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Abstract—We address the problem of super-resolution
line spectrum estimation of an undersampled signal with
block prior information. The component frequencies of
the signal are assumed to take arbitrary continuous values
in known frequency blocks. We formulate a general
semidefinite program to recover these continuous-valued
frequencies using theories of positive trigonometric
polynomials. The proposed semidefinite program achieves
super-resolution frequency recovery by taking advantage
of known structures of frequency blocks. Numerical
experiments show great performance enhancements using
our method.
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I. INTRODUCTION

In many areas of engineering and science, it is
desired to infer the spectral contents of a measured
signal. In the absence of any a priori knowledge of the
underlying statistics or structure of the signal, spectral
estimation is a subjective craft [1] [2]. However, in several
applications, the knowledge of signal characteristics
is available through previous measurements or prior
research. By including such prior knowledge during
spectrum estimation process, it is possible to mitigate the
subjective character of spectral analysis.

One useful signal attribute could be its sparsity in
spectral domain. In recent years, spectral estimation
methods that harness the spectral sparsity of signals
have attracted considerable interest [3] [4] [5] [13].
These methods trace their origins to compressed sensing
that allows accurate recovery of signals sampled at
sub-Nyquist rate [6]. In the particular context of spectral
estimation, the signal is assumed to have sparsity in
a finite discrete dictionary such as Discrete Fourier
Transform (DFT). As long as the true signal frequency
lies in the center of a DFT bin, the discretization in
frequency domain faithfully represents the continuous
reality of the true measurement. If the true frequency
is not located on this discrete frequency grid, then the
aforementioned assumption of sparsity in DFT domain
is no longer valid [7] [8]. The result is an approximation
error in spectral estimation often referred to as scalloping
loss [9], basis mismatch [10], and gridding error [11].

Recent state-of-the-art research [5] [13] [12] has
addressed the problem of basis mismatch by proposing
compressed sensing in continuous spectral domain. This

off-the-grid compressed sensing approach [5] [13] uses
atomic norm minimization to recover super-resolution
frequencies - lying anywhere in the continuous domain
[0, 1] - with few random time samples of the spectrally
sparse signal, provided the line spectrum maintains a
nominal separation.

However, this formulation of off-the-grid compressed
sensing assumes no prior knowledge of signal other
than sparsity in spectrum. In fact, in many applications,
where signal frequencies lie in continuous domain such
as radar [14], acoustics [15], communications [16], and
power systems [17], additional prior information of
signal spectrum might be available. Of particular interest
to spectral estimation are spectrally block sparse signals
where certain frequency bands are known to contain
all the spectral contents of the signal. For example, a
radar engineer might know the characteristic speed with
which a fighter aircraft flies. This knowledge then places
the engineer in a position to point out the ballpark
location of the echo from the aircraft in the Doppler
frequency spectrum. Similarly, in a precipitation radar,
the spectrum widths of echoes from certain weather
phenomena (tornadoes or severe storms) are known
from previous observations [18]. This raises the question
whether we can use signal structures beyond sparsity to
improve the performance of spectrum estimation.

There are extensive works in compressed sensing
literature which discuss recovering sparse signals
using secondary signal support structures, such as
structured sparsity [19] (tree-sparsity [20], block sparsity
[21], and Ising models [22]), spike trains [23] [24],
nonuniform sparsity [25] [26], and multiple measurement
vectors (MMVs) [27]. However, for spectrum estimation,
frequency parameters take continuous values rather than
discrete support as in compressed sensing. Therefore,
the techniques of using prior support information in
discrete compressed sensing do not directly extend to
spectrum estimation. Moreover, it is rather unclear as to
how general signal structure constraints can be imposed
for super-resolution recovery of continuous-valued
frequency components.

In this paper, we propose a general way to perform
super-resolution spectrum estimation, given the prior
information about frequency bands within which true
frequency components reside. We propose a precise
semidefinite program for the atomic norm minimization
to recover the frequency components. The key is
to transform the dual of atomic norm minimization
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to a semidefinite program through linear matrix
inequalities (LMI). These linear matrix inequalities are
in turn provided by theories of positive trigonometric
polynomials [28]. Our new method has shown great
performance improvement compared with methods
using only signal sparsity information.

