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Maximum Hands-off Control without Normality Assumption

Takuya lkedd and Masaaki Nagahatra

Abstract— Maximum hands-off control is a control that has  continuity and the convexity of the value function is also
the minimum L° norm among all feasible controls. It is known proved under the same assumption.

that the maximum hands-off (or L°-optimal) control problem Alternatively, a very recent work [2] has proved the exis-
is equivalent to the L*-optimal control under the assumption of !

normality. In this article, we analyze the maximum hands-of ~ €NC€ theorem of the maximum hands-off control without the
control for linear time-invariant systems without the normality ~ normality assumption, by directly dealing with the maximum
assumption. For this purpose, we introduce theL”-optimal  hands-off control problem without the aid of smooth or
control with 0 < p < 1, which is a natural relaxation of  convex relaxation. As the necessary condition, any maximum

the L° problem. By using this, we investigate the existence :
and the bang-off-bang property (i.e. the control takes vales hands-off control is also proved to have thang-off-bang

of +1 and 0) of the maximum hands-off control. We then Property. However, the sufficient condition for a control
describe a general relation between the maximum hands-off having the bang-off-bang property to H€-optimal is not
control and the L*-optimal control. We also prove the continuity — obtained.
and convexity property of the value function, which plays an In the present article, we examine the maximum hands-off
important role to prove the stability when the (finite-horizon) . . . . .
control is extended to model predictive control. control_ without the nqrmahty assumptlon,_by mtroduc_lngzt
LP-optimal control with0 < p < 1. As will be described
| INTRODUCTION in Section[Il, L?-optimal control is a relaxation of the
maximum hands-off (i.eL’-optimal) control. Indeed, the
In some situations, the control effort can be dramaticallgquivalence holds between tHé'-optimal control and the
reduced byhands-off contrgl holding the control value LP-optimal control. The purpose of this article is not only
exactly zero over a time interval. The hands-off control i¢o prove the existence and the bang-off-bang properties of
effective in hybrid/electric vehicles, railway vehicleasnd the maximum hands-off control, but also to show a general
networked/embedded systems [10], [11]. relation between the maximum hands-off control and the
Motivated by these applications, recently, a novel conkL'-optimal control. The relation leads to the sufficient and
trol method, calledmaximum hands-off controhas been necessary condition for a control having the bang-off-bang
proposed in [9], [11]. The purpose of maximum hands-ofproperty to bel.’-optimal, which is not obtained in the recent
control is to maximize the time duration where the controworks. Also, it leads the equivalence between the value
value is exactly zero among all feasible controls. The handfinctions in the ZL°-optimal and theL'-optimal controls,
off property is related to sparsity measured by fifenorm by which we prove the convexity and the continuity of the
of a signal, defined by the total length of the intervalg/alue function. This property guarantees the stability avhe
over which the signal takes non-zero values. This motivatége (finite-horizon) maximum hands-off control is extended
the use of the cost function in which the control effort islo model predictive control, as discussed in [7].
penalized via the.® norm. The maximum hands-off control, The remainder of this paper is organized as follows: In
in other words, seeks the sparsest {droptimal) control SectionI), we give mathematical preliminaries for our sub-
among all feasible controls, and hence the maximum handsequent discussion. In Sectibnl lll, we define the maximum
off control is also calle@parse optimal contradr L°-optimal  hands-off control problem, and investigate it via thé-
control. optimal control. We show the existence and the bang-off-
A mathematical difficulty in the maximum hands-off con-bang property of the maximum hands-off control and the
trol is the discontinuity and the non-convexity of td¢) relation between the maximum hands-off control and the
cost function. Hence, recent works [11], [6] have proposeé'-optimal control. Sectioi IV confirms the continuity and
to use theL' norm for enhancing sparsity, as often seefthe convexity of the value function. Sectigd V presents an
in compressed sensing [3], [4]. In [6], under the normalitgxample to illustrate the difference between the maximum
assumption (e.g. the plant model is controllable andAhe hands-off control and thé'-optimal control, by showing the
matrix is nonsingular), the equivalence is proved betweegxistence of ar.'-optimal control that is noL -optimal. In
the L%-optimal control and theL'-optimal control. The Section V], we offer concluding remarks.
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scalare > 0, the e-neighborhoodf z is defined by The control objective is to obtain a contral € (&)
Bz,e) 2 {y e R" : |ly — 2| < &) that has the maximum time duration on whieft) take_so_.

