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Abstract—We derive a lower bound on the capacity pre-log
of a temporally correlated Rayleigh block-fading multiple-input
multiple-output (MIMO) channel with T transmit antennas and
R receive antennas in the noncoherent setting (noa priori
channel knowledge at the transmitter and the receiver). In
this model, the fading process changes independently across
blocks of length L and is temporally correlated within each
block for each transmit-receive antenna pair, with a given rank
Q of the corresponding correlation matrix. Our result implies
that for almost all choices of the coloring matrix that models
the temporal correlation, the pre-log can be lower-boundedby
T (1− 1/L) for T ≤ (L− 1)/Q provided that R is sufficiently
large. The widely used constant block-fading model is equivalent
to the temporally correlated block-fading model with Q = 1
for the special case when the temporal correlation for each
transmit-receive antenna pair is the same, which is unlikely to
be observed in practice. For the constant block-fading model,
the capacity pre-log is given byT (1− T/L), which is smaller
than our lower bound for the case Q = 1. Thus, our result
suggests that the assumptions underlying the constant block-
fading model lead to a pessimistic result for the capacity pre-log.

I. I NTRODUCTION

We analyze the capacity of a Rayleigh block-fading mul-
tiple-input multiple-output (MIMO) channel in the nonco-
herent setting where the transmitter and the receiver are
aware of the channel statistics but have noa priori channel
state information. In this setting, the penalty on capacity1

incurred by allocating resources to channel estimation is
automatically accounted for. We model channel variations
in time by the temporally correlated block-fading model
introduced in [1]. According to this model, the fading process
takes on independent realizations across blocks of length
L; however, for each transmit-receive antenna pair, it is
correlated within each block with a given rankQ of the
correspondingL× L correlation matrix.

The capacity of the temporally correlated block-fading
channel is not known even in the single-input single-output

This work was supported by the WWTF under grant ICT10-066
(NOWIRE).

1In this paper, the termcapacity refers to capacity in the noncoherent
setting.

(SISO) case. The capacity pre-log, which is defined as the
ratio of the capacity to the logarithm of the signal-to-noise
ratio (SNR) as the SNR goes to infinity, has been character-
ized in [1] for the SISO case and in [2]–[4] for the single-
input multiple-output (SIMO) case. Forregular stationary
fading processes, the capacity of the MIMO channel has been
studied in [5]. It was proved that, in this case, the capacity
grows only doubly-logarithmically due to the regular fading
assumption. Fornonregular stationaryfading processes, the
MIMO capacity pre-log is not known to date.

In this paper, we derive a lower bound on the capacity pre-
log of a rank-Q temporally correlated block-fading MIMO
channel with block lengthL, T transmit antennas, andR
receive antennas. We show that the pre-log is lower-bounded
by T (1 − 1/L) for T ≤ (L − 1)/Q provided thatR ≥
T (L− 1)/(L− TQ). This lower bound can be achieved for
almost all (a.a.) choices—i.e., up to a set of measure zero—
of the coloring matrix that models the temporal correlation
for the transmit-receive antenna pairs.

Our result is particularly surprising when compared to the
capacity for the constant block-fading model as derived by
Zheng and Tse [6]. The constant block-fading model is a
special case of the temporally correlated block-fading model
for Q = 1 that is obtained when the correlation matrices for
all transmit-receive antenna pairs are assumed to be equal,
which is unlikely to be observed in practice. Zheng and Tse
showed that the pre-log for the constant block-fading model
is M∗(1 − M∗/L) with M∗ , min{T,R, ⌊L/2⌋}, which
is less than or equal toL/4. In the temporally correlated
block-fading model forQ = 1, our lower bound on the pre-
log is L − 2 + 1/L if T = L − 1 andR = (L − 1)2 for
a.a. coloring matrices.2 This shows that a much higher pre-
log can be achieved and, hence, the results predicted by the
constant block-fading model are pessimistic.

