y(tp)]" ®)
points on the unit circle, i.e., the boundary between the stable and un- 0 0
stable areas, while the number of sample points increases [Asigé ma(1)
A
T'a = . . ©)
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Note thatcba # 0 for almost allA > 0. Then, we have the inverse
system

2((k+1)A) ={Aa — ba(chba) " cdata(kA)
+balchba) ' y((k+1)A)
w(kA) = — (cba) " cAax(kA)
+ (cba) " y((k+1)A)

(k=0,...,N —1). (10)

By letting u(NA) = 0, (10) defines a mapping froma to va. We
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The proof of Theorem 1 will be established in the following sequence
of lemmas; all assumptions in Theorem 1 will be preserved. Since we
have

10aT8oay” — u"llo <ITXoay” — oau™|X
+ |0acaun™ —u'||so
=X (caSu™ — oaShacau™)|l

+[|facau” —u”||o. (15)

What we have to show is

can denote the mapping B, the Moore-Penrose generalized inverse

T} of Ta, which is the mapping fromva to the minimizer of(wa —
Tava)T(wa — Tava) with the minimum norm.

In the following discussions, we will use the sampling operator:
L[0,t;] — RY*! and the zero-order hold operaitx : RV ! —
L,[0,ty], defined as follows:

oafu] =[u(0)u(A)---u((N = 1)A) U(tf:)]’l‘ (11)
v(k) if t€[(k—1AkA]
bacl(t) = (F=r2.%)

v (%—1—1) if t=ty

We define the following notationgu||. = sup{|u(t)|;t € [0,¢5)},
[o| X sup{lv;]; i = 1,2,...,N(= t;/A)}, CF[0,#;] de-
notes set ofk-th continuously differentiable functions off), t].
Note thatTav = oaS8av and ifu™ € C*[0,t;] (k > 1) then
lima_og [|facau™ — u*||lcc = 0.

In the following sections, we consider the inverse discrete-time

system with sampled data of a fixed functigh defined in[0, ¢ /] as
the input, i.e. T {oay™ or (10) whosey((k + 1)A) is substituted
with y*((k + 1)A).

. THE MAIN RESULTS

In this section, we present the limit Bf{ A y* asA — 0.

Theorem 1: Assume thaie — m = 1 or 2 and there existg* €
C" ™10, ¢4] such thay™ = Su*. Then

[#aTXoay” — [l — 0 (13)
asA — 0.

Remark 1: The convergence (13) is presented only@r ), while
the functioaT {oay* —u™ is defined orf0, ¢ ;]. However, this is the
best result because from the definitionlof we havelfaTXoay™ —
u*](ty) = u*(ty), which is independent ah.

It should be noted that the result of Theorem 1 is independent of thg o yma 2: Assume n — m
stability of the zeros off (z); TLoay™ converges even if some zeros

go to the unit circle from the outside.

If a functiony™ (¢) (¢ € [0, t5]) satisfies the assumption in Theorem Next, we consider the case of— m = 2 andN x N matrix

1, «* can be obtained such that = Su™* by using the following
L]

continuous-time inverse system of (1)
dt) u )

) | ‘y(f)

whereF = cA?"™ b, and2(0) = 0. Let S~ be the input—output
mapping of (14) orf0,¢;]. Then,u* = S~ 'y*; (13) is equivalent to

d

() ={Ae + beF ' cAYa(t) + b F <

d

dt (14)

u(t) =F Al ™" 2(t) + F~' <

16aTLoay® — S™'y*|l« — 0. This means that the discrete-time ;

&

function.

inverse system (10) converges to the continuous-time inverse sys
(14) asA — 0.

T (6aSu™ —oaSacau™)|X =0

(16)

asA — 0.

First, we consider the case of— m = 1 andN x N matrixAa
such thalC{ (N, N + 1) = A1aAza WhereT'L (N, N + 1) indicates
the matrixl“JAr without its V + 1-th row; Aoa isanV x (N +1) matrix
defined as

-1 1 0

L (17)

Aoa =

.

0 -1 1

Consider the inverse system (10) on the infinite interval and
the pulse-transfer function‘[(:)*l. Then, we can see that the
decomposition ofT{(N,N + 1) given above corresponds to
H(z)™' = Hi(2)""H2(2)"" where

_ AG - eppiA) - (= — exp(pad))
cba(z—1)(z — qi(A)) -+ (2 — gn—1(A))

Hi(z)™"
(18)

Hyzyt =Y, (19)

A

Lemma 1: Assumen — m = 1 and consider thé&V x N matrix
A1a defined as

mia(0) 0
Aia = : (20)
mia(N —1) mia(0)
where Markov parametersa (i) (¢ = 0,.... N — 1) are defined as

mia(i) =1/2nj ¢, Hi(z)~'z'~"dz (C: a simple path enclosing all
poles) Thensup {|Arav|X/[v|X;v € RV} < +oofor A € (0,€).
Proof: See Appendixm

= 1. Then, |[Aca(ocaSu™ —
TaSOacau®)|X — 0asA — 0.