A. Relationship with prior work

There are a number of existing approaches for spectral
estimation by including known signal characteristics in
the estimation process. The classical Prony’s method can
be easily modified to account for known frequencies
[15]. Variants of the subspace-based frequency estimation
methods such as MUSIC and ESPRIT have also been
formulated [29] [30], where prior knowledge can be
incorporated for parameter estimation. For applications
wherein only approximate knowledge of the frequencies
is available, the spectral estimation described in [31]
applies circular von Mises probability distribution on the
spectrum. For irregularly spaced samples, sparse signal
recovery methods which leverage on prior information
have recently gained attention for general applications
[25] [26] [32] as well as, specifically, spectral estimation
[33]. Compressed sensing with clustered priors was
addressed in [34] where the prior information on the
number of clusters and the size of each cluster was
assumed to be unknown.

Also, a number of generalizations of off-the-grid
compressed sensing for specific signal scenarios have
been attempted. A generalization to two-dimensional
off-the-grid frequencies involves Hankel matrix
completion, and guarantees robustness against
corruption of data [35]. A heuristic approximation
to atomic norm minimization for two-dimensional
off-the-grid frequencies was proposed in [36]. Later,
the open problem of precise optimization formulation
of atomic norm minimization for two and higher
dimensions was solved in [37] using theories of
multivariate positive trigonometric polynomials. When
some frequencies are precisely known, [38] proposed
to use conditional atomic norm minimization to recover
the off-the-grid frequencies. However, in practice,
frequency components are seldom precisely known, and
more often frequency locations are only approximately
known. In this paper, we greatly broaden the scope of
prior information by considering block priors -frequency
subbands in which true spectral contents of the signal
are known to exist - to enhance spectrum estimation
performance.

II. SYSTEM MODEL

We consider a frequency-sparse signal x[l] expressed
as a sum of s complex exponentials,

x[l] =
s

∑
j=1

cje
i2π f j l =

s

∑
j=1
|cj|a( f j, φj)[l] , l ∈ N (II.1)

where cj = |cj|eiφj (i =
√
−1) represents the complex

coefficient of the frequency f j ∈ [0, 1], with amplitude
|cj| > 0, phase φj ∈ [0, 2π), and frequency-atom

a( f j, φj)[l] = ei(2π f j l+φj). We use the index set N =
{l | 0 ≤ l ≤ n− 1}, where |N | = n, n ∈ N, to represent
the time samples of the signal.

We further suppose that the signal in (II.1) is observed
on the index set M ⊂ N , |M| = m � n where m
observations are chosen uniformly at random. Then, the
off-the-grid compressed sensing problem is to recover
all the continuous frequencies with very high accuracy
using this undersampled signal.

A. Off-the-grid compressed sensing

The signal in (II.1) can be modeled as a positive
linear combination of the unit-norm frequency-atoms
a( f j, φj)[l] ∈ A ⊂ Cn where A is the set of
all frequency-atoms. These frequency atoms are basic
units for synthesizing the frequency-sparse signal.
This definition of frequency-sparse signal leads to the
following formulation of the atomic norm ||x̂||A - a
sparsity-enforcing analog of `1 norm for a general atomic
set A:

||x̂||A = inf
cj , f j

{
s

∑
j=1
|cj| : x̂[l] =

s

∑
j=1

cje
i2π f j l , l ∈ M

}
(II.2)

To estimate the remaining N \M samples of the signal
x, [39] suggests minimizing the atomic norm ||x̂||A
among all vectors x̂ leading to the same observed
samples as x. Intuitively, the atomic norm minimization
is similar to `1-minimization being the tightest convex
relaxation of the combinatorial `0-minimization problem.
The primal convex optimization problem for atomic norm
minimization can be formulated as follows,

minimize
x̂

‖x̂‖A
subject to x̂[j] = x[j],

j ∈ T, T = {0, · · · , n− 1} (II.3)

Equivalently, the off-the-grid compressed sensing [13]
suggests the following semidefinite characterization for
||x̂||A:

Definition II.1. [13] Let Tn denote the n × n positive
semidefinite Toeplitz matrix, t ∈ R+, Tr(·) denote the trace
operator and (·)∗ denote the complex conjugate. Then,

||x̂||A = inf
Tn ,t

{
1

2|N |Tr(Tn) +
1
2

t :
[

Tn x̂
x̂∗ t

]
� 0

}
(II.4)

The positive semidefinite Toeplitz matrix Tn is
related to the frequency atoms through the following
Vandemonde decomposition result by Carathèodory [40]:

Tn = URU∗ (II.5)
where Ul j = a( f j, φj)[l], (II.6)

R = diag([b1, · · · , br]) (II.7)

The diagonal elements of R are real and positive, and
r = rank(Tn).

