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Abstract—While the primary focus of affective computing has
been on constructing efficient and reliable models of affect,
the vast majority of such models are limited to a specific task
and domain. This paper, instead, investigates how computational
models of affect can be general across dissimilar tasks; in
particular, in modeling the experience of playing very different
video games. We use three dissimilar games whose players
annotated their arousal levels on video recordings of their own
playthroughs. We construct models mapping ranks of arousal to
skin conductance and gameplay logs via preference learning and
we use a form of cross-game validation to test the generality of the
obtained models on unseen games. Our initial results comparing
between absolute and relative measures of the arousal annotation
values indicate that we can obtain more general models of player
affect if we process the model output in an ordinal fashion.

Keywords—general affect modeling; emotion annotation;
preference learning; relative annotation; games

I. INTRODUCTION

Research on general artificial intelligence (Al) has focused
primarily on computational systems that are able to perform
well on a range of objectively-defined cognitive tasks [1], [2].
Games offer complex yet well-defined problems for exploring
the capacities of general Al and, as a result, playing games
has been the dominant task for testing general Al capacities
over the years. Recent studies, however, have argued that
testing Al only through its gameplaying abilities is a very
narrow perspective to general intelligence [3], [4]. Evidence
from neuroscience further supports this stance, suggesting that
emotion is a key facilitator of general intelligence [5] and that
our affective abilities are not only admissible but necessary
factors of our general intelligence [6].

Even though the generality of affective interaction appears
to be critical for realizing general Al, the general capacity of
affect models has not been a research focus within affective
computing (AC) yet. The majority of AC studies focus on the
design of reliable and effective models which are tied to a
specific task within a specific domain. In this paper, instead,
we take the first steps towards the design of affect models that
are more general. While we focus particularly on the domain
of video games as one of the most promising domains for
the realization of the affective loop [7], we investigate how an
affect model can be general across various different tasks (in
this case, modeling the experience of playing various games).

We argue that a model of affect can be general only if both
its input and output representations are expressed in general
terms; in this paper we focus on the output of such a potential
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general model. Further, we are grounded on the evidenced
advantages of ordinal annotation [8]-[10] and ordinal model-
ing of affect [11], [12] in yielding reliable approximates of
the underlying ground truth. Based on these studies, we argue
that the ordinal processing of affect annotations can provide us
with relative expressions of the ground truth which we view,
in turn, as an essential step towards achieving accurate general
models of affect. Our hypothesis is therefore that processing
affect annotations (i.e., the model output) in a relative (i.e.,
ordinal) fashion yields more general affect models than when
processing them in an absolute fashion.

To test our hypothesis we construct computational models
which output a measure of the player’s arousal based on a
player’s gameplay metrics and skin conductance. The model is
tested for its capacity to predict the arousal of a player across
three dissimilar games that vary fundamentally in terms of
game genre, game rules, and overall play experience. Selecting
games that are so different aims to challenge our models’
general modeling abilities and offer a reliable benchmark for
testing general affect intelligence. The models are trained via
preference learning (using neuroevolution and support vector
machines) on continuous arousal annotations provided by the
players while watching their video-recorded playthroughs. The
annotations are converted into ordinal data by comparing pairs
of annotated time windows. We explore two different met-
rics for comparing between time windows and transforming
the continuous arousal annotations into ordinal data: a) the
absolute metric of mean arousal value and b) the relative
metric of the arousal’s average gradient (average change). The
results validate our hypothesis as models trained on the relative
arousal data were the only ones that manage to surpass the
baseline performance (significantly in some cases), whereas
models built on the absolute mean arousal value, at best, only
reach the baseline. Based on these initial findings we envisage
the application of our approach to building more general affect
models across tasks in other domains besides games.

II. GENERAL AFFECT MODELING IN GAMES & BEYOND

Modeling affect has received much attention; this section
focuses on the task of general affect modeling within the
games domain and beyond with an emphasis on the processing
of input (Section II-A) and output (Section II-B).

Player experience modeling (PEM) [13] is a rather active
area of study dedicated to building computational models that
capture how players react to certain games, or the elements and



events within them. Although PEM covers a broad range of
player experience states, these are typically closely linked with
affect. Several studies have attempted to acquire models which
predict such states as ‘fun’, ‘challenge,” and ‘frustration’ (e.g.,
[14], [15] among many). Although research in modeling player
experience grows in volume of studies and interest, most of
the aforementioned studies are bound to a specific game or
game genre that the models were trained and tested on [3], [4].
A small number of researchers have begun pushing towards
employing a more general perspective in affect modeling
[3], [4] and a small number of studies have already made
promising steps towards building general models [16]-[18].

