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A predictive robust cascade position-torque control
strategy for Pneumatic Artificial Muscles

Lotfi Chikh †, Philippe Poignet ‡, François Pierrot ‡ and Micaël Michelin †

Abstract—A robust cascade strategy is proposed and tested on
an electropneumatic testbed for parallel robotic applications. It
is applied on Pneumatic Artificial Muscles (PAMs). Nonlinear
models are developed and presented. By specifying the pressure
average between the two muscles, it is possible to control the
torque by controlling the pressure in each muscle. A constrained
LMI based H∞ controller is synthesized for the pressure inner
loop. A computed torque is applied on the torque loop and
a Generalized Predictive Controller (GPC) controller is then
applied to control position of the muscles. Experimental results
show the feasibility of the control strategy and good performances
in terms of robustness and dynamic tracking.

Index Terms—GPC, cascade control, pneumatic actuators,
modeling, LMI, feedback linearization, robust control, H∞,
PAMs.

I. INTRODUCTION

The paper is motivated by pick-and-place parallel robotic
applications: the study of 1-dof pneumatic actuation system is
a preliminary stage which enables us to evaluate performances
of Pneumatic Artificial Muscles (PAMs). Parallel robots have a
lot of advantages which have made their success. Particularly,
they are very fast as the actuators are transferred to the rigid
frame reducing considerably the inertia of the moving links
and increasing speeds and accelerations of the end effector.
For instance, the fastest industrial robot in the world -the
Quattro- has a parallel structure and can reach an acceleration
of 15g [1]. Recently, the Par2 robot which is not industrialized
yet has reached 43g while keeping a low tracking error [2].
However, a major obstacle for parallel robots expansion is their
expensive price due to the cost of the embedded motors which
they use. In this context, the inspection of other actuation
type such as pneumatic actuators is a matter of fact as they
are cheap actuators with low maintenance costs, and good
force/weight ratio. As the big obstacle of industrial use of
pneumatic actuation in robotics is difficulty in their control,
this paper focuses on this particular point.

Numerous techniques have been studied in literature and
among them a large part concerns robust control. Robust
controllers are necessary to deal with uncertainties and to
ensure high precision positioning. They have been applied
as a nonlinear feedback using sliding modes by [3] for a
planar 2 DOF manipulator. In [4], authors explored adaptive
control techniques for parallel robotic applications. One of the
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problems of nonlinear controllers is difficulty in the synthesis
of the control law and the high computational amount. That is
why some authors have tested linear robust control techniques
such as [5] where PAMs are tested in an antagonist manner.
In [5], an H∞ controller is synthesized basing on a linear
identified nominal system which greatly limits the control
performances. This explains why [6] has synthesized an H∞
controller after application of feedback linearizing [7] [8] of
the nonlinear system. However, only one muscle is controlled
and the antagonist case is not studied.

In this paper, a novel robust cascade strategy which com-
bines an outer position predictive controller and an inner
torque controller is proposed. The torque controller is based on
theH∞ pressure control in each muscle after specifying an av-
erage pressure into the muscles and a desired torque reference.
This desired torque reference is given by the outer position
loop. Cascade control has been studied in case of PAMs by
[9] and [10]. In this two studies, only simple controllers are
applied. In our case, we extend the cascade control concept
to robust controllers and predictive ones. The different experi-
mental tests show the advantages of this approach, in terms of
good time responses and ability of tracking of extended range
references (up to ±25◦). Another motivation of predictive
control is that in a precedent study on pneumatic cylinders
[11], it was shown that predictive cascade concept can improve
robustness performances comparing to state of art control
techniques such as sliding modes. The control synthesis is
simplified as system is linearized using feedback linearizing
techniques [8] [7]. A Generalized predictive controller (GPC)
is synthesized for the outer loop and as the system is linear, an
explicit solution exists for the predictive optimization problem.
The obtained controller is an easy-to-implement one. As far as
we know, only two experimental studies of GPC -on pneumatic
cylinders and not on PAMs- have been carried out so far
[12] [13]. In [12], the model used is a linear one which
limits greatly the performances of the controller. In [13], the
authors used a model estimation based on neural network
theory [13]. No application of GPC basing on an explicit
nonlinear model has been found in literature. An intuitive
motivation of using predictive theory in pick and place robotic
applications is that the trajectories are determined a priori
and therefore, future trajectory is known. By specifying the
pressure average between the two muscles, it is possible to
control the torque by controlling pressure in each muscle. A
constrained LMI based H∞ controller is synthesized for the
pressure inner loop. It is based on LMI optimization [14] [15].
In addition to the classical advantages of H∞ [16] [17] con-
trol in terms of robustness, disturbance rejection, systematic
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synthesis of MIMO controllers and powerful combination of
both frequency domain synthesis and state space synthesis,
the LMI approach enables the addition of constraints in an
intuitive manner. Therefore, pole placement constraints have
been added to the H∞ performances in order to have a better
control of the transitory temporal behavior of the pressure
controller.

