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Abstract— A general framework for representing continuous  a quaternion satisfies the restrictions given by the quetern
sets of frames with the unit quaternion representation is volume is also presented.
presented. The determination and control of the attitude of  pig haner also addresses the problem of how the unit
a rigid body is important in a wide range of applications and . o . . .
has been given much attention in the control community. Not quaternion group can be_ Ut'I'S_Ed to find the f"‘tt'tUde that is
always, however, must the desired attitude be restricted tone  Closest to some given orientation when rotations about one
given orientation, but can be given as a discrete or continuss  axis only are allowed. This work is similar to the results
set of orientations subject to some restriction. An attitu@ can  found in [3], [5] and [6] in how the orientation error is

be represented by the four-parameter unit quaterion withait — ,esenied . but goes one step further in also finding thestlose
the presence of singularities. It is shown how continuous &eof orientation

frames can be described by the unit quaternion representadin.

It is also shown how this set can be reorientated into an

arbitrary coordinate system by the quaternion product. Sore Il. REPRESENTINGROTATIONS

work is done on finding the attitude that is closest to the desed Most of the fundamental principles of rotation were pre-

orientation when the desired orientation is out of reach dueto . h ler | h

some restriction on the allowed orientations or rotations. sented in two papers by Leonhard Euler in 1775 [8]. The

first paper shows that any rotation can be accomplished by

I. INTRODUCTION a sequence of three rotations about the coordinate axes. In

The attitude control problem of a rigid body is given muchthe second paper, Euler states that any orientation can be

attention in the control community, and its applicationsga represented by a rotation of some angl_a_bout some f'Xe.d
. . . axisn. He also shows that the composition of two rotations
from attitude control of aircraft, spacecraft and satedlif1],

[2] to rigid bodies held by robotic manipulators [3], [4]. A s itself a rotation.
thorough discussion on the attitude control problem ismives The unit Quaternion
in [5], where global stability is shown for a variety of cowitr

laws using the unit quaternion representation in a Lyapunov The unit quaternion representation closely relates toghe r
function. sults presented in Euler’s second paper. A good introductio

The unit quaternion group allows orientation and rotatiofi® duaternions is found in [7]. Any positive rotatignabout

to be represented globally without singularities. One frob @ fiXed unit vectom can be represented by the four-tuple
of the unit quaternion group is that it is not as easy to 9

visualise as the Euler angles. Many methods have been Q= |:q:|’ @)
developed to help visualising quaternions and the relakigm
between quaternions and three-dimensional rotations.odl go
introduction on how to visualise quaternions can be founector partQ
in [6] and [7]. [6] also gives a thorough presentation of .
guaternion curves, surfaces and volumes. Of special sitere 4o = COS (5)7 g = sin (§)n. (2)

is the work presgnted on quaternion volumes, where it ig i 54 quaternion of unit length and denotedirit quater-
shown that a continuous set of frames can be represented iy, Henceforth, all quaternions have unit length if not other
a quaternion and a set of intuitive restrictions in Eulerlang ig stated. A multiplication of two quaternions is given by a

representation. The theory of quaternion volumes closely,aternion product and is written in vector algebra notetio
relates to orientation maps. Several techniques that can be

used to visualise orientations are discussed in [8]. Podo — P q

In this paper, the work on quaternion volumes is taken one PxQ= pog+qp+pxql’
step further, and a schematic approach on how to represent o } S
sets of frames is presented. It is shown how this set can B8€ €ross product implies that quaternion multlpllcatlgn '
visualised by a set of points in the unit sphere, and how th[¥ot commutative, as expegted. LBt=[po p1 P2 ps]
set relate to the corresponding quaternion volume. It is aland @ = [qo @ Q2 qg} . Then the quaternion product
shown how this set can be reorientated so that it is definégl written as
with respect to some other reference frame. A test to vefrify i

wheregy € R is known as the scalar part agde R? as the
(¢,m) is written in terms ofyp andn by

3)