A. General Input

An affective model able to capture player experience across
games should have general features as its input. Such general
input can be completely game independent, such as phys-
iological signals. In [16], results showed that average and
minimum heart rate as well as 1-step and 2-step differences of
skin conductance are good general predictors of self-reported
player affect across two different games: a racing game and
a 3D maze ball puzzle game. This paper uses a variation of
the maze ball puzzle game of [16] for capturing annotations,
and also the 1-step differences of skin conductance as input
due to this metric’s evidenced ability to capture aspects of
affect. In a similar study [17], general gameplay and context-
based features were devised as input, training a model based
on game data of a platformer game and testing the model
on a first person shooter game (and vice-versa). General
gameplay features are also captured in this study, and are
shown to be good predictors for cross-game validation—i.e.,
testing on an unseen game, similarly to [17]. The varying
results of [17] demonstrate how challenging general affect
modeling across games can be, which is also corroborated in
our findings. Finally, a recent study [18] compared manually-
designed features against transfer learning on the same two
games of [17], obtaining comparable results as in [17].

B. General Output

While the input of any machine learning algorithm naturally
affects its predictive accuracy, the format of the output (the
ground truth of affect) is equally important, if not more. How
to annotate affect is not straightforward and approaches vary
throughout literature. The predominant approach in affective
computing is continuous annotation [8], considering affect on
a continuous scale. Affect can be annotated continuously with
respect to the affect itself (e.g., via Russell’s two-dimensional
arousal-valence circumplex model of affect [19]), with respect
to time (e.g., via the FeelTrace tool [20]), or both.

Continuous annotation provides richer data in terms of
both quality and quantity than discrete annotation [8] but
user fatigue and inter-rater disagreements across continuous
ratings still prove to be a challenge. In order to derive a
general output for affective modeling, relative and rank-based
annotations offer a way to overcome such challenges. Research
has shown that people are able to report emotions better in

(a) Survival Shooter (SS) (b) Space Maze (SM)

(c) Sonancia

Fig. 1. Screenshots from the three different games used in this study.

relative terms than in absolute terms [10], [21], and a pairwise
rank approach has been used in many studies on affective
modeling in games (e.g., [14], [15]). Models in this paper
similarly learn the pairwise ranks of affect via preference
learning. A real-time discrete rank-based annotation tool has
been shown to outperform continuous ratings in terms of
inter-rater agreement, while converting real-time continuous
rating annotations into ranks was also shown to increase
inter-rater agreement [8]. Finally, approaches that consider
relative agreements between real-time continuous annotations
based on the direction of change has proved advantageous
over approaches that consider agreement in terms of absolute
values, both in terms of inter-rater agreement [10], [22] and in
terms of constructing accurate models of affect [23]. For these
reasons, in this paper we test and compare an absolute and a
relative approach for processing the annotation data which, in
turn, can be used to test the general predictive capacity of our
models: the first being the mean value of the arousal trace and
the latter being the average gradient value of the arousal trace.

III. TESTBED GAMES

Three different games developed in Unity 3D (see Fig.
1) were used to test the generality of our affective models:
Survival Shooter (SS) is a game included in a Unity3D
tutorial package.! In this top-down game, the player must
shoot down as many zombie toys as possible and avoid running
out of health due to zombies colliding with him. In the adapted
version used in our experiments, the game ends after 60 sec.
Space Maze (SM) is a maze-based puzzle game [24] where
the player, controlling a ball, must collect three diamonds,
avoid enemies, and reach a final point before running out of
health (by colliding with enemies) or time (90 seconds). In the
adapted version used in our experiments, we omit for the sake
of simplicity a game feature from the original game whereby
the camera changes perspective upon diamond collection.
Sonancia (Son) is a first-person horror game introduced in
[25] where the player must traverse rooms until a room with
the objective is reached, while avoiding monsters which can
chase and kill the player. Each room has a distinct soundtrack
matching a desired level of tension for that room.

