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Maximum Hands-off Control without Normality Assumption

Takuya Ikeda1 and Masaaki Nagahara2

Abstract— Maximum hands-off control is a control that has
the minimum L0 norm among all feasible controls. It is known
that the maximum hands-off (or L0-optimal) control problem
is equivalent to theL1-optimal control under the assumption of
normality. In this article, we analyze the maximum hands-off
control for linear time-invariant systems without the normality
assumption. For this purpose, we introduce theLp-optimal
control with 0 < p < 1, which is a natural relaxation of
the L0 problem. By using this, we investigate the existence
and the bang-off-bang property (i.e. the control takes values
of ±1 and 0) of the maximum hands-off control. We then
describe a general relation between the maximum hands-off
control and theL1-optimal control. We also prove the continuity
and convexity property of the value function, which plays an
important role to prove the stability when the (finite-horizon)
control is extended to model predictive control.

I. INTRODUCTION

In some situations, the control effort can be dramatically
reduced byhands-off control, holding the control value
exactly zero over a time interval. The hands-off control is
effective in hybrid/electric vehicles, railway vehicles,and
networked/embedded systems [10], [11].

Motivated by these applications, recently, a novel con-
trol method, calledmaximum hands-off control, has been
proposed in [9], [11]. The purpose of maximum hands-off
control is to maximize the time duration where the control
value is exactly zero among all feasible controls. The hands-
off property is related to sparsity measured by theL0 norm
of a signal, defined by the total length of the intervals
over which the signal takes non-zero values. This motivates
the use of the cost function in which the control effort is
penalized via theL0 norm. The maximum hands-off control,
in other words, seeks the sparsest (orL0-optimal) control
among all feasible controls, and hence the maximum hands-
off control is also calledsparse optimal controlorL0-optimal
control.

A mathematical difficulty in the maximum hands-off con-
trol is the discontinuity and the non-convexity of theL0

cost function. Hence, recent works [11], [6] have proposed
to use theL1 norm for enhancing sparsity, as often seen
in compressed sensing [3], [4]. In [6], under the normality
assumption (e.g. the plant model is controllable and theA-
matrix is nonsingular), the equivalence is proved between
the L0-optimal control and theL1-optimal control. The
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continuity and the convexity of the value function is also
proved under the same assumption.

Alternatively, a very recent work [2] has proved the exis-
tence theorem of the maximum hands-off control without the
normality assumption, by directly dealing with the maximum
hands-off control problem without the aid of smooth or
convex relaxation. As the necessary condition, any maximum
hands-off control is also proved to have thebang-off-bang
property. However, the sufficient condition for a control
having the bang-off-bang property to beL0-optimal is not
obtained.

In the present article, we examine the maximum hands-off
control without the normality assumption, by introducing the
Lp-optimal control with0 < p < 1. As will be described
in Section III, Lp-optimal control is a relaxation of the
maximum hands-off (i.e.L0-optimal) control. Indeed, the
equivalence holds between theL0-optimal control and the
Lp-optimal control. The purpose of this article is not only
to prove the existence and the bang-off-bang properties of
the maximum hands-off control, but also to show a general
relation between the maximum hands-off control and the
L1-optimal control. The relation leads to the sufficient and
necessary condition for a control having the bang-off-bang
property to beL0-optimal, which is not obtained in the recent
works. Also, it leads the equivalence between the value
functions in theL0-optimal and theL1-optimal controls,
by which we prove the convexity and the continuity of the
value function. This property guarantees the stability when
the (finite-horizon) maximum hands-off control is extended
to model predictive control, as discussed in [7].

The remainder of this paper is organized as follows: In
Section II, we give mathematical preliminaries for our sub-
sequent discussion. In Section III, we define the maximum
hands-off control problem, and investigate it via theLp-
optimal control. We show the existence and the bang-off-
bang property of the maximum hands-off control and the
relation between the maximum hands-off control and the
L1-optimal control. Section IV confirms the continuity and
the convexity of the value function. Section V presents an
example to illustrate the difference between the maximum
hands-off control and theL1-optimal control, by showing the
existence of anL1-optimal control that is notL0-optimal. In
Section VI, we offer concluding remarks.