This paper is organized as follows. Section II presents the
versatile electropneumatic testbed for robotic applications and
its nonlinear modeling. Section III deals with the control
of the muscles. After introducing the feedback linearizing
equations, both of GPC controller background and LMI based
H∞ multi-objective approach are introduced. The cascade
strategy which combines these two control techniques is then
introduced. Finally in section IV, the robust cascade strategy
is implemented experimentally and different control tests,
including robustness tests, are presented and deeply analyzed.

II. EXPERIMENTAL PNEUMATIC TESTBED AND
NONLINEAR MODELING

The versatile electropneumatic setup is presented in Fig.
1. It includes two 5/3-way proportional valves1 and three
kinds of actuators. The first one is a standard double acting
cylinder which is very widespread in industry and one of the
cheapest actuators. The second one is the rodless cylinder
which has the advantage of being symmetric, that is to say,
the maximum force provided in one direction equals the one
in the inverse direction. Finally, Pneumatic Artificial Muscles2

(PAMs) which are deeply studied in this paper.

Fig. 1. Versatile electropneumatic
setup for robotic application.

Fig. 2. Schematic representation
of the experimental setup.

Both of the two muscles are connected to a moving arm
which may represent a robot arm. In the long run, our aim
is to design efficient parallel robot which rely on pneumatic
actuation with robust control: the moving arm of this test bed
is very similar to arms used for various parallel robots such as
Delta or Quattro robots. At its extremity, different masses can
be attached for robustness tests of the controllers. Three types
of sensors are used; a high resolution incremental encoder,

1MPYE-5-1/4-010-B from FESTO
2PAMs: FESTO MAS - 20-450N-AA-MC-K

two pressure sensors and two force sensors. The real time
prototyping environment is xPC TargetTM from Mathworks.
In the sequel, we present the nonlinear model of the pneumatic
muscles. Every electropneumatic positioning device includes
an actuation element (the pneumatic cylinder), a command
device (the valve), and a mechanical part and position, pressure
and/or force sensors. A schematic representation of the elec-
tropneumatic system is given in Fig. 2. Supply pressure ps is
supposed to be constant. p0 denotes the atmospheric pressure.
It is supposed that any variation of the muscle’s volume or
pressure can be described by the polytropic gas law [18]:

p1V
γ
1 = p2V

γ
2 (1)

Where pi is the pressure in one of the muscle chamber (indexes
1 and 2 are related to two pressure states) and Vi is the volume
in the muscle chamber, γ is the polytropic constant. The ideal
gas equation describes the dependency of the gas mass:

m =
pV

rT
(2)

where m is the gas mass inside the cylinder chamber or the
muscle, T is the air temperature which is considered to be
equal to the atmospheric temperature and r is the specific
gas constant. Therefore, combining (1) and (2) leads to the
pressure dynamic expression:

dp

dt
=

γ

V (s)
[rTqm(u, p)− pdV

ds
ṡ] (3)

where u represents the input voltage of the valve, s is the
position of the piston in case of the cylinders. qm(u, p)
represents the mass flow rate (dmdt = qm(u, p)). Dynamic
effects of the underlying position controller for the valve-
slide stroke are neglected. These hypothesis justify why the
mass flow is a function of the input voltage and the pressure
in the actuator chamber. The experimental curve representing
the volume/stroke dependency is represented on figure 3.
According to this characteristic, the volume/stroke model has
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Fig. 3. Volume Stroke dependency

been approximated by a third order polynomial using least
squares:

V (s) =

3∑
i=0

bis
i (4)

The second term of (3) is now completely defined; the first
term requires modeling of the valve. The valve model has been
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approximated -after identification- by the following expression
(see [19] for details):

qm(u, p) = ϕ(p) + ψ(p)u (5)

ϕ and ψ defines 5th-order polynomials with respect to p.
For cascade control experiments, it is mandatory to determine
the force/pressure dependency. For the muscles, force depends
on pressure and also on contraction. The force is maximum
when there is no contraction. As the contraction increases the
generated force decreases in a non linear way. The experimen-
tal measured force characteristic is represented on Fig. 4. It is
approximated by the following function:

Fm(p, s) = (p− p0)

5∑
i=0

cis
i (6)
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Fig. 4. MAS20 force characteristic

III. CONTROL OF THE PNEUMATIC ARTIFICIAL MUSCLES

In this section, we first present the feedback linearization
equations for the PAMs. The approach handled here can be
justified by differential geometry concepts [7] and differential
flatness theory [8]. Once the linearized system obtained, two
advanced control techniques are presented: GPC and LMI
based constrained H∞.

A. Feedback linearization equations
It can be easily proved -in case of mass flow rate rate mg

as an input and the pressure difference as an output- that
differential flatness criteria is satisfied and that the system is
completely linearizable (using differential geometry concepts
[7]). The pressure dynamic in each muscle is given by:

dp

dt
=

γrT

V (s)
ṁg −

γ

V (s)

dV

ds
ṡp (7)

If we take,

ṁg =
V

γrT
(uaux +

γ

V

dV

ds
ṡp) (8)

This leads to the following linearized system:

ṗ = uaux (9)

The linearized system is then a first integrator. The pressure
controller which is synthesized basing on this first integrator
is presented in the next section.

B. Multi-objective output feedback pressure control via LMI
optimization

An LMI is any constraint of the form:

A(x) = A0 + x1A1 + . . .+ xNAN < 0 (10)

where A0 . . . AN are given symmetric matrices and xT =
(x1 . . . xN ) is the vector of unknown variables. In (10), the
symbol < refers to negative definite 3.
One way of tuning simultaneously the H∞ performance and
transient behavior is to combine H∞ and pole placement
objectives using LMI optimization techniques. Poles are clus-
tered in regions which can be expressed in terms of LMIs. The
class of LMI region defined below has been introduced for the
first time by [15]. It turns out to be suitable for LMI-based
synthesis.
Def. LMI Regions. A subset D of the complex plane is
called an LMI region if there exists a symmetric matrix
α = [αkl] ∈ Rm×m and a matrix β = [βkl] ∈ Rm×m such
that:

D = {z ∈ C : fD(z) < 0} (11)

with: fD(z) := α+ zβ + z̄βT = [αkl + βklz + βlkz̄]1≤k,l≤m.
For instance, we use a disk LMI region centered at (−q, 0)
with radius r. It is defined below [15]:

fD(z) =

[
−r q + z
q + z̄ −r

]
< 0 (12)

The constrained H∞ problem under consideration can be
stated as follows [15]. Given an LTI plant:

ẋ(t) = Ax(t) +B1ω(t) +B2u(t)

e(t) = C1x(t) +D11ω(t) +D12u(t)

y(t) = C2x(t) +D21ω(t) +D22u(t)

(13)

an LMI stability region D, and some H∞ performance γ > 0,
find an LTI control law u = K(s)y such that: (1) the closed-
loop poles lie in D and (2) ‖Twe‖∞ < γ where ‖Twe(s)‖
denotes the closed-loop transfer function from ω to e. It is
represented on Fig. 5. where the input vector ω =

(
b v

)T

Fig. 5. System representation and notations

can be constituted for instance by a disturbance b and a second
input which can be a measure noise v. The output vector e =(
y u

)T
is composed by the controlled output y and the

control signal u. In our case, and as defined latter in (37), y
is the pressure difference between the chambers and u is the

3the largest eigenvalue is negative
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input voltage.
The controller transfer function is denoted K(s) and can be
represented in the following state-space form by:

ẋK(t) = AKxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
(14)

Then, Twz(s) = Dcl + Ccl(sI − Acl)
−1Bcl with4: Acl =(

A+B2DKC2 B2CK
BKC2 AK

)
, Bcl =

(
B1 +B2DKD21

BKD21

)
,

Ccl = (C1 +D12DKC2, D12CK)
and Dcl = D11 +D12DKD21.