Proof: See Appendixm
Asa
AsaAsaAsa whereda isanN x (N —1)

suchthal'} (N, N+1)
matrix defined as

0 0
1 0
Asa=| -1 1 (21)
: 0
(=N -1 1

ITheorem for the case of — m = 1 has been proved in [13], [14]; the ap-

fBfined proof which uses an asymptotic property of zeros of the pulse transfer

oach was based only on a state-space representation. In this paper, we present
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Fig. 1. Leftu = 8 TLoay* withu*. Righty — y* = SO Loay® — y*.
andAsa isan(N — 1) x (N + 1) matrix defined as However, whem\ is shrunk to 0.25, we can observe that the signial
near the ideal input™ and therefore the intersample ripples are elimi-
. -2 1 0 nated.
Asa = — e . (22) The main result shown in this paper implies that the solution of an
Ao . . . i s pape at ™ '
0 1 -2 1 optimal control problem minimizing, / {y(t) — 4" (¢)}*dt or the in-

verse problem finding/(#) such thaty” = Swu can be approximated
We can see that the decompositiodf( N, N + 1) given above cor- by the solution of the finite-dimensional optimal control problem mini-

responds to (z)~" = Hs(z)"'Hi(z)" ' Hs(z)~' where mizing|Tav —oay™|*, namelyT o ay™ when the relative degree is 1
‘ or 2. This property is favorable for iterative learning control [11], which
Hyo! A2(z+1)(z — exp(piA)) -+ (z — exp(pnA)) 23) is a method to realize precise output tracking[@rt ] by repetitive
3(2) = )

improvement based on experimental input—output data; inter-sample

residuals of the output can be reduced simply by shrinking the sam-

Hi()7'=1/(z+ 1) andHs(2)"" = (» — 1)? /A%, pling periodA as far as precise output tracking is achieved only on the
Lemma 3: Assumen — m = 2 and consider théV x N matrix sample points.

Asa defined as

cba(z —1)2(z — q1(A) -+ (2 — gn_1(A))

V. CONCLUDING REMARKS

msa (0 0
Asa = : o . @24) We demonstrated that when the relat_ive degree is_one or two, the
. : inverse of sampled-data systems approximates to the inverse of contin-
mza(N —1) -+ m3a(0) uous-time systems independently of the stability of the zeros. It should
be noted that such a property is uncommon for a relative degree greater
than two, because there is at least one zero that converges to a point
exterior to the unit circle [2].

where Markov parameterssa (i) (i = 0,..., N — 1) are defined as
msa(i) = (1/27j) ¢, Hs(z)" 'z~ 'dz (C: a simple path enclosing
all poles). Thensup {|Asav|Y/|v|X:v € RN} < 4oo for A €

(0,€0). . APPENDIX |
Proof: See Appendix. PROOF OF LEMMA 1
Lemma 4: Assumen — m = 2. Then, |[AiaAsa(oaSu™ —
oaSacau®)|Y — 0asA — 0. Since the first equation shown at the bottom of the next page holds
Proof: See Appendixm true, the systemida, ba,éa, A/cha) is converted to the controllable
We are now ready to establish Theorem 1. We have seen thanonical form.
FI(N. N 4+ 1) = AaAoa or AsadsaAsa. If n —m = 1or2, ro(A)
we can obtain (16) from Lemma 2 with Lemma 1, or Lemma 4 with Aa : 0 - 0 A A (25)
Lemma 3, respectively. ’ . ’ eba ? cha
ra(A)
IV. NUMERICAL EXAMPLES AND INTERPRETATION OF THEMAIN where|Aa| = max{1,|gi(A)],...,|g.—1(A)|}. Since we can see
REsuLT |7 (A)]/A < 400 (j = 0,...,n), we have
ConsiderGs(s) given in Section | on the finite-time intervéd, 5] ro(A)
with «*(¢) = 5t + 1 andy™ = Su*. Then, the pulse transfer func- : < LA (26)
tion H»(z) has the unstable zekg (A) for a small sampling period ) -
as shown in Section I. Fig. 1 shows = §.T oay™ with «* and ra(A)

y—y* = SOAT oay*—y* for A = 0.5 and 0.25. Wherh = 0.5,the  wherell/; is a positive constant;| indicates the Euclidean norm and its
unstable zero makes the signaVery large at the right end of the time induced norm. From the Taylor expansion of the intrinsic zero, namely
interval; this causes intersample ripples as shown in the right figueg(A) = 14 v A + O(A?) [8], we have|Aa| < 1+ MoA < M22
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for A € (0,¢y), threMz is a positive constant. Note that there exists APPENDIX IlI
a positive constant/; > 0 such thaA /cba| < Ms; for almost all PROOF OF LEMMA 3