II. MATHEMATICAL PRELIMINARIES

This section reviews basic definitions, facts, and notation
that will be used throughout the paper.

Let n be a positive integer. For a vectorx ∈ R
n and a
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scalarε > 0, the ε-neighborhoodof x is defined by

B(x, ε) , {y ∈ R
n : ‖y − x‖ < ε},

where‖ · ‖ denotes the Euclidean norm inRn. Let X be a
subset ofRn. A point x ∈ X is called aninterior point of
X if there existsε > 0 such thatB(x, ε) ⊂ X . The interior
of X is the set of all interior points ofX , and we denote the
interior ofX by intX . A point x ∈ R

n is called anadherent
point of X if B(x, ε) ∩ X 6= ∅ for every ε > 0, and the
closureof X is the set of all adherent points ofX . A set
X ⊂ R

n is said to beclosed if X = X , whereX is the
closure ofX . The boundaryof X is the set of all points in
the closure ofX , not belonging to the interior ofX , and we
denote the boundary ofX by ∂X , i.e., ∂X = X − intX ,
whereX1 − X2 is the set of all points which belong to the
setX1 but not to the setX2. A set X ⊂ R

n is said to be
convexif, for any x, y ∈ X and anyλ ∈ [0, 1], (1−λ)x+λy
belongs toX .

A real-valued functionf defined on a convex setC ⊂ R
n

is said to beconvexif

f
(

(1− λ)x + λy
)

≤ (1− λ)f(x) + λf(y),

for all x, y ∈ C and allλ ∈ (0, 1).
Let T > 0. For a continuous-time signalu(t) over a time

interval [0, T ], we define itsLp andL∞ normsrespectively
by

‖u‖p ,

{
∫ T

0

|u(t)|pdt

}1/p

, ‖u‖∞ , sup
t∈[0,T ]

|u(t)|,

wherep ∈ (0,∞). Note that‖·‖p for p ∈ (0, 1) is not a norm
but a quasi-norm since it fails the triangle inequality [8].We
simply denote the set of all signals with‖u‖p < ∞ by Lp

instead ofLp[0, T ]. We define theL0 norm of a signalu on
the interval[0, T ] as

‖u‖0 , m({t ∈ [0, T ] : u(t) 6= 0}),

wherem is the Lebesgue measure onR. Note thatL0 “norm”
is not a norm since it fails the homogeneity property, that
is, for any non-zero scalarα such that|α| 6= 1, we have
‖αu‖0 = ‖u‖0 6= |α|‖u‖0 for anyu 6= 0. The notation‖ · ‖0
derives from the equation in Proposition 1.

III. MAXIMUM HANDS-OFF CONTROL PROBLEM

In this paper, we consider a linear time-invariant system
represented by

ẋ(t) = Ax(t) +Bu(t), 0 ≤ t ≤ T, (1)

whereA ∈ R
n×n, B ∈ R

n×1, andT > 0 is a fixed final
time of control. We here assume single-input control for
simplicity.

For the system (1), we call a controlu ∈ L1 feasibleif it
steersx(t) from a given initial statex(0) = ξ ∈ R

n to the
origin at timeT (i.e., x(T ) = 0) and satisfies the magnitude
constraint‖u‖∞ ≤ 1. We denote byU(ξ) the set of all
feasible controls for an initial stateξ ∈ R

n, that is,

U(ξ) ,

{

u ∈ L1 :

∫ T

0

e−AtBu(t)dt = −ξ, ‖u‖∞ ≤ 1

}

.

The control objective is to obtain a controlu ∈ U(ξ)
that has the maximum time duration on whichu(t) takes0.
In other words, we seek the control that has the minimum
L0 norm among all feasible controls inU(ξ). This optimal
control problem is called themaximum hands-off control
problem. This is formulated as follows.

Problem 1 (maximum hands-off control problem):For a
given initial stateξ ∈ R

n, find a feasible controlu ∈ U(ξ)
that minimizes

J(u) , ‖u‖0.
We call the optimal control themaximum hands-off control.