Poqo — P1q1 — P292 — P3qs3
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The quaternion product of two unit quaternions is a uniby a combination of rotations given by the quaternion
guaternion. By the definition of the quaternion the quateproduct of two or more quaternions and their restrictions.
nions@ and—@ produce the same rotation. This is referredn this paper, only sets of frames that can be described by a
to as the dual covering. The quaternion identity is given bgequence of rotations about fixed axes are treated.
Qr = [1 0 0 o]T_ Definition 3.1 (Quaternion Volume)A quaternion vol-

A pure quaternion is a quaternion with zero scalar partme,Q®, is defined as

_ T
Any vector,v = [x y z} can be represented by a purep® & {Q(d1,.. . bn.11s . 1) | Dromin < 1 < Dlmas

quaternion .
v= m . 5) : ©)

v (bn,min S (bn S (bn,maw}
The conjugate of aTquaternion is defined g5 =

for n > 1 and where
[QO -1 —q2 —qg}

. . Q(¢1a"'7¢nvn1a"'ann):Q((blvnl)*“'*Q((bnann)'
B. Quaternions and Rotations (20)
Let a vector,z;, be represented by the pure quaternion From the above it is clear that a quaternion volume is

v1. This vector can be rotated radians around the axis obtained by the quaternion product of one or more quaternion
by volumes. This is stated in the next proposition.

Vs = Q * vy * Q. (6) Proposition 3.1 (Quaternion Product of Quat. Volume(s)):
The quaternion product of two quaternion volumes, or a

Every vectors € R? can be represented by a pure quaterquaternion volume and a quaternion, is itself a quaternion
nion, hencewv is not necessarily a unit quaternion. Theyglume.
quaternion,Q(¢,n), however, is unitary. This represents  Proof: By equation (3) the quaternion product of two
the angle and the axis that the vec®r is to be rotated quaternions is a quaternion. L&t be a quaternion with the
about. The resulting vectofis, is then of the same length restrictions ¢, < ¢ < émae. Then it is a quaternion
aswv, if and only if @ is a unit quaternion. The quaternionyolume by definition 3.1 withe = 1. Then the quaternion

representation also leads to a useful formula for finding theroductE = P «  consists of the 16 elements of equation
shortest rotation from one orientation to another. Peaind  (4). Let Q be a quaternion, thel can be written in terms

Q@ be two orientations. Then, by taking of eg_s.
E=P"*Q, () eo = po(#)qo — p1(¢)ar — p2(P)a2 — ps(d)as,  (11)
E will rotate P into @ by the shortest rotation. e1 = po(®)q1 + p1(P)go + p2(d)gs — p3(P)gz,  (12)
Note that equation (7) rotates one frame into another ey = po(¢)ge + p2(d)qo + p3(d)q1 — p1(P)as, (13)
frame. By aframeit is meant a coordinate systemR? using e3 = po(0)gs + p3(8)qo + p1(d)gs — pa (). (14)

Cartesian coordinates. One frame with respect to another

frame represents three degrees of freedom and is referfd@te that, asy is a quaternion, the elements bfare sums
to as anattitude orientation Equation (6) rotates one vector Of the products of a constanyy(s) and the elements of
into another vector and has two degrees of freedom (e §ie quaternion volumep(_s(¢)). By representing” € R*
longitude and latitude) [9]. A unit vector with respect to a@ndQ € R* as four-tuples, the quaternion product is given
unit reference vector is referred to as afitude direction by (11)-(14) and the field propertglosuré is satisfied so
Henceforth, when referred to direction, this is the directi thateo—s € R. Thus,eg_3 are functions ofp so that the
of the z-axis of the body frame with respect to theaxis of ~restrictions on¢ can be applied to the quaternion product.

the reference frame. Furthermore, ag P|| = 1 for all ¢, ||[E|| =1 so thatE is a
guaternion volume by definition 3.1 with = 2.
[1l. QUATERNION VOLUMES Similarly, when bothP and(Q are quaternion volumes the
A. General Definition elements ofF are sums of products qf;(¢1)q;(¢2) and

A set of frames that correspond to a reference frame b?aﬁeaa?ua;?é?]g;g:l:m?ebsy tﬂgﬂiinge a;rgjeume;ztrllqgr.];'he
a rotation about a fixed axisz, can be represented by a i gu | ! ppﬂl] w th Q ?L.J " '1
quaternion and some restriction or quaternion volumes with more than one restriction; 1.