Consistent with this definition, the atomic norm
minimization problem for the frequency-sparse signal



recovery can now be formulated as a semidefinite
program (SDP) with m affine equality constraints:

minimize
Tn ,x̂,t

1
2|N |Tr(Tn) +

1
2

t

subject to
[

Tn x̂
x̂∗ t

]
� 0 (II.8)

x̂[l] = x[l], l ∈ M

B. Frequency localization using dual norm

The frequencies in x̂ can then be identified by the
frequency localization approach [13] based on computing
the dual-polynomial Q?

f = 〈q?, a( f , 0)〉, where (·)?
denotes quantities corresponding to the solution of the
following dual problem of (II.3):

maximize
q

〈qM, xM〉R

subject to ‖q‖∗A ≤ 1 (II.9)
qN\M = 0

where ‖ · ‖∗ represents the dual norm. This dual norm is
defined as

‖q‖∗A = sup
‖x̂‖A≤1

〈q, x̂〉R = sup
f∈[0,1]

|〈q, a( f , 0)〉| (II.10)

For the frequency localization, |Q f j
| = 1, if f j is one of

the unknown frequencies of x. Otherwise, |Q f j
| < 1.

C. Using prior information

A common approach to harness the prior information
of the sparse signal in compressed sensing algorithms
is to replace the classical `1 norm with the weighted `1
norm [25] [26]. However, signals with continuous-valued
frequencies do not lead to a trivial application of the
weighted `1 approach. When the frequencies are known
to reside in a known set C a priori, we can minimize a
constrained atomic norm ||x̂||A,C [38]:

||x̂||A,C = inf
cj , f j∈C

{
s

∑
j=1
|cj| : x̂[l] =

s

∑
j=1

cje
i2π f j l , l ∈ M

}
(II.11)

where C is a known set of frequencies. The dual problem
of minimizing the conditional atomic norm is similar to
its analog in (II.9):

maximize
q

〈qM, xM〉R

subject to ‖q‖∗A,C ≤ 1 (II.12)
qN\M = 0

While the Vandemonde decomposition holds for general
positive semidefinite Toeplitz matrices, it is not clear
how to further tighten the Toeplitz structure to reflect
the known prior information. Thus for an arbitrary set
C, formulating a computable convex program is not
trivial for the constrained atomic norm minimization. In
this paper, we propose a precise semidefinite program
for minimizing the conditional atomic norm when C
corresponds to block priors.
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fH1
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fH2
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fH3
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Fig. 1: The individual frequencies of spectrally parsimonious
signal are assumed to lie in known frequency subbands within
the normalized frequency domain [0, 1]. While the system
model doesn’t impose an upper limit on p, it does assume that
all subbands are non-overlapping.

D. System model with block priors

Let us now consider the case where all the s
frequencies f j of the spectrally sparse signal x are known
a priori to lie only in a finite number of non-overlapping
frequency bands or intervals within the normalized
frequency domain [0, 1]. Here, the known set C is defined
as the set B of all the known frequency bands. The
prior information consists of the precise locations of
all the frequency bands - the lower and upper cut-off
frequencies fLk and fHk respectively for each of the band
Bk - as shown in the Figure 1. We, therefore, have

f j ∈ B, B =
p⋃

k=1

Bk =
p⋃

k=1

[ fLk , fHk ], (II.13)

where p is the total number of disjoint bands known a
priori.

III. SEMIDEFINITE PROGRAM FORMULATION

As noted earlier, to recover all of the off-the-grid
frequencies of the signal x given the block priors, the
direct extension of a semidefinite program from (II.8)
to minimize the constrained atomic norm is non-trivial.
We address this problem by working with the dual
problem of the constrained atomic norm minimization,
and then transforming the dual problem to an equivalent
semidefinite program by using theories of positive
trigonometric polynomials.

We note that in the case of block priors, (II.10) can be
written as

‖q‖∗A,B = sup
f∈B
|〈q, a( f , 0)〉| = sup

f∈B
|Q f | (III.1)

where Q f is the dual polynomial.