Note that the cost functionJ(u) can be rewritten as

J(u) =

∫ T

0

φ0(u(t)) dt,

whereφ0 is theL0 kernel function defined by

φ0(u) ,

{

1, if u 6= 0,

0, if u = 0.
(2)

Obviously, the kernel functionφ0(u) is discontinuous at
u = 0 and non-convex. Also, the cost functionJ(u) is non-
convex, and it has a strong discontinuity. Indeed, for any
functions u 6= 0, v = 0, and any scalarλ ∈ (0, 1), we
have ‖λu + (1 − λ)v‖0 = ‖u‖0. On the other hand, we
haveλ‖u‖0 + (1 − λ)‖v‖0 = λ‖u‖0 < ‖u‖0. Although the
sequence of constant functionsuk = 1/k on [0, T ] converges
to 0 uniformly,J(uk) takesT for any positive integerk, and
hence it does not converge to0. In contrast, in this paper, we
will show that the value function is continuous and convex
on the domain.

First, we show the existence and the bang-off-bang prop-
erty of maximum hands-off control viaLp-optimal control
problem.

A. Lp-Optimal Control

Here, we examine theLp-optimal control problem, which
is formulated as follows.

Problem 2 (Lp-optimal control problem):For a given ini-
tial state ξ ∈ R

n, find a feasible controlu ∈ U(ξ) that
minimizes

Jp(u) , ‖u‖pp,

wherep ∈ (0, 1).
We call the solutions to this problem theLp-optimal

control, for which the following proposition is fundamental.

Proposition 1: For f ∈ L1, we have

‖f‖0 = lim
p→0+

‖f‖pp.

Proof: See Appendix.
From now on, we show the existence and the bang-off-

bang property of theLp-optimal control. Let us define the
set of all initial states for which there exist feasible controls,
which is known as thereachable setat timeT .

Definition 1: For the system (1), the reachable setR at
time T is defined by

R ,

{
∫ T

0

e−AtBu(t)dt : ‖u‖∞ ≤ 1

}

⊂ R
n.



The following lemma states the existence and the bang-
off-bang property.

Lemma 1:For each initial state in the reachable setR,
there existLp-optimal controls, and they take only±1 and
0 on the time interval[0, T ].

Proof: The existence ofLp-optimal controls is shown
in [12], and we here prove the bang-off-bang property.

Fix any initial stateξ ∈ R, and take anyLp-optimal
control u∗(t) for the initial stateξ, and letx∗ denote the
resultant state trajectory according to the controlu∗.

The Hamiltonian function for theLp-optimal control prob-
lem is defined as

H(x, q, u) , |u|p + qT(Ax+Bu), (3)

where q ∈ R
n is the costate vector. From Pontryagin’s

minimum principle [1], there exists a costate vectorq∗ that
satisfies:

H(x∗, q∗, u∗) ≤ H(x∗, q∗, u), ∀u ∈ U(ξ), (4)

ẋ∗(t) = Ax∗(t) +Bu∗(t), q̇∗(t) = −ATq∗(t),

x∗(0) = ξ, x∗(T ) = 0.

From (3) and (4), theLp-optimal controlu∗ is given by

u∗(t) = arg min
|u|≤1

|u|p + (q∗(t))TBu, t ∈ [0, T ]. (5)

Hence, from some elementary computation, we have

u∗(t) =































1, if (q∗(t))TB < −1,

0, if − 1 < (q∗(t))TB < 1,

−1, if 1 < (q∗(t))TB,

0 or 1, if (q∗(t))TB = −1,

−1 or 0, if (q∗(t))TB = 1.

(6)

on [0, T ]. This means that theLp-optimal controlu∗(t) takes
only ±1 and0 on [0, T ].

From this lemma, we can show the equivalence between
the maximum hands-off control and theLp-optimal control.

Theorem 1:Let any initial stateξ ∈ R be fixed. LetU∗
0 (ξ)

and U∗
p (ξ) be the sets of all maximum hands-off (i.e.L0-

optimal) controls and allLp-optimal controls, respectively.
Then we have

U∗
0 (ξ) = U∗

p (ξ). (7)

Furthermore, we have

‖u0‖0 = ‖up‖
p
p (8)

for any u0 ∈ U∗
0 (ξ) andup ∈ U∗

p (ξ).
Proof: From Lemma 1, we can take anyLp-optimal

control up(t), which takes only±1 and 0 on [0, T ]. Then
we have

‖up‖
p
p =

∫ T

0

|up(t)|
pdt =

∫

{t:up(t) 6=0}

|up(t)|dt

=

∫

{t:up(t) 6=0}

1dt = ‖up‖0.