[ |
f min max - . .
Qen),  for dmin << ¢ ®) B. Quaternion Volumes by Rotations Sequences

When restrictions are not limited to one axis only, a more A (gtation sequence describes a rotation about one co-
general description of all allowed orientations can be @efin  qinate axis followed by a rotation about another of the

1The dual covering allows every rotation to be described @wia this coordinate axes in the rotated coordinate system. A general

paper, however, it is only described once, so that all angtesassumed framework on how to construct easily visualisable quaterni
to be in the interval—7, 7r]. It is also assumed that all angles of inverse

trigonometric functions are in this interval with the catrsign. Forarctan, 2The real numbers are closed under addition and multipinathence if
this is denotechrctan?2. a and b are real numbers, so are a+b and ab [7].



volumes by rotation sequences is presented. The rot
sequence starts with two subsequent rotations about
coordinate axes, represented by the quaterran This
defines the attitude direction. The last degree of freel
is added by a rotation about the direction vector, here
z-axis, by Q.. In equation (6), let), represent the vectc
to be rotated and le@); be the quaternion describing tl
direction of this vector. Then the rotation sequence

represents the direction of theaxis for a given rotationd) s
given by the direction of the vector part Bfand the rotatior
about thez-axis given by the scalar part or length of the v
tor part of V by ¢ = 2arcsin(||7||) = 2 arccos(vo)sgny).
Henceforth)) is called avisualising quaternionNote thaty
does not represent a rotation. It is used as a tool to vigu
rotations and as a help to define an appropriate set of fr
for different applications. The visualising quaternionde
the corresponding quaternion should be viewed upon
pair, (Q,V), where the visualising quaterniol, gives an
intuitive description of a rotation of a frame .

Let the vector part of the visualising quaternion be pIottea

as a point in theryz-sphere. Then the direction of the

z—-axis Quaternion Volume z-axis Visualising Quaternion Volume
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Fig. 1. The quaternion volume and the visualising quaternwume in the
zyz-sphere. The upper plots show a freedom aboutthgis and the lower
lots show all vectors that span out a cone and the orientagadout these
ectors. The visualising quaternion volume gives a moreitiaé picture
of the orientations described by the quaternion volume thanquaternion

axis, rotated by the corresponding quaternion is given b{plume itself when plotted in theyz-sphere.
the vector from the origin to this point, and the rotation

about thez-axis itself is given by the length of this vector.

Hence, a continuous set of quaternions (a quaternion volunfe: Reorientation of Quaternion Volumes

is represented by a “cloud” in theyz-sphere describing the

corresponding set of orientations.

The quaternion that rotates the reference frame into thbat the transformatio)s =

orientation described by equation (15) is then given by

Q=0Qs*Q:. (16)

Let Q¥ be a quaternion volume and the quaterniBn
represent some transformation . It will be claimed
P % Q® rotates the entire
set of frames by a rotatiof?. Similarly, the transformation
Q% = P* x Q% allows the set of frames represented by
the quaternion volume to be represented with respect to

Finally, the quaternion volume is given by restricting the, e reference framé. The transformation induced by

allowed rotations of each quaternion.

Ve = Q7 * QY (QF)" 17
and the restrictions o)® and Q%. Then the correr

orientations described by® is given by
Q¥ =QF Q%

with the same restrictions applied @® as toV®.

(18)

changing from one reference orientation to another is dalle

Given a visualising quaternion volume by the sequencereorientation[8].

Proposition 3.2 (Transformation of Quaternion Volumes):
Any quaternion volumeR®, represented with respect to the
identity frame can be transformed into another quaternion

sponding quaternion volume that results in the set of volume by

Qp = P*Q%, (19)

where the orientations represented@% relate toP in the
same way a£)® relates to the identity frame.
Proof: The quaternion produckl = P % () can be

Figure 1 shows the difference between the quaternion volumgwed upon as a rotatioR followed by a rotationQ with
and the visualising quaternion volume when the vector paréspect to theewframe that resulted from the first rotation

is plotted in thexryz-spheré.