’ o ’ In other words, we seek the control that has the minimum
where|| - || denotes the Euclidean norm ®". Let X be a L° norm among all feasible controls #(¢). This optimal
subset ofR™. A pointz € & is called aninterior point of  control problem is called thenaximum hands-off control
X if there existss > 0 such thatB3(z,e) C X. Theinterior  problem This is formulated as follows.
of & is the set of all interior points o', and we denote the  Problem 1 (maximum hands-off control problenfor a
interior of X by intX. A pointz € R™ is called anadherent given initial state¢ € R”, find a feasible control: € 1/(¢)
point of X if B(z,e) N X # O for everye > 0, and the that minimizes
closureof X is the set of all adherent points &f. A set J(u) £ ||ulfo.

X C R" is said to beclosedif X = X, whereX is the We call the optimal control thenaximum hands-off control
closure ofX. The boundaryof X is the set of all points in  Note that the cost functiori(u) can be rewritten as

the closure ofY, not belonging to the interior o', and we T

denote the boundary ot by 90X, i.e., 90X = X — intX, J(u) :/ do(u(t)) dt,

where X} — X5 is the set of all points which belong to the 0

set X} but not to the sefty. A set X C R" is said to be Wheregy is the L kernel function defined by

convexf, for any z,y € X and any\ € [0, 1], (1 - M)z + Ay 1, ifut0
belongs toX. ¢o(u) é{ T ’ )
A real-valued functionf defined on a convex sétc R" 0, fu=0.
is said to beconvexif Obviously, the kernel functionpg(u) is discontinuous at
u = 0 and non-convex. Also, the cost functioifu) is non-
f((l — Nzt )\y) < (L= Nf @)+ Af ), convex, and it has a strong discontinuity. Indeed, for any
forall z, y e C and all\ € (0,1). functionsu # 0, v = 0, and any scalann € (0,1), we
LetT' > 0. For a continuous-time signal(t) over a time have |\u + (1 — Movllo = ||ullo. On the other hand, we
interval [0, 7], we define itsL? and L> normsrespectively have\||u|lo + (1 — \)|Jv]jo = M|ullo < |lullo. Although the
by sequence of constant functions = 1/k on [0, T] converges
T 1/p to 0 uniformly, J(uy) takesT for any positive integek, and
|ull, = { / |u(t)|”dt} llulloo & sup |u(t)], hence it does not converge(@oln contrast, in this paper, we
t€(0,T] will show that the value function is continuous and convex
wherep € (0, c0). Note that|-||, for p € (0, 1) is nota norm on the domain.
but a quasi-norm since it fails the triangle inequality [8je First, we show the existence and the bang-off-bang prop-

simply denote the set of all signals withu||, < oo by L?  erty of maximum hands-off control vié?-optimal control
instead ofLP[0, T]. We define thel.’ norm of a signak: on  problem

the interval(0, 7] as A. LP-Optimal Control
ullo £ m({t € [0,T] : u(t) # 0}), Here, we examine th&?-optimal control problem, which

wherem is the Lebesgue measure BnNote thatZ? “norm” is lf::)rrglulatezd aps follpwsl. | problem):F Lo

is not a norm since it fails the homogeneity property, that roblem 2 { ;opt_lma contrq problem):For a given ini-

is, for any non-zero scalat such thatja| # 1, we have “3' state¢ € R, find a feasible controk € u(¢) that

llaullo = [|ullo # lal[[ullo for anyu # 0. The notation] - ||, ™'"™MZ€S

derives from the equation in Propositigh 1.