(9)

For anyu ∈ U(ξ), we have

‖u‖pp =

∫ T

0

|u(t)|pdt =

∫

{t:u(t) 6=0}

|u(t)|pdt

≤

∫

{t:u(t) 6=0}

1dt = ‖u‖0.

(10)

From (9), (10) and the optimality ofup, we have

‖up‖0 = ‖up‖
p
p ≤ ‖u‖pp ≤ ‖u‖0

for anyu ∈ U(ξ). This givesup ∈ U∗
0 (ξ), and henceU∗

p (ξ) ⊂
U∗
0 (ξ). Therefore the setU∗

0 (ξ) is not empty.
Take any maximum hands-off controlu0 ∈ U∗

0 (ξ). From
(10) and the optimality ofu0 andup, we have

‖up‖
p
p ≤ ‖u0‖

p
p ≤ ‖u0‖0 ≤ ‖up‖0 = ‖up‖

p
p,

which yields

‖u0‖
p
p = ‖up‖

p
p, (11)

‖u0‖0 = ‖up‖
p
p. (12)

Equation (11) givesU∗
0 (ξ) ⊂ U∗

p (ξ), and hence (7) follows.
Equation (12) means just the last statement (8).

In summary, the maximum hands-off control is charac-
terised as follows:

Theorem 2:For each initial stateξ ∈ R, there exist
maximum hands-off controls, and they take only±1 and
0 on [0, T ].

From the definition of the reachable setR, this theorem
states that the initial stateξ exists in R if and only if
maximum hands-off controls exist.

B. Relation between Maximum Hands-Off Control andL1-
Optimal Control

We briefly review theL1-optimal control problem based
on the discussion in [1, Sec. 6-13], and confirm the definition
of the normality.

In theL1-optimal control problem, for a given initial state
ξ, we seek the control that has the minimumL1 norm among
all feasible controls inU(ξ). The optimal controls are called
L1-optimal controls.

We apply the Pontryagin’s minimum principle. Assume
that there exists anL1-optimal controlu∗(t). Then there
exists a vectorq∗(t) ∈ R

n on [0, T ] such that

u∗(t) =











1, if BTq∗(t) < −1,

0, if |BTq∗(t)| < 1,

−1, if BTq∗(t) > 1.

u∗(t) ∈ [0, 1], if BTq∗(t) = −1,

u∗(t) ∈ [−1, 0], if BTq∗(t) = 1.

Therefore, if |BTq∗(t)| is not equal to1 at almost ev-
erywhere in[0, T ], then theL1-optimal controlu∗(t) can
be determined uniquely, andu∗(t) takes only0 and±1 on
[0, T ]. Then theL1-optimal control problem is callednormal.

Definition 2 (Normality): Define the set

I , {t ∈ [0, T ] : |BTq∗(t)| = 1}.



If m(I) = 0, then theL1-optimal control problem is said to
be normal.

Theorem 2 reveals the general relation between maximum
hands-off controls andL1-optimal controls, which is a gen-
eralization of a result in [6].

Theorem 3:Fix any initial stateξ ∈ R. Let U∗
0 (ξ) and

U∗
1 (ξ) be the sets of all maximum hands-off controls and all

L1-optimal controls, respectively. Then we have

U∗
0 (ξ) ⊂ U∗

1 (ξ) (13)

and
‖u0‖0 = ‖u1‖1 (14)

for any u0 ∈ U∗
0 (ξ) andu1 ∈ U∗

1 (ξ).
In particular, if theL1-optimal control problem is normal,

then we haveU∗
0 (ξ) = U∗

1 (ξ).
Proof: From Theorem 2, we can take any maximum

hands-off controlu0(t), which takes only±1 and0 on [0, T ].
There exist a controlu1 ∈ U∗

1 (ξ) which takes only±1 and
0 on [0, T ], even if theL1-optimal control problem fails the
normality assumption [5]. Then we have

‖u0‖0 = ‖u0‖1, ‖u1‖1 = ‖u1‖0. (15)

From the optimality ofu0 andu1, we also have

‖u0‖0 ≤ ‖u1‖0, ‖u1‖1 ≤ ‖u0‖1. (16)

It follows from (15) and (16) that

‖u0‖1 = ‖u1‖1, ‖u0‖0 = ‖u1‖1.