A > 0.Then, we havgAiav]i < Msfui| and Since we have; (A) = 1+ A+O(A?) (i = 1,..., n—2)[15] for
theintrinsic zerosang, —1 (A) = =1+ (37 i — S0, pi) A/3+
M (i, S ang, 1 i=1 i=1
[A1av]k {; 3 (c“’ DMzA 1) O(A?) for the discretization zero [9], there exists a consfahtsuch
e P E 1 i that max{1, |[¢g: (A)],..., < Mt for A € (0,ty).
x max{lvjl;j =1,....k = 1} + Myfo] Therefore, we can see thatp {|Asav|Y/v|X:v € RN} < +ocoin
the same manner as the proof of Lemma 1.

for % = ,...,N. Those inequalities imply that
sup {|Aiav N/|v|% veRY < +oc  because
otk {1)MZA 1<e (N - 1)MZA} 1< oTM2 APPENDIX IV
i . PROOF OF LEMMA 4
Consider anV — 1(ty/A — 1)-dimensional vectorva which
I N—1 N—2
. A
APPENDIX |1 SatlefShUAloo < —|—.oo and|u|fo = 0 a§T — TO where
PROOF OF LEMMA 2 va = [wa(l) —wa(2)---wa(N —2)—wa(N—1)]". Then,
[AsawaAlY tends to 0 as\ — 0. This is because we have the third
Note that equation, shown at the bottom of the page, which implies the fourth
[Su](t) = [, {c4 JT et Dbou(o)do + cbeu(r )}dr Then, we equation shown at the bottom of the previous page.

have the second equation shown at the bottom of the page, fofrO establish the lemma, we will show thiefa oA Sna, wherena =
k=0,1,...,N =1, where¢, € [kA, (k+1)A]. Moreover, we have * —facau”hasthe same limiting property as\ A given above. Let
CA = SI]A Then

[[A2a(oaS(u* — Oaoau™))](k)]

¢
't (Z)t = 51 —cAZ/ A=y, (r)dr

(:AC/ A=y Ao+ cb.. (t) = dz‘2 Ia o 15 (7)
0

+ cAchena(t)

-t
Ej)(f) ItSSnA _('Ag/ ,A“(t_r)bcrm('r)dr
0

< sup
t€[0,t/]

X [ —facau”]|s

where||u||s, = sup{|u(t)|;t € [0,t]}. Since||u* — QAJA'U*|I;O — ) d .
0 asA — 0,we have|A2A(aASu* — O'ASQQAO'A'LL*NQZ, — 0. + CAcb¢77A(t) + cAch. Eu (t)
_ A ro(A)z"‘_1 +'r1(A)z"_2 4o+ (A)
H'(2) = {1 + :
=00 CoDC=a(A) (= aa(A)

[Aza(oaS(u" — 0aoau™))](k)
S = facau)((k+1)A) = [S(u” — facau”)](kA)
- A
~Eh
= C,AC/ ARy (0 — Gacau”)do + cbo(u* (&) — u” (kA))
0

0 k=1
wA(l)A k=2
[AsawaA](k) = VeSO A Lwa (i) —wali+ 1)} k=3,5,...
’LUA(k - DA
—i—(—l)kzl‘/zA{wAU —wa(i+1)} k=4,6,...

)A |UA|N72 ,

[e'S]

lwa(k — 1)|A + <Kf)A|v |N- 2}.

[AsawaA] (k)] gmx{m(l)m, “f/%
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A((k—1A) —2¢a (kA E+1)A
(Aearasnal(h) =S2(E=DA) Z 2 hA) +a(k+ 12)
(LR S EVENN S G (LT VI
—6a ¥ - :
6 6
By using the Taylor expansion @f ((k — 1)A) and{a ((k + 1)A), Similarly, we can also see that

we have the equation shown at the top of the page, whe @g”)(

E = 1,2,....,N — 1 and ¢, 05 € [0,1]. Sincena(kA) =
na((k+ DA) = 0 and||na|ls /A < ||(d/dt)u*||s, we have

(2) /1., 4
ST

-t
CAZ / A=y dr
tef0,1 ] 0

d *
— U

dt ||,
and by the mean-value theorem

(1]

ALY
A

SE+1A)
A

s (k02 A
= |cA.

0

(2]
(3]
(4]

6AC((/cheké)Afa-)bdm(l_)éh_

[5]
+ cAZboya ((k+05)A)

(6]

S 7

ot
CAE/ eA“(L_T)deT + cAsz.
te[0,¢ /] 0

lInall’,

27)

(1= 6M)A)A/6-- (X (N = 1= 63 _1)A)A/g]

oes likewise.
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