. MAXIMUM HANDS-OFF CONTROL PROBLEM  Wherep € (0, 1). . .
We call the solutions to this problem thE?-optimal

In this paper, we consider a linear time-invariant systegnirol, for which the following proposition is fundamental.
represented by

Tp(u) = [ull?,

i(t) = Az(t) + Bu(t), 0<t<T, 1) Proposition 1: For f € L', we have
where4 € R™*" B € R™*1, andT > 0 is a fixed final I £llo =p1gr51+|\f|\£-
time of control. We here assume single-input control for  Proof: See Appendix. |
simplicity. From now on, we show the existence and the bang-off-

For the system[{1), we call a controle L' feasibleif it  bang property of the.?-optimal control. Let us define the
steersz(t) from a given initial stater(0) = £ € R™ to the set of all initial states for which there exist feasible colt,
origin at timeT (i.e., z(T") = 0) and satisfies the magnitude which is known as theeachable setit time T
constraint||ull.c < 1. We denote byl/(¢) the set of all Definition 1: For the system[{1), the reachable $etat
feasible controls for an initial statee R", that is, time 7' is defined by

T T
U = {u eL: /0 e MBu(t)dt = —€,  |Jufle < 1}. R 2 {/0 e~ M Bu(t)dt : ||ule < 1} C R".



The following lemma states the existence and the bangor anyu € (), we have

off-bang property.

Lemma 1:For each initial state in the reachable $et
there existLP-optimal controls, and they take ontyl and
0 on the time interval0, 7.

Proof: The existence of.?-optimal controls is shown

in [12], and we here prove the bang-off-bang property.
Fix any initial state¢ € R, and take anyLP-optimal

control v*(¢t) for the initial state¢, and letz* denote the

resultant state trajectory according to the contral

T
fulg= [ lutpar= [ jupa
0 {t:u(t)#0}

{tu(t)£0}

From [9), [(10) and the optimality af,, we have

(10)

[upllo = lluplly < lullp < llullo

foranyu € U(§). This givesu,, € Us(§), and hencél,; () C

The Hamiltonian function for thé&?-optimal control prob- Uz (€). Therefore the sei; (¢) is not empty.

lem is defined as

H(z, q, u) £ [u” + ¢" (Az + Bu), ®3)

where ¢ € R" is the costate vector. From Pontryagin’s

minimum principle [1], there exists a costate vecforthat
satisfies:

H(x*’ q*7 u*) S H(x*’ q*7 u)7
@ (t) = Az*(t) + Bu™(t), ¢"(t) =
x*(0)=¢, 2"(T)=0.

From [3) and[(#4), the.?-optimal controlu* is given by

Yu e U(E), (4)
_ATq* (t)a

W' (t) = arg min Jul” + (¢ (1)) " Bu,
lul<1

telo,T]. (5)

Hence, from some elementary computation, we have

1, if (¢*(t)'B < —1,
0, if —1<(¢*)'B <1,

wi(t) =4 -1, if 1< (¢*(t)"B, (6)
Oorl, if (¢*(t))TB = -1,

—loro, if (¢*(t)TB=1.

on [0, T]. This means that thé?-optimal control*(¢) takes
only £1 and0 on [0, T7. [ |

Take any maximum hands-off contral € U (£). From
(10) and the optimality ofiy andw,, we have

[upllp < lluolly < lluollo < llupllo = lluplly,
which yields
l[uollp = [lupll}, (11)
l[uollo = llupllp- (12)
Equation [(11) give#(; (&) C U, (£), and hencel(7) follows.
Equation [IR) means just the last statemght (8). [ ]

In summary, the maximum hands-off control is charac-
terised as follows:

Theorem 2:For each initial state¢ € R, there exist
maximum hands-off controls, and they take ontji and
0 on|o, T].

From the definition of the reachable sgt this theorem
states that the initial staté exists in R if and only if
maximum hands-off controls exist.

B. Relation between Maximum Hands-Off Control aid
Optimal Control

We briefly review theL!-optimal control problem based
on the discussion in [1, Sec. 6-13], and confirm the definition
of the normality.