The first equation yields the relation (13), and the second
equation is (14). Finally, for the case under the normality
assumption, see [6].

We note that any maximum hands-off control is always an
L1-optimal control, but the reverse does not necessarily hold.
As seen in the proof, maximum hands-off controls are just
L1-optimal controls having the bang-off-bang property. More
precisely, if the normality assumption fails, then there exists
an L1-optimal control which is notL0-optimal. In Section
V, we give such an example. In contrast, for every initial
state, these optimal control problems always have the same
optimal value.

IV. VALUE FUNCTION

In this section, we investigate the value function in max-
imum hands-off control. The value function of an optimal
control problem is defined as the mapping from initial states
to the optimal values. The value functions in maximum
hands-off control andL1-optimal control are defined as

V (ξ) , min
u∈U(ξ)

‖u‖0, V1(ξ) , min
u∈U(ξ)

‖u‖1,

for ξ ∈ R.
Here, we prove the continuity and the convexity of the

value functionV (ξ) on R based on the discussion given in
[7]. As proved there, these properties play an important role
to prove the stability when the maximum hands-off control
is extended to model predictive control.

First, let us show the convexity ofV (ξ).

Theorem 4:The value functionV (ξ) is convex onR.
Proof: It is sufficient to show the convexity ofV1(ξ),

since we have

V (ξ) = V1(ξ), ξ ∈ R

from Theorem 3. Take any initial statesξ, η ∈ R and any
scalarλ ∈ (0, 1). Letuξ(t) anduη(t) beL1-optimal controls
for the initial stateξ andη, respectively.

Obviously, the following control

u , (1− λ)uξ + λuη (17)

steers the state from the initial state(1 − λ)ξ + λη to the
origin at timeT , and it satisfies‖u‖∞ ≤ 1. That is, we have
u ∈ U

(

(1− λ)ξ + λη
)

. Therefore we have

V1(λξ + (1 − λ)η) ≤ ‖λuξ + (1− λ)η‖1

≤ λ‖uξ‖1 + (1 − λ)‖uη‖1

= λV1(ξ) + (1− λ)V1(η),

which shows the convexity of the value functionV1.
Next, we show the continuity ofV (ξ). For this, we prepare

the following lemmas.
Lemma 2:For any scalarα ≥ 0, the following set

Rα , {ξ ∈ R : V (ξ) ≤ α}

is closed.
Proof: See the proof of [7, Lemma 4].

Lemma 3:The reachable setR is characterized by

R = {ξ ∈ R : V (ξ) ≤ T }. (18)

In particular, if the pair(A, B) is controllable, then

∂R = {ξ ∈ R : V (ξ) = T }. (19)
Proof: See the proof of [7, Lemma 5].

From these lemmas, we can show the continuity of the
value functionV (ξ).

Theorem 5:If the pair (A, B) is controllable, thenV (ξ)
is continuous onR.

Proof: The proof is similar to the proof of [7, Theorem
6].

V. EXAMPLE

Theorem 3 states that for a system that fails the normality
assumption, there exists a control which isL1-optimal but
not L0-optimal. Here, we give such an example.

Let us consider the double-integral system, which is mod-
elled by

ẋ(t) =

(

0 1
0 0

)

x(t) +

(

0
1

)

u(t), 0 ≤ t ≤ T. (20)

Let the initial condition be

(x1(0), x2(0)) = (ξ1, ξ2),

wherex(t) = (x1(t), x2(t))
T andξi ∈ R for i = 1, 2.