P. Hence,E relates toP in the same way ag) relates to

Note that the dual covering also applies to the visualisinghe identity frame. By the same argumentation the quaternio

guaternion volume. Hence, one should always keep track ¢§lume Q% relates toP in the same way a§)® relates to
the sign of the rotation so that a negative rotation about th@e identity frame. u

z-axis is not interpreted as an opposite direction of the

In proposition 3.2, the reference frame is kept constant

axis. This can be done by moving the negative sign to thgnd all the elements of the quaternion volume are rotated
scalar part (which is positive ii—=, ) or to assume all by P. Reorientation, however, is a rotation of the reference

angles in the interval0, 27) wheresin(g) is positive.

3In figure 1, the orientations are plotted b’m(f)n (the orthographic
orientation map [8]) for both the quaternion volume and tlgualising
quaternion volume.

frame (change of observer) while the quaternion volume is
kept constant. The proof of the reorientati@@ = P*%Q%®

is constructed in the same way as the proof of proposition
3.2



:l:sq3

Comment 1:From equations (3) and (6), four different p3 = — (22)
ways of transforming quaternion volumes arise. Vot 43
1) Q% =Q%xP 3) Q% =Q%x Px(Q%)* where the twot, have the same sign.
9 Q% =PxQ®  4) QY = PxQ® « P* Proof: E = P* @ can be written
2 4
The first transformation is used in [6] to find a set of frames, [60] _ { Po p3] [QO] (23)
all with one axis pointing in a fixed direction, as a mean to €3 —P3  Po] |43
find an optimal path in the quaternlqn space)ff represe.nts el [po ps][m o4
a freedom about one of the coordinate axes, say:thgis, eal — |=p3 pol g (24)

Q?;l can also represent a set of orientations where:thges
have the same angles with respect to the reference frame
axis, determined byP. For this special case, the same resul

By definitions 4.1 and 4.2, the quaternign that is closest
{o Q is found by the error quaternion with, closest to 1.

is obtained by the third representation. Even though the two €0 = Podo + P3q3 (25)
representations present the same set of vectors they idiffer B e L 26
orientation. The set of frames described @, is the set =qo 006(5) +q3 b1n(§), (26)
that results from rotating the frame representedrbgbout so that
the coordinate axis, _whil@%g is the set of frames when deo @ sin(ﬁ) + 8B COS(%). (27)
the shortest rotation is taken from the reference frameeo th dy 2 2 2 2
directions described by and Q®. Let dl_iﬁ — 0. Then

IV. COORDINATE AXIS ROTATION tan(%) _B (28)

There are several ways of representing the proximity of o

two frames [3], [5]. Here, the proximity of two frames will Then by usingarctan(z) = arcsin (Jﬁ) [10], v is
be described by the rotation required to take one frame in{gritten as

the other by the shortest rotation. q3
Definition 4.1 (Quaternion Space ProximitylBiven two Y= 2arCtan(q_0) (29)
orientations represented by the two quaterniéghand Q. s
Let theerror quaternionbe denoted — 9 arcsin 40 (30)
E=P*+Q. (20) 1+ (%)
Then the scalar part of, ey, describes the proximity of the — 9 aresin < a3 ) . 31)
two frames. V@& + ¢

Definition 4.2 (Minimal Rotation)The larger (closer 10 Erom the definition of the quaternion
1%) the error quaternion scalar pasg, the closer are the )
two orientationsP and Q. Y = 2arcsin(ps). (32)

An uncountable number of devices have only one degrd®y comparing equations (31) and (32), equation (22) is
of rotational freedom, ranging from human elbows angjiven. Similarly byarctan(z) = arccos ( ———; ) sgn(z)

revolute robotic joints to satellites with only one opengti a3 Vit
actuator. The control of a one-actuator satellite is imgoatrt 1 = 2arctan(—) (33)
whenever actuator failure occurs. Two questions arise: do
. . . . 1 ‘
1) .How close to the desired orientation can one get with — 9 arccos sgr(q—3) (34)
just one degree of freedom. 1+ (2)2 Qo
2) What is the reachable orientation closest to the desired %
orientation. Q0 q3
. . =2 —— | sgn(—). 35
Assume thatP® represents the set of orientations when areeos ( /¢ + q§> gr(qo) (35)

the identity frame is rotated about theaxis. Then the

problem is to find theP, that that is closest t@). Note that the sign off = 2arccos(po)Sgnv) is given by

o : . . . equation (32). Hence, equation (21) is found. Foto be in
Proposition 4.1 (Optimal Rotation)Consider an orienta- the interval[—r, 7, the sign-, is chosen positive, so that

ionQ =10 @ ¢ Q3]T. The orientation described by , s hositive [
. T . 01Sp : ,
the quaternion?, = [po 0 0 ps] thatis closest ta@)  Similarly when P rotates about the- andy-axis.