We first examine each specification separately. It is shown
in [15] that the pole placement constraint is satisfied if and
only if there exists XD > 0 such that:

[αklXD + βklAclXD + βlkXDA
T
cl]1≤k,l≤m < 0 (15)

Meanwhile, the H∞ constraint is expressed in terms of LMIs: AclX∞ +X∞A
T
cl Bcl X∞C

T
cl

BTcl −γI DT
cl

CclX∞ Dcl −γI

 < 0 (16)

Then the problem formulation of H∞ synthesis with pole
placement - assuming that the same Lyapunov matrix X > 0
is required - is:

Find X > 0 and a controller K(s) > 0 ≡ ΩK that satisfy
(15) and (16) with X = XD = X∞

(17)

The controller matrix is denoted by:

ΩK =

(
AK BK
CK DK

)
(18)

The difficulty in output feedback is that relations (15) and
(16) involve nonlinear terms of the form BΩKCX . This means
that problem formulation is not convex and then, can not be
handled by LMIs. Chilali and Gahinet [15] solved this problem
by taking the following change of variables of the controller:

BK = NBK + SB2DK

CK = CKM
T +DKC2R

AK = NAKM
T +NBKC2R+ SB2CKM

T

+ S(A+B2DKC2)R

(19)

where R, S, N and M correspond to the following partition
of X and it inverse as

X =

(
R M
MT U

)
, X−1 =

(
S N
NT V

)
R ∈ Rn×n, S ∈ Rn×n

(20)

The proposed procedure is summarized in the following
theorem [15]:
Theorem1:
Let D be an arbitrary LMI region contained in the open
left-half plane and let (11) be its characteristic function.
Then, the modified problem (17) is solvable if and only if the

4we assume that the D22 = 0, this assumption considerably simplifies the
formulas. (Note that it is always possible to remove the D22 term by a mere
change of variables)

following system of LMIs is feasible.
Find R = RT ∈ Rn×n, S = ST ∈ Rn×n, and matrices AK ,
BK ,CK and DK such that(

R I
I S

)
> 0 (21)[

αkl

(
R I
I S

)
+ βklΦ + βlkφ

T

]
k,l

< 0 (22)

[
Ψ11 ΨT

21

Ψ21 Ψ22

]
< 0 (23)

with the shorthand notation

Φ :=

(
AR+B2CK A+B2DKC2

AK SA+ BKC2

)
(24)

Ψ11, Ψ12 and Ψ22 terms are detailed in [15]. Given any
solution to this LMI system:
• Compute via Singular Values Decomposition (SVD) a

full-rank factorization MNT = I − RS of the matrix
I −RS (M and N are then square invertible)

• Solve the system of linear equations (19) for BK , CK
and AK (in this order).

• Set K(s) = DK + CK(sI −AK)−1BK .
Then K(s) is an nth order controller that places the closed-
loop poles in D and such that ‖Twz‖∞ < γ.

C. GPC outer position Controller

The GPC algorithm is based on a CARIMA model which
is given by:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)e(t) (25)

where u(t) and y(t) are respectively the control and output
sequences of the plant and e(t) is a zero-mean white noise.
A, B and C are polynomials of the backward shift operator
z−1. They are given by; A(z−1) = 1 +a1z

−1 +a2z
−2 + ...+

anaz
−na , B(z−1) = b0 + b1z

−1 + b2z
−2 + ... + bnbz

−nb

and C(z−1) = 1 + c1z
−1 + c2z

−2 + ... + cncz
−nc and

4 = 1 − z−1. For simplicity, it is admitted that C−1 equals
1. It is important to mention that most SISO plants can
be described by a CARIMA model after linearization. The
GPC algorithm consists in applying a control sequence that
minimizes a multistage cost function of the form:

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(t+ j|t)− w(t+ j)]2

+

N2∑
j=1

λ(j)[4u(t+ j − 1)]2

(26)

where ŷ(t + j|t) is an optimum j step ahead prediction of
the system output on data up to time t, N1 and N2 are the
minimum and maximum costing horizons, Nu is the control
horizon, δ(j) and λ(j) are weighting sequences and w(t+ j)
is the future reference trajectory.
The minimization of cost function leads to a future control
sequence u(t), u(t+ 1), ... where the output y(t+ j) is close
to w(t+ j). Therefore, in order to optimize cost function, the
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best optimal prediction of y(t+ j) (for N1 ≤ j ≤ N2) has to
be determined. This needs the introduction of the following
Diophantine equation:

1 = Aj(z
−1)Ã(z−1) + z−jFj(z

−1) (27)

with Ã = 4A(z−1) and polynomials Ej and Fj are uniquely
defined with degrees j − 1 and na respectively. 4 is defined
as 4 = 1− z−1
By multiplying (25) by 4Ej(z−1)zj and considering (27), we
obtain:
y(t+ j) =Fj(z

−1)y(t) + Ej(z
−1)B(z−1)4u(t+ j − d− 1)

+ Ej(z
−1)e(t+ j)

(28)

Since the noise terms in (28) are all in the future (this is
because degree of polynomial Ej(z−1) = j − 1), the best
prediction of y(t+ j) is:

ŷ(t+ j|t) = Gj(z
−1)4u(t+ j − d− 1) +Fj(z

−1)y(t) (29)

where Gj(z−1) = Ej(z
−1)B(z−1)

Polynomials Ej and Fj can merely be obtained recursively
(demonstration can be found for instance in [20]).
In the future, it will be referred only to N = N2 = Nu as the
prediction horizon. N1 is chosen equal to 0.
Let’s consider the following set of j ahead optimal predictions:

ŷ(t+ d+ 1|t) = Gd+14u(t) + Fd+1y(t)

...
ŷ(t+ d+N |t) = Gd+N4u(t+N − 1) + Fd+Ny(t)

(30)

It can be written in the following compact form:

y = G u + F(z−1)y(t) + G′(z−1)4u(t− 1) (31)

where terms y, u, G′ and F can be defined in [21]. Equation
(31) can be rewritten in this form:

y = Gu + f (32)

Where f refers to the last two terms in (31) which only depend
on the past. Now, we are able to rewrite (26) as:

J = (Gu + f− w)T (Gu + f− w) + λuTu (33)

where w = [w(t + d + 1), w(t + d + 1) . . . w(t + d + N)]T

Equation (33) can be written as:

J =
1

2
uTHu + bTu + f0 (34)

with H = 2(GTG + λI), bT = 2(f − w)TG and f0 =
(f −w)T(f −w)
Therefore, the minimum of J can simply be found by making
the gradient of J equal to zero, which leads to:

u = −H−1b = (GTG + λI)−1GT(w − f) (35)

Since the control signal that is actually sent to the process is
the first element of vector u (receding strategy), it is given by:

4u(t) = K(w − f) (36)

where K represents the first element of matrix (GTG +
λI)−1GT. Contrary to conventional controllers, predictive
ones depend only on future errors and not past ones.

D. Position/torque control strategy for the pneumatic cylinders

The cascade concept for the muscles consists in an outer
loop which controls the position and an inner one for the
torque. As far as we know, it has been studied in literature in
case of the muscles only by [10] and [9]. In our case, we are
investigating first the possibility of applying predictive control
in such a scheme and the improvement that can be brought by
such robust control techniques like GPC and constrained H∞.
The presented approach is described on Fig. 6. As presented
before, the linearized system in case of pressure as an output is
an integrator. Therefore, equations of the system can be stated
as follows:

ẋ = (0)x+
(

1 0
)( b

v

)
+ (1)u(

y
u

)
=

(
−1
0

)
x+

(
1 0
0 0

)(
b
v

)
+

(
0
1

)
u

y = (1)x+
(

0 1
)( b

v

)
+ (0)u

(37)

where ω = (b v)T and e = (y u)T have been defined before.
Classical assumptions for solving H∞ problem can easily be
verified 5. Using Newton second law yields to the following
equation:

τm = Imovα̈+Mmovgdcos(α) (38)

where α is the rotation angle, Imov represents the inertia of the
moving link (in our case it can be the arm with the attached
load), d is the distance between the center of rotation and
center of mass of moving link, g is the gravity and τm the
torque generated by the two antagonist muscles. The computed
torque [22] consists in the application of the following control
signal:

τm = Imovv +Mmovgdcos(α) (39)

where v represents the new control input. Therefore, the
obtained linearized system is a double integrator:

α̈ = v (40)

The GPC controller will be then synthesized based on a double
integrator.
For the inner control loop, the objective is to track the
reference torque which is set by the outer position controller.
In order to set the pressure reference in each muscle, we
introduce the pressure average which is defined by:

Pm = (Pm1 + Pm2)/2 (41)

Combining this equation with:

τm = Fm1(s1, p1)s1(α)− Fm2(s2, p2)s2(α) (42)

Therefore, using 41, 42 and si = αR, where R is the radius of
the motor between the two muscles. The reference pressure in
the second muscle can be calculated by the following relation:

P2ref = pmref
− Tref

2R
∑5
i=0 cis

i
(43)

5(A,B2) controllable and (C2, A) observable
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Fig. 6. General block diagram of the cascade Position/torque strategy for the muscles. The inner loop consists in the control of the torque generated by the
two muscles. This is done by controlling the pressure in each muscle. An LMI based H∞ controller is implemented. The outer loop consists in the computed
torque, a position generalized predictive controller is then implemented.

IV. EXPERIMENTAL RESULTS

The cascade GPC/H∞ is implemented on the PAMs. Nom-
inal tests and robustness are presented respectively.
Some typical tests: On Fig. 7, a test of a square signal with
an amplitude of +/− 10◦ and a period of 8s is performed. In
this test, the arm is not attached yet. The rising time equals
0.113s and settling time equals 0.148s. The overshoot can
be accepted because the controller input will never a step of
this size in industrial tasks. For the H∞ controller, the LMI
region for each muscle is a disk centered at (−100, 0) with
a radius of 15. The choice of these values is motivated by
the fact that big closed pole location values will induce an
oscillatory control signal with chattering effect. Small pole
values will not insure good tracking results. A tradeoff has to
be found. For the synthesis of the position outer controller, the
linearized system after computer torque is a double integrator.
Therefore, and for a sampling time of 1ms, polynomials A
and B of the CARIMA system introduced in Eq. 25 are given
by A(z−1) = 1−2z−1+z−2 and B(z−1) = 5·10−7(1+z−1).
λ is chosen equal to 0.09. The average pressure has been
chosen equal to 4bar. Indeed, there is a relation between the
average pressure and the stiffness and consequently, this can
have good or bad effects concerning the control performances.
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Fig. 7. Pulse response of the muscles in case of a cascade Position/torque
control: No load case

In order to evaluate this dependency, two tests with different
average pressures and the same control tests are handled.
Results are represented in Fig. 8. As related on table I, the
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Average pressure influence on control results

 

 

Reference trajectory

Low average pressure (2bar)

High average pressure (4bar)

Fig. 8. Studying the effect of the average pressure influence

performances obtained with a high pressure average are better.
First, both negative and positive overshoots are reduced in
case of pm = 4bar. The same remark can be done for the
settling time which is smaller for a high pressure average. The
difference is about 0.3s which is considerable. These results
can be explained by the fact that a high pressure average
increases the stiffness of the muscles which can bring an
important improvement to the control performances.
However, we are not able to claim that the higher stiffness is

TABLE I
AVERAGE PRESSURE INFLUENCE

Low average pressure High average pressure
(pm = 2bar) (pm = 4bar)

Rising time (s) 0.075 0.112
Settling time (s) 0.418 0.119

Steady state error (◦) 0.04 0.021
Pos. overshoot (%) 10.65 1.9
Neg. overshoot (%) 23.8 21.45