Since our study tests how models can generalize across
dissimilar games, the three games were chosen due to their
differences in genre, game mechanics, camera perspective,
graphics style, and the player’s goal (or end condition). With

Uhttps://www.assetstore.unity3d.com/en/\#!/content/40756



Fig. 2. Screenshot from the RankTrace [26] annotation software, showing the
recorded playthrough (top) while the entire annotation trace is visible to the
user (bottom) who can control the current arousal value (square).

regards to genre, SS is a shooter relying on fast-paced reac-
tions, accurate aiming and constant movement, SM is a physics
puzzle that needs accurate timing of movement, and Sonancia
is a horror game which elicits negative emotions, disorientation
and jump scares. Moreover, the camera perspective is top-
down in SS, third-person in SM, and first-person in Sonancia.
The dissimilarities between the three games make them an
ideal dataset for testing the capacity of a model to yield general
affective models across all games. The game situations, the
corresponding gameplay experience and affective responses
are so different among the games that a model might not be
able to recognize them, perceiving them as unknown or as
mere noise.

IV. EXPERIMENTAL PROTOCOL

Data from all three games was collected using the same
protocol. The SS and SM data collection experiments were run
by the same participants whereas the Sonancia data collection
occurred on a different day with other subjects. The data
collection process took place over two different settings and
at various times throughout the day. However, much care was
taken to ensure the same test conditions.

Participants were first briefed about the experiment and then
filled in a simple demographic questionnaire. An Empatica E4
wristband sensor? was then fitted on the player’s left wrist to
log physiological signals. The subjects were then asked to play
each of the SS and SM games twice; the order of which game
they played first was randomized to avoid any order biases.
In experiments with Sonancia, subjects played the same level
three times. Before the first playthrough of each game, the
player was shown a black screen with game instructions for 30
seconds, during which a baseline for the physiological signals
was recorded. During play, game metrics were logged together
with a screen-capture video of the game playthrough using
the RankTrace annotation tool [26]. After each individual

Zhttps://www.empatica.com/e4-wristband

playthrough, participants viewed the screen-capture video of
their last playthrough and continuously annotated the level
of arousal (intensity) characterizing the emotions they recall
feeling while playing on an unbounded scale using a USB
wheel controller (PowerMate, Griffin Technology) to indicate
changes (increase or decrease) in arousal.’ The RankTrace tool
[26]* can visualize and process a plot of the arousal signal
being annotated with the USB wheel controller in real-time
while the playthrough video is displayed (see Fig. 2).

Only the arousal dimension of affect was annotated in
this paper. Obtaining valence annotations as well would have
considerably increased the experiment duration and could thus
have negatively impacted the quantity and quality of data
obtained given the available time and resources. It is also worth
noting that the first playthrough of each game was treated
as a tutorial for the players to get used to the controls of
the game and was therefore not considered in any processing
stages described from this point onwards.

V. DATA COLLECTION

A total of 25 participants (10 females) provided data for
both SS and SM while 14 participants (5 females) provided
data for Sonancia. After we applied all data preprocessing
steps described in this section, 10, 10 and 11 participant
sessions were considered for SS, SM and Sonancia, respec-
tively. Participants for SS and SM were aged from 19 to 54
(median age 24) and most of them considered themselves good
or expert players of games (70%) while the rest considered
themselves novice or non-gamers. As for Sonancia, most
participants were between 25-34 years old and 36% of par-
ticipants played games everyday while 45% played frequently
or casually; the rest rarely or never played.

For each game session we record and analyze three types
of data: annotation traces of arousal, gameplay logs and
electrodermal activity. For each data type we follow differ-
ent preprocessing and feature extraction methods which are
detailed in the corresponding sections below.

A. Annotation Traces

Continuous annotations of arousal were processed on a
playthrough-by-playthrough basis. As a preprocessing step, we
discarded traces where annotated arousal values were constant.
Each playthrough annotation trace was then processed via a
sliding window approach, splitting the session into equally-
sized time-windows. Several parameters were considered: the
window size in seconds (w), the step size (s) as the delay
between the start of the current window and the start of
the previous window, and the reaction lag (I) as the time
in seconds by which the annotation was offset with respect
to the corresponding game log and physiological signals to
account for a lag in the annotator’s response to the events in
the playthrough video. We set default values to w =3, s =3
(i.e., no overlap between consecutive windows), and [ = 0

3Due to the nature of the horror genre players of Sonancia were asked to
annotate tension which is often used interchangeably with arousal [19].
4Available at: http://www.autogamedesign.eu/software



(i.e., no reaction lag). This resulted in a total of 139 windows
for SS, 227 for SM, and 256 for Sonancia across all sessions.
Two metrics were calculated for each window: the mean
arousal value p4 (absolute metric) and the average gradient
A}L‘ (relative metric) of the arousal, i.e., the average first
differences within the continuous annotation window. Outliers
for each of these metrics were handled by capping values
outside +3 standard deviations to that value. Further, the
values for each metric were min-max normalized to [0, 1].