From [1, Control Law 8-3], this system fails the normality
assumption for the initial states satisfying

1

2
ξ22 < ξ1, ξ2 < 0, −

ξ2
2

−
ξ1
ξ2

< T. (21)



That is, the L1-optimal control can not be determined
uniquely for these initial states. The set of allL1-optimal
controls consists of all controls such that

0 ≤ u(t) ≤ 1, ∀t ∈ [0, T ],
∫ T

0

u(t)dt = −ξ2,

∫ T

0

∫ θ

0

u(t)dtdθ = −ξ1 − ξ2T.

The dashed line in Fig. 1 shows such anL1-optimal control
u1(t) (obtained via numerical optimization) for the parame-
ters

T = 5, ξ1 = 1, ξ2 = −1, (22)

which satisfy the condition (21). Clearly, thisL1-optimal
controlu1(t) is notL0-optimal.

On the other hand, the following is also one of theL1-
optimal controls for the initial state satisfying (21):

u2(t) =

{

0, if t ∈ [0, t1) ∪ [t2, T ],

1, if t ∈ [t1, t2),

where

t1 =
ξ2
2

−
ξ1
ξ2
, t2 = −

ξ2
2

−
ξ1
ξ2
.

This gives a maximum hands-off control since theL1-
optimal control that takes only±1 and 0 is L0-optimal as
seen in the proof of Theorem 3. The solid line in Fig. 1
shows the controlu2(t) for the parameters given in (22).
Obviously, the controlu2(t) has much smallerL0 norm than
that ofu1(t). In other words, the controlu1(t) is L1-optimal,
but it is notL0-optimal.
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VI. CONCLUSION

In this paper, we have shown that among feasible controls
there exists at least one maximum hands-off control, and it
has the bang-off-bang property. This result is obtained by
examining theLp-optimal control for0 < p < 1, which is
a natural relaxation for theL0-optimal control. Indeed, we
have shown the equivalence between the maximum hands-off
control and theLp-optimal control. This leads to the general

relation between the maximum hands-off control and theL1-
optimal control, that is, any maximum hands-off control is
given by anL1-optimal control that has the bang-off-bang
property, but anL1-optimal control is not necessarilyL0-
optimal in the absence of the normality assumption. As an
example for this, we have given the double-integral system.
Also we have proved the continuity and the convexity of the
value function, which can be used to prove the stability in
model predictive control.

APPENDIX

PROOF OF PROPOSITION 1

For f ∈ L1, define

E , {t ∈ [0, T ] : |f(t)| ≤ 1},

F , {t ∈ [0, T ] : |f(t)| > 1}.

Then we have

‖f‖pp =

∫

E

|f(t)|pdt+

∫

F

|f(t)|pdt.

On the right hand side, if we takep → 0+, the integrand
of the first term increases, and that of the second term
decreases. It follows from Lebesgue’s monotone convergence
theorem [13] that

lim
p→0+

‖f‖pp =

∫

E

φ0(f(t))dt+

∫

F

φ0(f(t))dt = ‖f‖0,

whereφ0 is theL0 kernel function defined by (2).

REFERENCES

[1] M. Athans and P. L. Falb,Optimal Control, Dover Publications, 1966.
[2] D. C. Chatterjee, M. Nagahara, D. Quevedo, and K. S. Mallikarjuna

Rao, Maximum hands-off control: existence and characterization,
submitted for publication.

[3] D. L. Donoho, Compressed sensing,IEEE Trans. Inf. Theory,
pp. 1289–1306, 2006.

[4] Y. C. Eldar and G. Kutyniok,Compressed Sensing, Cambridge Uni-
versity Press, 2012.

[5] W. C. Grimmell, The existence of piecewise continuous fuel optimal
controls,SIAM J. Control, vol. 5, no. 4, pp. 515–519, 1967.

[6] T. Ikeda and M. Nagahara, Continuity of the value function in sparse
optimal control,Proc. of the 10th Asian Control Conference, 2015.

[7] T. Ikeda, M. Nagahara and S. Ono, Discrete-valued control by sum-of-
absolute-values optimization. http://arxiv.org/abs/1509.07968, 2015.

[8] N. J. Kalton, N. T. Peck, and J. W. Roberts,An F-Space Sampler,
Cambridge University Press, 1984.

[9] M. Nagahara, D. E. Quevedo, and D. Nešić, Maximum-hands-off
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