(by definition 4.1 and 4.2) is given by The largest rotation is given whef is close to zero.
po = _Esq0 (21) €0 = poqo + P33 (36)
/2 2
4o + ¢ .
0 =qo cos(%) +qs sm(%) =0. (37)
4Note that an equally good description of proximity is givehen e W %
approaches-1. As cos(%) is positive forg in the chosen interval—m, ), tan(=) = ——. (38)
the positive value ot is chosen. 2 g3



Similar to the proof of proposition 4.1, the orientatiéh [O 0 1 O]T, equation (42) simplifies to

furthest away fromQ) is given by T

+ogs QY =10 sin(%) COS(%) 0], for —r<y<m
po=——L_ (39) (43)
Vot 43 It can be shown that this quaternion volume represents
+.q0 all attitudes with az-axis in the opposite direction of the
p3 = —— (40)  NED-framez-axis.
qo + a3 o o o
L = 2 * 44
where the+, and+, have opposite signs. # q_)d t)v *(Q4) 0 (44)
0
V. QUATERNION VOLUME DESIREDATTITUDE _ sin(%) . 0 . —sin(%)
= (2 —cos(2
In the following, a satellite is used to illustrate the reésul CObé 7) (1) COS( 7)
presented above and how they apply to the control of rigid -
bodies. Two basic problems are addressed in this paper. - cos(%) sin(%) + cos(%) bm(%)
1) Fuel consumption is critical in the control of satellites - 0
A methodology on how to represent the desired attitude 0
; . — o2 (PY _ qin2(¥
by a quaternion volume as a mean to save energy is L cos®(5) —sin”(5)
proposed. [0
2) Failure in one or more of the satellite actuators greatly 0 for —m<< (45)
complicates the control and can result in a desired 10| T T
attitude that is out of reach. A method on how to take -1

th_e s_atelllte as close as possible to the desired attltu%g Desired Attitude Orientation
with just one actuator is proposed.

A satellite with three actuators is considered. Each actuat The attitude can be represented as a set of frames. This

applies a torque about one of the coordinate axes of tRgt can be compoged by a rotation sequence of quaternion
satellite body frame. volumes. Two rotation sequences are discussed, the ZYZYZ-

The body frame and desired attitude are defined witRCJUEnce, as in [6] and [8], and the XYZYX-sequence.

respect to the North-East-Down coordinate system (NEDthel) d-gz'?ngz;:tZ;jsee?geSeCé(;Z?ni?j(zaYsZ:eletjecz}ceeili?r\gsthat
frame). The z-axis of the body frame points in the ' I ! v

speed direction and the operating device (camera, telesco Fl;antotﬂt a conetabouLt the refere_emqs and all onentauons
transponder, etc) is aligned along the body frasrexis. outthese vec Orj" (e, 6) N g(O‘T’z)*Q(ﬁ’ y) where
Qa,z) = [cos(g) 0 0 sm(g)} and Q(B,y) =

A. Desired Attitude Direction [cos(2) 0 sin(2) O]T so that

First assume that the satellite attitude must be alignel suc

that the z-axis is always orthogonal to the earth’s surface, —sin Eg)bm (2)
pointing towards the earth. This gives the satellite oneekeg Qs(e, f) = | (QQ) <in (EQ) (46)
of freedom about the-axis. An arbitrary rotation, about .2 3

sin (§) cos (5)

the z-axis can be represented by the quaternion volume
The quaternion volume can be visualised intlye-sphere

. T
QFree = [cos(¥) 0 0 sin(¥)] , for —w <4 <7 (see figure 1) by the three last elements of
(2
Hence, the quaternion volume is given with respect to o cos(3)
) : ' : sin(2) sin(8) cos(«)
the identity frame. Further, assume the desired quaternion Ve (a, B,7) = 2 . (47)