In each playthrough, the annotation windows were used
to derive rankings between arousal values within adjacent
windows. We assume that annotators have a limited memory
and are therefore able to compare only their current arousal
to their perceived arousal a few seconds before. The same
windows used for annotation (w=3, s=3, [=0) are applied
to game logs and EDA signals (described below) to derive
rankings of those metrics between adjacent windows.

B. Gameplay Logs

Based on general game design properties, we designed a
number of features which we deemed to be general across
multiple types of games. These include: goal-oriented events
G™ (i.e., events which lead the player towards the goal),
goal-opposed events G~ (i.e., events which lead the player
away from the goal), the player’s distance traveled D and
time spent moving M, number of enemies engaged with the
player E, time since the start of the game ¢g, and level of
player fatigue ¢z (i.e., how long the player has been playing
in total, including tutorials). Goal-related features G and G~
were treated as binary, indicating whether at least one goal-
oriented or goal-opposing event occurred in the given window
respectively. All other features were treated as scalars.

Unlike the other gameplay features, G, G~, and E are
derived differently for each of the three games. Goal-oriented
events (contributing to GT) included hitting and killing ene-
mies for SS, and collecting diamonds for SM. Goal-opposed
events (contributing to G~) for both SS and SM consisted of
collisions with enemies; F in both SS and SM was the number
of enemies visible on screen. For Sonancia, G events were
when a player entered a new room, when monsters lost sight or
ceased to chase the player; G~ events were when the monsters
hit the player, when the player died, and when monsters gained
sight or started to chase the player. Finally, F for Sonancia
was the number of monsters chasing the player.

It is important to note that gameplay features offer the
necessary context for reliably inferring the affective state of the
player. At the same time, however, they are designed to be as
general as possible across games. All gameplay features were
normalized with respect to the respective game only using Z-
score normalization.

C. Electrodermal Activity
From the various physiological signals recorded by E4, we
only consider the electrodermal activity (EDA)’ in this study.

5The terms skin conductance and electrodermal activity are used inter-
changeably in this paper.

EDA is measured in micro Siemens (©.5). Considering only
sessions with an EDA signal which was not noisy, we extracted
four descriptive statistics from the EDA signal for each given
window: mean, median, standard deviation, and variance. We
then divided each of these features for each window by
the corresponding features calculated over the baseline EDA
signal. This final feature value represents the relative change of
the statistic with respect to a particular participant’s baseline.
Beyond these standard statistical features, and inspired by the
study of Holmgard et al. [27], we applied a continuous decom-
position analysis (CDA) [28] to the EDA signal using Ledalab.
The outcome of CDA is the decomposition of the EDA in
its phasic and tonic components. From these components we
considered the mean and the integral of the phasic driver, and
the mean tonic driver of the signal in each window.

V1. PREFERENCE LEARNING

This work explores how general models of affect can be
constructed across dissimilar activities and tasks. We thus
use machine learning to discover the mapping between the
annotation traces (model output) and the gameplay and EDA
(model inputs) features. As the data in annotation metrics is
ordinal, we use preference learning [29], [30] to construct our
computational models of arousal across the three games.

Preference learning is a machine learning process by which
the assumed global order underlying a set of preference ranks
is inferred [29]. The output of a preference learning algorithm
is a computational model which maps a set of input features
that characterize the input instances to the inferred global order
[30]. In this paper we use RankSVM [31] and neuroevolu-
tionary [30] preference learning, applying sequential forward
feature selection to both. For all experiments reported in this
paper we use the Preference Learning Toolbox [32].