Here, the primal atomic norm minimization problem
is given by

minimize
x

‖x‖A,B

subject to x̂[l] = x[l], l ∈ M (III.2)



Similar to (II.9), we can formulate the corresponding dual
problem as

maximize
q

〈qM, xM〉R

subject to qN\M = 0 (III.3)
‖q‖∗A,B ≤ 1

or equivalently,

maximize
q

〈qM, xM〉R

subject to qN\M = 0 (III.4)
sup
f∈B
|〈q, a( f , 0)〉| ≤ 1

Since B is defined as a union of multiple frequency
bands, the inequality constraint in (III.4) can be expanded
to p separate inequality constraints as follows:

maximize
q

〈qM, xM〉R

subject to qN\M = 0 (III.5)
sup

f∈[ fL1 , fH1 ]

|〈q, a( f , 0)〉| ≤ 1

sup
f∈[ fL2 , fH2 ]

|〈q, a( f , 0)〉| ≤ 1

...
sup

f∈[ fLp , fHp ]

|〈q, a( f , 0)〉| ≤ 1

Our objective is to change each of the inequality
constraints in (III.5) to linear matrix inequalities, so that
semidefinite programming is applicable to this problem.

A. Gram matrix parametrization of positive trigonometric
polynomials

We observe that Q f = 〈q, a( f , 0)〉 is a positive
trigonometric polynomial in f since

Q f = 〈q, a( f , 0)〉 =
n−1

∑
l=0

qle−i2π f l (III.6)

and, as remarked in Section II-B, |Q f | ≤ 1 for every
f ∈ B. A trigonometric polynomial, which is also
nonnegative on the unit circle, can be parametrized using
a positive semidefinite, Gram matrix Q which allows
description of such a polynomial using a linear matrix
inequality [41]. For the trigonometric polynomial that
is nonnegative only over a subinterval, we have the
following theorem:

Theorem III.1. [41, p. 12] A trigonometric polynomial

R(z) =
n−1

∑
k=−(n−1)

rkz−k, r−k = r∗k (III.7)

where R ∈ Cn[z] for which R(ω) ≥ 0, for any z = eiω,
ω ∈ [ωL, ωH ] ⊂ [−π, π], can be expressed as

R(z) = F(z)F∗(z−1) + DωLωH (z).G(z)G∗(z−1) (III.8)

where F, G are causal polynomials with complex coefficients,
of degree at most n− 1 and n− 2, respectively. The polynomial

DωLωH (z) = d1z−1 + d0 + d∗1z (III.9)

where d0 = −αβ + 1
2

(III.10)

d1 =
1− αβ

4
+ j

α + β

4
(III.11)

α = tan
ωL
2

(III.12)

β = tan
ωH
2

(III.13)

is defined such that DωLωH (ω) is nonnegative for ω ∈
[ωL, ωH ] and negative on its complementary.

Since F and G are causal polynomials, they can
each be parameterized with Gram matrices Q1 and Q2
respectively, where Q1 ∈ Cn×n and Q2 ∈ C(n−1)×(n−1)

[41, p. 23]. The polynomial R can be parameterized using
both of these Gram matrices as follows:

rk = tr[ΘkQ1] + tr [(d1Θk−1 + d0Θk + d∗1Θk+1) ·Q2]

, Lk,ωL ,ωH (Q1,Q2) (III.14)

where Θk is the elementary Toeplitz matrix with ones on
the k-th diagonal and zeros elsewhere. In the argument
of the second trace operator, we assume Θk = 0 if k >
n− 2.

If, instead of [ωL, ωH ] ⊂ [−π, π], the subbands
are expressed in the normalized frequency domain as
[ fL, fH ] ⊂ [0, 1], then (III.14) can be written as,

rk , Lk, fL , fH (Q1,Q2) (III.15)

where the translation of frequencies between the two
domains is given by these relations:

fL =

{
2πωL : 0 ≤ ωL ≤ 0.5
2π(ωL − 1) : 0.5 < ωL ≤ 1

(III.16)

fH =

{
2πωH : 0 ≤ ωH ≤ 0.5
2π(ωH − 1) : 0.5 < ωH ≤ 1

(III.17)

The dual polynomial Q f in (III.6) is nonnegative on
multiple non-overlapping intervals, and can therefore be
parameterized by p different pairs of Gram matrices {Q1,
Q2}.