In the L'-optimal control problem, for a given initial state

From this lemma, we can show the equivalence betweén we seek the control that has the minimirhnorm among

the maximum hands-off control and tl&-optimal control.
Theorem 1:Let any initial stat& € R be fixed. Le@/; (¢)
and i/ (¢) be the sets of all maximum hands-off (i.8"-

all feasible controls ifd{(£). The optimal controls are called
L'-optimal controls.
We apply the Pontryagin’s minimum principle. Assume

optimal) controls and all.P-optimal controls, respectively. that there exists arl.'-optimal controlu*(t). Then there

Then we have

UG (&) = Uy (§). (7)
Furthermore, we have

uollo = llupll} (8)

for any ug € U (&) andu, € Uy (€).

Proof: From Lemmdl, we can take amy’-optimal
control u,(t), which takes only+1 and 0 on [0, T']. Then
we have

T
lup2 = / Jup ()Pt = / Jup (1)t
0 {tiup ()70}

)
:/ 1dt = [Jup|lo-
{t:u, (1) 0}

exists a vectog*(t) € R™ on [0, T] such that
1, if BTg*(t) < -1,
it [BTq" ()] < 1.
—1, if BTg*(t) > 1.
u*(t) € [0,1], if BTg*(t) = -1,
u*(t) € [-1,0], if BTg*(t)=1.
Therefore, if|[BTq*(t)| is not equal tol at almost ev-
erywhere in[0, 7], then the L'-optimal controlu*(¢) can

be determined uniquely, and'(¢) takes only0 and +1 on
[0, 7. Then theL!-optimal control problem is calledormal

Definition 2 (Normality): Define the set
I&{telo,T):|B " (1) =1}



If m(Z) = 0, then theL!-optimal control problem is said to  Theorem 4:The value functiorl/(¢) is convex onR.
be normal. Proof: It is sufficient to show the convexity df; (),
Theoreni 2 reveals the general relation between maximusince we have
hands-off controls and.'-optimal controls, which is a gen-
eralization of a result in [6]. V() =Vi(§), £€R
Theorem 3:Fix any initial state¢ € R. Let U;(£) and from TheoreniB. Take any initial stat€sn € R and any
U (€) be the sets of all maximum hands-off controls and abcalar € (0, 1). Letug(t) andu,(t) be L'-optimal controls

L'-optimal controls, respectively. Then we have for the initial state¢ andr, respectively.
N N Obviously, the following control
U (€) C U (&) (13) Y, e oTowng
and u= (1= Nue + duy a7)
[luollo = lullx (14) steers the state from the initial state — \)¢ + An to the

for any up € U3 (£) anduy € Uj (§). origin at timeT, and it satisfie§u||., < 1. That is, we have

In particular, if theL'-optimal control problem is normal, ue L{((l — e+ /\77)' Therefore we have

then we have/ (&) = U5 (¢). | Vi + (1= A)m) < e + (1= Al
Proof: From Theorgn[lZ, we can take any maximum < Mgl + (1 = N)fug 1

hands-off control:(¢), which takes onlyt1 and0 on [0, 7. Y 1V
There exist a control;, € U (£) which takes only+1 and = AVA(§) + Wa(n),
0 on [0, T, even if theL!-optimal control problem fails the which shows the convexity of the value functi®. [ |
normality assumption [5]. Then we have Next, we show the continuity df (£). For this, we prepare
the following lemmas.

Lemma 2:For any scalarx > 0, the following set

Ra 2{6€R V(¢ <a}

lluollo = lluollt, [luillr = lluallo- (15)

From the optimality ofug andu;, we also have

luollo < fluallo,  flually < lluoll- (16) < closed.
It follows from (I8) and[(Ib) that Proof: See the proof of [7, Lemma 4]. [ |
Lemma 3:The reachable seR is characterized by
luollr = fluallr, lluollo = lluafls-

R={£ecR: V(&) <T}. 18
The first equation yields the relatioh {13), and the second {€ & =T} (18)
equation is [(T4). Finally, for the case under the normalityn particular, if the pair(A, B) is controllable, then

assumption, see [6]. n — . =T 19
We note that any maximum hands-off control is always an Proof: Se?tzhe érgogf@f. [‘;(f_)emm;g] ( .)