The RankSVM preference learning algorithm [31] is used
due to its deterministic nature, low computational effort, and
capability to reach high levels of performance. RankSVM is an
ordinal version of the original Support Vector Machine (SVM)
that maps instances to a high-dimensional space and finds a
hyperplane which best splits the data into two groups. In this
paper RankSVM uses a radial basis function (RBF) kernel
with v = 1. For comparative purposes we also employ the
neuroevolutionary (NE) preference learning algorithm, which
uses artificial evolution to adjust the connection weights of
a neural network which predicts the ordinal output. It does
so by employing a fitness function that rewards matching of
preferences. The algorithm has been used extensively in the
literature (e.g., see [30] among many). All experiments in this
paper used a population size of 200, a uniform crossover
probability of 0.8 and a mutation probability of 0.1. For
selection, we used a Roulette wheel scheme with 40 parents.
Finally, we used an elitism strategy of size 20 and iterated
over 50 generations.

A. Feature Selection

To select the most appropriate input features for our models
we use sequential forward selection (SFS). SFS is a hill



climber that starts with an empty set of features and itera-
tively adds one feature at a time, by trying all features in
combination with any already selected features, picking the
best combination based on model performance. The process
runs until the addition of another feature results in loss of
model performance.

VII. RESULTS AND ANALYSIS

In this section we investigate the impact of two different
ways of processing the arousal annotation data (ground truth)
on the resulting model’s capacity to generalize across the three
game test-beds. On one hand, we calculate annotation values
based on the absolute measure of mean annotations ()
within a window. On the other hand, we derive the average
gradient (A}4) of the annotation within each window which is a
relative metric based on first differences of the annotation data.
We use these values as the outputs of a preference learning
mechanism that attempts to predict which of two adjacent time
windows would have a higher annotation metric. A successful
model would be able to predict whether the arousal level in
the next time window will increase or decrease and by how
much. A total of 46 pairwise ranks for SS, 96 for SM, and
77 for Sonancia were obtained with 4 while 76 for SS, 152
for SM, and 157 for Sonancia were obtained with Al. In
all experiments reported below, the baseline performances are
derived by finding which window (at time ¢ or at ¢ — 1) is
preferred more often in all annotations within the test set. The
baseline of the dataset is the highest of these two numbers,
expressed as a percentage over the sum of the two numbers.
Significant differences for both game-specific and cross-game
validation accuracies are assessed via their 95% confidence
interval bounds.

A. Game-specific Affective Models

To first validate the algorithms’ ability to learn models of
affect on the games chosen, both EDA and gameplay features
were used as input to learn their mapping with self-reported
arousal on a game-by-game basis. While this experiment
does not advance the vision of a general model of affect, it
nevertheless tests whether there is a game-specific mapping
between the features chosen and arousal. If such a highly
accurate predictive model exists for one game, perhaps it
can be generalizable across two or three games. Indicatively,
using RankSVM with A, the obtained leave-one-out cross-
validation performances for SS, SM and Sonancia are 86.84%,
69.08%, and 75.16%, respectively; all values are significantly
above their corresponding baselines of 53.95%, 51.97% and
51.59%, respectively. Findings suggest that highly-performing
game-specific models of arousal can be obtained in a straight-
forward manner. How trivial would the task be across games
though? The next sections are dedicated to this analysis.

B. General Affective Models Across Games

How do we evaluate the generality of a model? The
traditional way would be to test the k-fold cross-validation
accuracies obtained within each game. Doing so, however,

TABLE I
CROSS-GAME VALIDATION PERFORMANCE AS IMPROVEMENT OVER THE
BASELINE, ALONG WITH THE 95% CONFIDENCE INTERVAL. SIGNIFICANT
POSITIVE IMPROVEMENTS (p < 5%) IN BOLD.

I pa Ay
Baseline [ 681%x12% | 52.5%*1.4%
Perceptron (NE) [[ —12.9%+£2.0% —2.2%49.4%
EDA MLP (NE) —8.7%49.3% —2%+4.4%
RankSVM —20.9%+11.4% | —5.7%+2.9%
Perceptron (NE) 0.0%+12.0% +5.7% +2.7%
GAMEPLAY | MLP (NE) +0.9%+11.4% +1.5%40.6%
RankSVM —6.0%+10.3% | +1.3%+3.8%
Perceptron (NE) —0.4%£12.7% | —1.3%+9.7%
FUSION MLP (NE) —0.1%+10.3% 0.0%+6.0%
RankSVM —13.6%+10.8% | +0.7%+4.3%

would only measure the generality of the affect model within
the game investigated. Instead, we validate the capacity of our
models to predict the arousal level across games, namely cross-
game validation or 3-game cross-validation. In other words
models are trained on two games and predict ranks in the
unseen third game, which acts as the validation set.