DT I .
volume instead is to be rotated By, = [dy d1  d2 dg}T Sln(s?n)(swn)l(co(g(sg)l(ﬁ)

with respect to the identity frame. The quaternion volume 2

that describes all attitudes where thaxis points in the same « represents the allowed orientations aboutexis of the
direction as thez-axis of Q4 is given byQ? = Qg * Q?ree first rotation while 8 is the allowed orientation about the
so that newy-axis. If & has no restrictionsj is the offset angle that
defines a cone with the-axis at the centrey restricts the

(O (W
do COb(g) —ds b?n(z) orientation about the-axis itself. A cone sector that allows
Q% = dy cos (%) + dz sin (5) for —7m <y <. a deviation,b, ..., in the sector defined by the restrictions
d ) P 3
dy cos (5) — dysin (5) on « in the zy-plane is defined by
ds cos (¥) + dosin (¥) 5
(42) cos(g) cos(3 + %)
Example 1:1f the desired orientation is set so that the 0 = O « QF = Sin(E)Sin(% - %) (48)
z-axis is always orthogonal to they-plane, pointing out- d s * sin(5)cos(3 — 5)
wards into space, by a rotation about theaxis, Q; = cos(g)sin(% +3)



and the restrictions - andy-axes are restricted tira and +b. Then the set of

frames describing these attitudes is given by (58) and the

Gmin < @ < Gmag (49) .-
restrictions
0 <8 < bmax (50)
Cmin <V < Cmaa (51) ToasasTha (62)
: - . —b<p<b (63)
Example 2: Assume a satellite where theaxis is to point
—T<ysT (64)

outwards into space. Further assume that a small éxryQr,,
in the orientation is allowed and only the attitude directio
are restricted. The set of frames describing these atstigle

given by (48) and the restrictions V1. ConTROL

Two ways to exploit the quaternion volume representation

—TEasw (52) to reduce fuel consumption are presented.
T < B <7+ bmae (53) 1) Let the desired attitude (one frame only) take part in
—r<~y<T7 (54) a control loop. When the attitude is inside the attitude

specifications given by the quaternion volume, some
action is taken to save energy. This may be to switch
to another controller which requires less energy or to
switch to another desired attitude inside the quaternion

It can be showed that this is the same as substituting
0« m+ [ anda <+ —« into equation (48) so that

—sin(5) cos(} — 2) volume, closer or equal to the current attitude. Note

0 = O + QF = cos(§)sm(% +3) (55) also that if the quaternion volume defines a set of

d s ? cos(5)cos(3 + ) orientations close to some reference orientation, a
- sin(g) sin(3 — §) linearised model of the satellite may be used.

2) Find the frame within the set of frames restricted by
the quaternion volume that corresponds to the shortest
rotation from the current orientation and set this as the
desired attitude.

Two problems arise.

1) A test to verify if a frame is inside the quaternion
volume is needed.

2) Find the orientation inside the quaternion volume that
results in the shortest rotation from the current orien-
tation.

and keeping the restrictions (49)-(51). Note that equation
(55) can also be obtained by rotating the quaternion vol-
ume of the previous example by radians about they-
axis, hence by equation (19) witP = [0 0 1 O}T
andQ® = [¢0 @1 @ qg]T as in (48) so tha)§ =
[~ a3 @ —ql]T, which is the same as equation (55).
2) The XYZYX-sequenc&he XYZYX-sequence defines
a pyramid of allowed orientations where the allowed orien-
tations about the:-axis and the (newy-axis are restricted.
This is a good estimation of restricting the orientation w@tho
the globally definedc- and y-axes whenever the angles areA. Quaternion Volume Test

kept small.Q(«, 3) is then given by

COb COb

o w
g F
A~

lem|QNIQ

~—

08
) sin

B
o)
B (56)
3
(%)

) sin

2}
.
=

—

and visualised by

cos(3)
sin (3 ) sin (3)
—sin (3) sin () cos (5)
sin () cos () cos (53)

The corresponding quaternion volume is again given by

V(a,B,7) = (57)

QF = Q¥ Q7 (58)
and the restrictions
Umin < @ < Gmaz (59)
bmin < B < binaa (60)
Cmin <Y < Cmag (61)

Consider a quaternion volume defined by the ZYZYZ-
sequence. A test to verify if a query quaterniqhy,, =
[0 @ @ qg}T is an element of the quaternion volume
is presented.