B. LMI representation

Based on the Bounded Real Lemma [41, p. 127]
(which, in turn, is based on Theorem III.1), a positive
trigonometric polynomial constraint of the type |R(ω)| ≤
1 can be expressed as a linear matrix inequality [41,
p. 143]. Stating this result for the dual polynomial
constraint over a single frequency band (such as those
in (III.5)), we have sup f∈[ fL , fH ] |〈q, a( f , 0)〉| ≤ 1, if and
only if there exist positive semidefinite matrices Q1 and
Q2 such that,

δk = Lk, fL , fH (Q1,Q2), k ∈ H[
Q1 q
q∗ 1

]
� 0 (III.18)



where δ0 = 1 and δk = 0 if k , 0 and H is a
halfspace. This linear matrix inequality representation
using positive semidefinite matrix Q1 paves way for
casting the new dual problem in (III.5) as a semidefinite
program.

C. Continuous compressed sensing with block priors

We are now in a position to state our semidefinite
program for continuous compressed sensing with block
priors. For each of the inequality constraint in (III.5), we
use a linear matrix inequality similar to that in (III.18)
to cast the dual problem constraint into a semidefinite
program. So, when all the frequencies are known to
lie in p disjoint frequency bands, then semidefinite
program for the dual problem in (III.5) can be
constructed by using p constraints of the kind in (III.18):

maximize
q,

Q11,Q12,··· ,Q1p ,
Q21,Q22,··· ,Q2p

〈qM, xM〉R

subject to qN\M = 0 (III.19)
δk = Lk, fL1 , fH1

(Q11,Q21),

k = 0, · · · , (n− 1)[
Q11 q

q∗ 1

]
� 0,

δk = Lk, fL2 , fH2
(Q12,Q22),

k = 0, · · · , (n− 1)[
Q12 q

q∗ 1

]
� 0,

...
δk = Lk, fLp , fHp

(Q1p,Q2p),

k = 0, · · · , (n− 1)[
Q1p q

q∗ 1

]
� 0,

where Q11,Q12, · · · ,Q1p ∈ Cn×n,

and Q21,Q22, · · · ,Q2p ∈ C(n−1)×(n−1)

IV. NUMERICAL EXPERIMENTS

We evaluated the performance of spectrum estimation
with block priors through numerical simulations. We
used SDPT3 [42] solver for the semidefinite program in
(III.19).

We first illustrate our approach through an example
in Figure 2. Here for n = 64, we drew s = 5 frequencies
uniformly at random within p = 3 subbands in the
domain [0, 1] without imposing any minimum separation
condition. Here, B = (0.3500, 0.4800)

⋃
(0.6000, 0.8000)⋃

(0.8500, 0.9000). The phases of the signal frequencies
were sampled uniformly at random in [0, 2π). The
amplitudes |cj|, j = 1, · · · , s were drawn randomly
from the distribution 0.5 + χ2

1 where χ2
1 represents the

Chi-squared distribution with 1 degree of freedom. A
total of m = 20 observations were randomly chosen from

(a) Without any priors

(b) With block priors

Fig. 2: Frequency localization using dual polynomial for
{n, s, m} = {64, 5, 20}. The block priors are B = (0.3500, 0.4800)⋃

(0.6000, 0.8000)
⋃

(0.8500, 0.9000).

n regular time samples to form the sample set M. In
the absence of any prior information, we solve (II.9) and
show the result of frequency localization in Figure 2a.
Here, it is difficult to pick a unique set of s = 5 poles for
which the maximum modulus of the dual polynomial
is unity (which will actually correspond to recovered
frequency poles). On the other hand, when block priors
are given, Figure 2b shows that solving (III.19) provides
perfect recovery of all the frequency components, where
the recovered frequencies correspond to unit-modulus
points of the dual polynomial.

We then give a statistical performance evaluation
of our new method, compared with atomic norm
minimization without any priors (II.9). The experimental
setup and block priors are the same as in Figure 2 and
no minimum separation condition was assumed while
drawing frequencies uniformly at random in the set B.
Figure 3 shows the probability P of perfect recovery for
the two methods for fixed n = 64 but varying values of
m and s. For every value of the pair {s, m}, we simulate
100 trials to compute P. We note that if the frequencies
are approximately known, our method greatly enhances



Fig. 3: The probability P of perfect recovery over 100 trials
for n = 64. The block priors are B = (0.3500, 0.4800)⋃

(0.6000, 0.8000)
⋃

(0.8500, 0.9000). For each realization
of the signal, the s frequencies were chosen uniformly at
random within the interval B without imposing any minimum
frequency spacing.

the recovery of continuous-valued frequencies.
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