L'-optimal control, but the reverse does not necessarily.hold From these lemmas, we can show the continuity of the
As seen in the proof, maximum hands-off controls are a1 functionV’ (¢).

L'-optimal controls having the bang-off-bang property. More Theorem 5:If the pair (A, B) is controllable, ther/(¢)
precisely, if the normality assumption fails, then theresesx is continuous ok ’

L o 0 .
an L'-optimal control which is not.”-optimal. In Section Proof: The proof is similar to the proof of [7, Theorem

[Vl we give such an example. In contrast, for every initiak3 -
state, these optimal control problems always have the samL\
optimal value. V. EXAMPLE

V. VALUE FUNCTION Theoreni B states that for a system that fails the normality

: . , . o assumption, there exists a control which/is-optimal but
In this section, we investigate the value function in maXg, ¢ LV-optimal. Here, we give such an example.

imum hands-off control. The value function of an optimal | ot ;5 consider the double-integral system, which is mod-
control problem is defined as the mapping from initial stateg);oq by

to the optimal values. The value functions in maximum

hands-off control and.!-optimal control are defined as i) = (0 1) z(t) + (0) u(t), 0<t<T (20)
00 1 ’ -
V é . V é .
(©) ugﬁ?g) lello,  V1(€) uIGIll/}?{) el Let the initial condition be
for £ € R. (21(0), 22(0)) = (&1, &2),

Here, we prove the continuity and the convexity of the
value functionV'(¢) on R based on the discussion given inWherez(t) = (z1(t), z2(t))" and&; € R fori = 1, 2. _
[7]. As proved there, these properties play an importare rol From [1, Control Law 8-3], this system fails the normality
to prove the stability when the maximum hands-off controfSSumption for the initial states satisfying
is extended to model predictive control. & &

1 2
First, let us show the convexity df (¢). 552 <& &<, 26 <T. (21)



That is, the L'-optimal control can not be determinedrelation between the maximum hands-off control andithe
uniquely for these initial states. The set of dll-optimal optimal control, that is, any maximum hands-off control is
controls consists of all controls such that given by anL'-optimal control that has the bang-off-bang
property, but anL!-optimal control is not necessaril°-
optimal in the absence of the normality assumption. As an
/ w(t)dt = —& / / Ddtdo = —&1 — &T. example for this, we have givgn _the doubIe—integra_I system.

o ’ Also we have proved the continuity and the convexity of the
value function, which can be used to prove the stability in
model predictive control.

0<u(t)<1, Vtelo,T)

The dashed line in Fig] 1 shows such Ahoptimal control
u1(t) (obtained via numerical optimization) for the parame-
ters APPENDIX

T=5 &=1 &=-1, (22) PROOF OF PROPOSITION 1

which satisfy the condition[{21). Clearly, this!'-optimal For f € L', define

controlus (t) is not L°-optimal. N _
On the other hand, the following is also one of thé- E={tel0.1]: /@] <1},

optimal controls for the initial state satisfying {21): FE2{tc0,T]:|f(t)>1}).
0, iftel0,t)Ults, T1, Then we have
ug(t) = )
1, if t e[t ta), ||f||£ = /E |f(t)|Pdt + /F |f(t)|Pdt.
where _ T _
&£ & & & On the right hand side, if we take — 0+, the integrand
= 2 & T2 &' of the first term increases, and that of the second term

o ] ] decreases. It follows from Lebesgue’s monotone convergenc
This gives a maximum hands-off control since ttié- theorem [13] that
optimal control that takes only-1 and 0 is L°-optimal as
seen in the proof of Theorefd 3. The solid line in Hig. 1  lim I £II —/ do(f( dt—i—/ do(f())dt = || flo
shows the controks(t) for the parameters given if_(22). P~0F
Obviously, the controli;(t) has much smalleE® norm than where g, is the L° kernel function defined by12).
that ofu; (¢). In other words, the contral, (t) is L'-optimal,
but it is not L-optimal. REFERENCES
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