A query quaternion can be represented in terms,gf and
~. The transformation between the quaternion representatio
and the ,3,v)-representation can be performed in many
ways, by geometric analysis, by the visualising quaternion
or through a quaternion/orientation map. The first method is
often the easiest and most intuitive method and works well
when only the direction is concerned. When the full orien-
tation is to be determined, this approach is not suitable. In
the following, it is shown how this method can be combined
with the visualising quaternion to find the orientation.

By noting thata and 8 can be seen from the direction of
the z-axis only (not from the entire frame), they can be found
from the vectoz = [z y z]T of the rotation of the vector
along thez-axis,o. = [0 0 1]T by z = Qqry *v: % Q).
Then, by standard geometrical relatiamsand 5 are found.

Example 3:Assume a satellite where the attitude is to be
restricted similarly to example 2, but instead of allowing
some error in the orientation, an orientation error aboat th

_ y
a= arctanz(l_) , (65)
B = arccos(z), (66)



wherez, y and z are the elements of given by Hence andg can by found by geometrical interpretation
29092 + 2q1q3 while «, and_y are found from the analyt_icgl expression
7 - 2203 — 2¢0q1 . (67) of the quaternion vqume_. In the following, it is shown that_

B —F -+ these two approaches give the same result. From equation

. . 7 is simplifi
As already stated, the rotation about thexis cannot be (70), 8 is simplified by
seen from the vector rotation of theaxis, but is found B = arccos(qp — ¢7 — ¢3 + q3) (81)
from V by v = 2 arccos(vg). The sign ofy is lost in the — arccos(2(¢2 + ¢2) — 1) (82)
transformation but can be found by, for example the sign of
the fourth element o). As o and 3 are known,) can be and the trigonometric relatioharccos(z) = arccos(2z?—1)

written as [10] so that
V= Qqry x Q(a, B). (68) B = 2arccos /g2 + q3. (83)
Given a query quaternio@,,,. Thenc, 5 and~ from ) o )
the ZYZYZ-sequence are foJund by By arccos(z) = arcsin(y/1 — 2?) this is equal to equation
10 — do (74). By arctan(z) + arctan(y) = arctan2 (%), equa-
a = arctan2 <7) (69) tion (79) can be written as
Goq2 + q1q3 ) g
3 1
B = arccos(qi — g1 — ¢ + 43), (70) Q= arctan(q—o) - arctan(q—Q) (84)
= 2arccos (vg) sgnvy). 71 L4
v (v0) SgN(v4) (71) anctonz (B )
It is now straight forward to verify if the quaternion is 2092
inside the quaternion volume. G293 — qoq1
The quaternion volume is not always of such a structure = arctan2 P B (86)

that it can be analysed geometrically. Then the analytic . _ )

expression of the quaternion volume can be used. FgrCan be written in the same way so that, alternatively, a

comparison, this approach is also shown for the ZYZYZcompIete description of the query quaternion can be given
b

sequence.