the better the performances are. Indeed some control tests with
dynamic reference trajectories have given better results in case
of low pressure averages. This can be explained by the fact that
in the dynamic case, lower stiffness becomes an advantage for
the system in terms of fast reactivity to reference changes. In
Fig. 9, a dynamic test with the muscles for a fast sine reference
is done. The period equals T = 2s and the amplitude is
between +/−10◦. The maximum error equals 2.24◦ during the
switching time and less than 1◦ during the dynamic tracking.
On Fig. 10, the arm is attached and a high angle range test
is done.. Indeed, one of the drawbacks of muscles is their
small contraction capacity which does not exceed 20% of the
length. In this +/ − 25◦ test, the tracking is insured but the
problem for tests with arm is the appearance of vibrations
that disturb the performances. Maximum error equals 3.25◦.
This elasticity problem of muscles that limits the tracking
performances especially for high angle range tests with loads
is our big challenge up to now. An asymmetry is observed in
the control results, possible explanations can be the friction
influence, calibration problems with the valve, gravity effects
or a backlash error. These are also some directions that will
be investigated in the next months.
Robustness tests: In order to study the robustness of the
developed control strategy, the following test is handled. The
objective is to study the influence of the time delay for ap-
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Fig. 9. Sine response of the muscles in case of a cascade Position/torque
control

0 2 4 6 8 10
-25
-15
-5
5

15
25

P
o

si
ti

o
n

 T
ra

ck
in

g

[d
e

g
re

e
s]

0 2 4 6 8 10
-4

-2

0

2

4

C
o

n
tr

o
l 

S
ig

n
a

l 
in

M
u

sc
le

 #
1

 [
V

o
lt

]

2 4 6 8 10

-5

0

5

A
n

g
u

la
r 

e
rr

o
r

[d
e

g
re

e
s]

Time [s]

2 4 6 8 10
1
2
3
4
5

P
re

ss
u

re
 T

ra
ck

in
g

 i
n

M
u

sc
le

 #
1

 [
b

a
r]

0 2 4 6 8
-2

-1

0

1

2

C
o

n
tr

o
l 

S
ig

n
a

l 
in

M
u

sc
le

 2
 [

V
o

lt
]

0 2 4 6 8

1
2
3
4
5
6

P
re

ss
u

re
 T

ra
ck

in
g

 i
n

M
u

sc
le

 #
2

 [
b

a
r]

Time [s]

Fig. 10. Dynamic tracking test for the muscles with the attached arm and
for high angle ranges (+/− 25◦)

plications where the valves are located far from the actuators.
Indeed, one of the advantages of pneumatic actuation is the
possible use in explosive environments. This is not true unless
the electric auxiliary components - valves and sensors- are
mounted far from the actuator. For the test shown in Fig. 11,
a 10m long flexible tube is added between valve and cylinder.
Actually, in parallel robotic applications, the valves will be
mounted close to the actuators and this problem of time delay
will not be crucial. This explains why time delay has not been
included in the model. The objective of this test is just to study
the robustness performances of the controller.
Results show effectively a deterioration in performances but

stability is maintained and tracking error is always less than 1◦.
Another robustness mass variation test is handled. The error
signal is represented in figure 12. As a conclusion to this series
of tests, following observations comparing to state-of-the-art
former results can be made. First, the robust cascade approach
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Fig. 11. Robustness position test; valve and pressure sensors have been
transferred at 10m far from the actuator, vibrations appear but stability is
preserved and tracking is still correct with a tracking error less than 1◦
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Fig. 12. Robustness mass variation test: a 1kg and a 5kg loads are added
at t = 10s.

brings good results in terms of robustness which is a very
important requirement in industry. It is possible to track high
amplitudes reference signals of (+/−25◦) which is substantial
regarding to the limited muscle contraction abilities. Finally,
another inherent advantage of the proposed approach is that it
enables a bigger flexibility in the adjusting of the controller
gains as it is possible to act either on the position controller,
pressure one and also on the pressure average reference.

V. CONCLUSION

A robust cascade predictive/H∞ control strategy for PAMs
is introduced. The goal is to test the muscles for parallel
robotics applications. Experimental results have shown good
tracking performances and good precision with a static error
less of 0.04◦. Robustness tests have been also handled and
the tracking is still insured when a 10m distance exists
between valve and actuators. Extended angular displacement
tests are experimented for the muscles and give satisfactory
results. Future work will concern the elasticity problem which
appears for fast tests with 5−10kg loads. A possible direction
should be a deeper study of the average pressure influence on
performances in order to design of optimal average pressure
references which insure the best accuracy and robustness

performances. Another possibility is to take this elasticity into
account explicitly in the model.
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