Testing via cross-game validation is expected to challenge
any machine learning approach. The level of variance across
games is purposefully very high, making the problem of gen-
eral affect modeling very difficult. In addition to the challenges
of interpersonal variations of physiology, the games are very
different in terms of genre, mechanics, interaction modes and
gameplay experience. As a result, the arousal annotations are
expected to vary with respect to all these factors.

As previously mentioned, building on the ordinal nature of
subjective constructs (as emotions), our working hypothesis is
that treating the arousal annotations in a relative fashion will
yield more general models of arousal. To test this hypothesis,
we compare between two metrics (14 and AY) across two
modalities of input (EDA and gameplay) and their fusion. In
addition, we compare them across three different preference
learned models: a perceptron and a multi-layer perceptron
with one layer of 10 hidden nodes (MLP)—both trained via
neuroevolution—and the RankSVM method. Feature selection
(SFS) was applied to all algorithms. Averaging across all
combinations of games in the 3-game cross-validation process,
the baseline performance is 68.1% for 14 and 52.5% for Al.
Table I shows the cross-game validation results in terms of
accuracy improvement over the baseline.

1) EDA Features: When using only EDA features as input,
the models’ accuracies fail to reach the baselines, most likely
due to the idiosyncratic nature of EDA. Although sub-par, the
best accuracies for both annotation metrics are achieved by
MLP. It is also worth noting that accuracies for Ay are closer
to the corresponding baseline than accuracies for A, pointing
to a better predictive capacity of this output.

2) Gameplay Features: Based on Table I, using gameplay
features as input seems to yield more general models of affect
independently of the preference learning model used. The
advantage of Al over pA is consistent with earlier results
for the perceptron model, as it significantly improves the



baseline by 5.7%. For the MLP and RankSVM, A}4 reaches
accuracies slightly over the baseline. On the other hand, mean
arousal reaches or slightly exceeds baseline performance only
when neuroevolution is used (peceptron and MLP). RankSVM
again yields the poorest model accuracies. The most frequently
selected features for the A}4 models are M, FE and tg as
opposed to tg and tp for pA. It is likely that tg and tp are
frequently selected for the A models since annotated arousal
tended to increase (either because annotators failed to mentally
register decreases in arousal or due to the games’ increasingly
arousing nature), making time alone (measured in tg and tp)
a strong predictor. On the other hand, Al; achieves the best
models by considering two other gameplay features in addition
to ts. In other words, model generality is so far highest when
considering input features in relative terms.

3) Gameplay and EDA Fusion: Finally, we fused EDA and
gameplay features as input to the preference learned model.
Based on Table I, most model accuracies are much higher than
those with EDA features only but do not surpass those with
gameplay input alone. EDA features not only fail to improve
the general capacity of gameplay-based models but they also
worsen it. That said, Al manages to slightly pass the baseline
for RankSVM. For the first time, RankSVM also outperforms
NE methods with A, implying that the RankSVM might
overfit the training games less when considering A, and both
gameplay and EDA features. Various features were selected by
SES across the two annotation metrics and preference learning
methods but the most predominant appear to be ts, EDA mean,
and average phasic driver for uA and G~, E, EDA standard
deviation, and integral of the phasic driver for AY.

It should be noted that different folds have very different
accuracies based on the confidence intervals of Table I. Gener-
ally, baseline accuracies for y 4 are far more varied (as high as
78.3% when predicting SS). Rarely did any predictive model
surpass the baseline for ©4 on any fold; the most successful
was the MLP using gameplay features, which passed the
baseline when predicting SS and Sonancia. On the other hand,
Al generally had smaller deviations, and more models passed
the baseline for this relative metric. Using gameplay features,
the perceptron passed the baseline in all folds, while the
RankSVM and MLP passed the baseline in two folds. Even
with a fusion of inputs, both the perceptron and the RankSVM
pass the baseline in two folds; the perceptron even passed the
baseline in two folds using EDA features alone. It is obvious
that some games (folds) are easier to predict than others, and
the low average performance of the perceptron with EDA or
combined features is due to a single game (SS in both cases).