Apart from our main result, the methods employed in its
proof may be of independent interest. We use a generalized

2Note that the coloring matrix corresponding to the constantblock-fading
model belongs to the set of measure zero where this bound doesnot hold.
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change-of-variables theorem for integrals in combination
with Bézout’s theorem [7, Proposition B.2.7] to establish
certain transformation properties of differential entropy under
finite-to-one mappings. Furthermore, we use an important
property of subharmonic functions to lower-bound the in-
tegral of a certain real analytic function. In the SIMO case,
a similar problem was recently solved using an algebraic-
geometry method [3]. Our alternative method works in a
more general setting and, thus, may also be useful for bound-
ing differential entropy terms appearing in other problems.

The rest of this paper is organized as follows. The system
model is presented in Section II. The lower bound on the
capacity pre-log is stated and discussed in Section III. A
proof of the lower bound is provided in Sections IV and V
and in three appendices.

Notation: Sets are denoted by calligraphic letters (e.g.,
I), and |I| denotes the cardinality ofI. Sets of sets are
denoted by fraktur letters (e.g.,M). We use the notation
[M : N ] , {M,M + 1, . . . , N} for M,N ∈ N. Boldface
uppercase (lowercase) letters denote matrices (vectors).Sans
serif letters denote random quantities, e.g.,A is a random
matrix and x is a random vector. The superscriptsT and
H stand for transposition and Hermitian transposition, re-
spectively. The all-zero matrix or vector of appropriate size
is written as0, and theM × M identity matrix asIM .
For a matrixA ∈ CM×N, the element in theith row and
jth column is denoted byai,j . We denote by[A]

J
I , where

I ⊆ [1 : M ] and J ⊆ [1 : N ], the |I| × |J | submatrix
of A containing the elementsai,j with i ∈ I and j ∈ J ;
furthermore,[A]I , [A]

[1:N ]
I and [A]

J
, [A]

J
[1:M ]. We

denote by[x]I ∈ C|I| the subvector ofx containing the
elementsxi with i ∈ I. The diagonal matrix with the
elements ofx in its main diagonal is denoted bydiag(x).
We definediag(A1, . . . ,AK) as the block diagonal matrix
with the matricesA1, . . . ,AK on the main block diagonal.
The modulus of the determinant of a square matrixA is
denoted by|A|. For x ∈ R, ⌊x⌋ , max{m ∈ Z | m ≤ x}
and ⌈x⌉ , min{m ∈ Z | m ≥ x}. We write E[·] for the
expectation operator, andCN (µ,Σ) for the distribution of
a jointly proper Gaussian random vector with meanµ and
covariance matrixΣ. The Jacobian matrix of a differentiable
functionφ is denoted byJφ.

II. SYSTEM MODEL

We consider a MIMO channel withT transmit andR
receive antennas. The fading process associated with each
transmit-receive antenna pair conforms to the temporally
correlated block-fading model [1], which results in the fol-
lowing channel input-output relations within a given block
of lengthL:

yr =

√

ρ

T

∑

t∈[1:T ]

diag(hr,t) xt + nr , r ∈ [1 :R] . (1)

Here, xt ∈ CL is the signal vector transmitted by the
tth transmit antenna;yr ∈ CL is the vector received by
the rth receive antenna;hr,t ∼ CN (0,Zr,tZ

H
r,t), where

Zr,t ∈ CL×Q with Q , rank(Zr,tZ
H
r,t), is the vector of

channel coefficients between thetth transmit antenna and the
rth receive antenna;nr ∼ CN (0, IL) is the noise vector at
therth receive antenna; andρ ∈ R+ is the SNR. The vectors
hr,t and nr are assumed to be mutually independent and
independent acrossr ∈ [1 :R] and t ∈ [1 :T ], and to change
in an independent fashion from block to block (“block-
memoryless” assumption). The transmitted signal vectorsxt
are assumed to be independent of the vectorshr,t and nr.
We note that the channel coefficient vectors can be written
as

hr,t = Zr,tsr,t ,

with theQ-dimensional whitened vectorssr,t ∼ CN (0, IQ).
Settingy, (yT1 , . . . , y

T
R)