Th'e .quaternion volume is given by equation (48) and ity Gjven a query quaternio@,,,. Thena, # and~ from
restrictions. , the ZYZYZ-sequence are found by
cos(2)cos(3+ 97 [a0] (D) -
bln(é) sin(g3 — 5) q| (II) «a = arctan2 (M> (87)
3 Yy _ay| = (72) 9092 + q143
sin(5)cos(3 — 5) g2 | (I1T)
cos(g) sin(3 + %) as] (IV) = 2arccos\/q2 + 43, (88)
By substituting (11) into (lll), (111) simplifies to
y g (I1) into (i), (1) simp - 025 + o
3 7 v = arctan2 | —————— |. (89)
sin(—) 1— 21 = ¢ (73) qoq2 — 41943
2 sin (%) . g _ |
so that is found by B. Transformed Quaternion Volumes
. The easiest way to verify if a query quaternion is inside a
B = 2arcsin 4/ @ + s (74)  quaternion volume transformed by equation (19) is to trans-
3 is positive by definitiona and~ are found by dividing form the query quaternion by the opposite transformatign,
(1) by (1) and (IV) by (I): so that both the quaternion volume and the query quaternion
v« T are presented in the identity frame. Hence, the two problems
tan(5 — ) =, (75)  pelow are identical.
q2
tan(% + %) - 3_3 (76) Qqry EP+Q® 7 (90)
Further let P7xQary €Q ) (91)
J_o_ arctan(q—l), (77)  This operation is computationally demanding. As equation
2 2 q2 (19) gives an analytical expression of the transformedeguat
742~ arctan(L). (78) hion volume, the orientation should be found by a set of
2 _ 2 q0 parameters similar to the ones found in equations (87)-(89)
so thata and~ are given by This may be done when the quaternion volume is on a
o= arctan(q—?’) _ arctan(ﬂ), (79) simple f_orm, for example by e_quation (55)_. '_rhen_the query
q2 guaternion may be tested against the restrictions in (89)-(
y = arctan(q )+arctan(Q1) (80) directly. By following the mathematics of equations (72)-

qo0 P (89), «, B and~ are found with respect to the coordinate



system ofP = [0 0 1 O]T by a quaternion volumle?,,ee, is given with respect to the body
frame, so that

ap = arctan2 (M) , (92) 7 =T%QF,. (101)
qoq2 + 9143
) 5 5 represent all reachable orientations. Then the problera is t
Bp = 2arcsiny/q5 + g3, (93) " find the quaternion < Q;‘?ree that takes the satellite as
B qoq1 + q2qs close to the desired orientation as possible. This is giwen b
7P = arctan? <q0q2 - q1q3> : (94 oroposition 4.1 wherd: is given by
Hence, as expected E=Q;*Q% (102)
_ O ®
Bp =0 —m, (95) =Qa*T* Q. (103)
ap = —aq, (96) LetT; =Q;*T = [qo -1 —q2 —qg]. Then, as only
_ g7) the size (not the direction) of the rotation is considered, t
P =7- (97) . . O .
closest possible orientation is given by equations (21) and
C. Clamping (22) and the rotation needed to take the satellite from the

If any of the restrictions are violated, the quaternion righ®/0Sest reéachable orientation to the desired orientatioa (
be clamped into the set of frames restricted by the quaterni§'™0F) IS given by equation (100).
volume in many ways. [6] suggests finding the nearest VII. CONCLUSIONS
point in thg quaternion metric. Another intuitively temm_i The unit quaternion group is used to find a general
approach is to set the excgeded vglge .to the MaxIMUyl, ework for representing sets of orientations. It is also
allowed value. Then a quaternion that is inside the quaiarni hown how this set can be represented with respect to
vglume may be constrL_Jcted by the_definition_in equation (4 nother reference frame or how to rotate this set when the
glrri:ﬁttgt.i(;trc“;nqzztirlgﬁn é’;l:im)e t'hseonuztjrmgf \tglr?r;]éhgreference frame is kept constant. Several examples of &ets o
the shortest rotation in o?der to save gner Jrientations are presented and it is shown how these sets can

9y- be represented by a quaternion and some easy to visualise
D. Shortest Rotation restrict_iolns. A satelli'Fe is usgd to illustrate how to sanergy
by defining the desired attitude as a set of orientations. A

o How t(l) find hthe hor|entat|on n tfhe qur?termon VL(;Iiu_memethod to verify whether a quaternion is inside a quaternion
that results in the shortest rotation from the currentul8t ;e is also presented. It is also shown how to find the

depends on the quaternlpn volume. One simple so'““%tation that requires less energy in order to take the e@sir
occurs when the quaternion volume represents a freedalgy e into an element of the quaternion volume. Some

abo‘%t one axis. Then the theory from. section g/ can bﬁ/ork is done on finding the orientation closest to the desired
applied directly. LetQ) be the current attitude an# =

T free orientation when the desired orientation is out of reach.
[cos(¥) 0 0 sin(¥)] represent the set of allowed
attitudes, both defined in the NED-frame. Then the attitude REFERENCES
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