C. Further Experimentation

To further assess how the annotation metrics impact the
generality of cross-game models, experiments were performed
with a longer reaction lag (I = 1) and deriving ranks with two
previous windows (instead of one). In both cases, gameplay
features and NE again yield the most general models (using an
MLP). Furthermore, most A, models (using gameplay and/or
EDA features) perform 1%-5% over the baseline whereas only

one 1A model does, corroborating the superiority of Al over
1A in building cross-game general affective models.

VIII. DISCUSSION

Experiments in this paper tested how different ways of
processing affect annotation (output) impact the general capac-
ity of affect models across very different games and elicited
experiences. This was intended to be a challenging task, to
test the limits of the machine learning algorithms but more
importantly the output used for training. While training game-
specific models of affect was not challenging, the difficulty
of the general affect modeling task was verified by our
experiments. One of the more powerful machine learning
approaches (SVM) tended to overfit to the two games it was
trained on (its training accuracies reached more than 80%
for most cases) and could not generalize well to the unseen
game. In contrast, a simple perceptron which did not reach
as high training accuracies managed to significantly exceed
the baseline in cross-game validation when using gameplay
inputs, although it marginally reached the baseline in most
other cases. However, all results share a common pattern:
processing annotations in a relative fashion (via the average
gradient) is a more powerful approach for yielding general
affect models compared to the absolute (mean) values.

Looking into future work, the obvious next steps have to
explore other general input and output modalities, as well
as expand the corpus of annotation and play data in these
and other games. In terms of general input, it is obvious that
gameplay features (as the best predictors of annotation in the
current experiments) could be expanded to include more infor-
mation, including splitting G* and G~ into more categories.®
It should be noted that SFS as a greedy approach of feature
selection often failed to select game features which did not
increase performance when added on their own but could do
so if combined with other ‘complementary’ game features
(for instance G and G7); testing other feature selection
methods, such as backwards feature selection or evolutionary
feature selection may improve the model’s accuracy. As a final
note, general features could be extracted from game-specific
features (unique to each game) via e.g., transfer learning as in
[18]; more ambitiously, such general game features could be
extracted via computer vision applied on the video playthrough
itself, via for instance deep preference learning [33]. In terms
of the general output, other ways of processing the annotations
of arousal could be explored, such as the amplitude of the
arousal trace in each window or its integral [26]. Moreover,
other time windows may capture arousal in a better way, e.g.,
by allowing longer time windows with overlap, or basing time
windows on game events [26] such as those captured by G~
or G*. Finally, increasing the number of games played and
annotated with even more dissimilar game genres could help
filter out certain tendencies in the data (e.g., increasing arousal
over time in survival genres), and allow for an even more

SFor instance, death events and enemy collisions in Sonancia do not have
the same affective response (the former is far more aggravating).



rigorous experimental protocol for cross-game validation using
e.g., 4 games for training and 1 for testing, or more ambitious
combinations such as 3 games for training and 2 for testing.
Our results largely validate our hypothesis within the games
domain. Keeping in mind the ultimate goal of acquiring
affect models that generalize across both tasks and domains,
however, our hypothesis should also be tested within other do-
mains. Our positive initial results, coupled with the evidenced
benefits of ordinal approaches in affective computing [8]-[12],
[26], leave us optimistic that similar findings may emerge.

IX. CONCLUSION

This paper tested how self-reported continuous annotations
of arousal can be mapped to gameplay and physiological
features across games. A total of 31 game videos of three
dissimilar digital games were annotated by the corresponding
players in terms of arousal using an intuitive wheel-like
interface. These arousal annotations were then converted into
ranks of arousal values (mean) and changes (average gradient)
between adjacent time windows in the same annotation trace.
Preference learning algorithms attempted to find the best
mapping between ranks of arousal and gameplay features
shared among all three games, skin conductance data collected
during play, or both. Results show that while constructing
a model of arousal within a single game is straightforward
and accurate, when it comes to using a model trained on two
games to predict an unseen third game, the models often fail to
surpass the baseline. However, when using a relative approach
to capture annotation data (via the average gradient) rather than
an absolute approach (via the mean), simple neural networks
manage to significantly surpass the baseline when the model
considers the gameplay data alone. These results support our
hypothesis that a relative form of output in an affect model
yields more general models within the same domain. Future
work on testing this hypothesis on other domains than games
is hoped to further generalize our findings across domains.
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