T ∈ CRL andn, (nT
1 , . . . , n

T
R)

T

∈ CRL, theR input-output relations (1) can be written more
compactly as

y =

√

ρ

T
ȳ + n , (2)

with

ȳ ,
∑

t∈[1:T ]





XtZ1,t
. . .
XtZR,t



st ∈ CRL , (3)

where we have definedXt , diag(xt) ∈ CL×L and st ,

(sT1,t, . . . , s
T
R,t)

T ∈ CRQ. For later use, we also definex ,

(xT1 , . . . , x
T
T )

T ∈ CTL, s , (sT1 , . . . , s
T
T )

T ∈ CTRQ, and

Z ,







Z1,1 · · · Z1,T
...

...
ZR,1 · · · ZR,T






∈ CRL×TQ.

We will refer toZ as thecoloring matrix.

III. A L OWER BOUND ON THE CAPACITY PRE-LOG

Because of the block-memoryless assumption, the coding
theorem in [8, Section 7.3] implies that the capacity of the
channel (2) is given by

C(ρ) =
1

L
sup
f

I(x ; y) . (4)

Here,I(x ; y) denotes mutual information [9, p. 251] and the
supremum is taken over all input distributionsf onCTL that
satisfy the average power constraint

E[‖x‖2] ≤ TL .

The capacity pre-log is then defined as

χ , lim
ρ→∞

C(ρ)

log(ρ)
. (5)

We will obtain the main result of this paper, which is stated
in Theorem 1 below, by maximizing with respect toT the
lower bound onχ given in the following proposition.

Proposition 1: For T ≤R, there exists a setZ⊆CRL×TQ

with a complement of Lebesgue measure zero such that for
each coloring matrixZ ∈ Z, the capacity pre-log of the
channel (1) satisfies



χ ≥ χlow(T ) , min

{

T

(

1−
1

L

)

, R

(

1−
TQ

L

)}

. (6)

Proof: See Section IV.
The main result of this paper is stated in the following

theorem.

Theorem 1:There exists a setZ⊆CRL×TQ with a com-
plement of Lebesgue measure zero such that for each coloring
matrixZ∈Z, the capacity pre-log of the channel (1) satisfies

χ ≥ χ∗
low ,







T

(

1−
1

L

)

if T ≤ Topt

η if T > Topt ,
(7)

where

η , max

{

R

(

1−
⌈Topt⌉Q

L

)

, ⌊Topt⌋

(

1−
1

L

)}

(8)

and

Topt ,
RL

L+RQ− 1
≤ min{R,L/Q} . (9)

Proof: We obtain a lower bound on the pre-log forT trans-
mit antennas by maximizingχlow with respect to the number
of effectively used transmit antennas (note that we can always
switch off some antennas). Thus, we will take the maximum
of χlow(T

∗) in (6) with respect toT ∗ ≤ min{T,R}. Here,
T ∗ is also restricted byT ∗ ≤ R because Proposition 1 holds
only for T ∗ ≤ R. Becauseχlow(T

∗) is the minimum of two
quantities where the first is monotonically increasing inT ∗

and the second is monotonically decreasing inT ∗, it attains
its maximum at the intersection pointTopt defined in (9). If
T ≤ Topt, we haveχlow(T ) = T (1−1/L), which proves the
first case in (7). ForT > Topt, we have to take into account
that Topt might not be a natural number. Thus, we have to
take the maximum ofχlow(⌊Topt⌋) andχlow(⌈Topt⌉), which
turns out to beη in (8). This shows the second case in (7)
and concludes the proof.

Remark 1:The setZ will be specified in Definition 1 in
Section V.

Remark 2:For a fixedR, the maximum value ofχ∗
low

in (7) is obtained by using either⌊Topt⌋ or ⌈Topt⌉ transmit
antennas. This implies that the optimal number of transmit
antennas is upper-bounded by⌈Topt⌉.

Remark 3:For L = Q, χ∗
low is equal to zero and hence

trivial.
Remark 4:The lower boundχ∗

low in (7) can be expressed
as

χ∗
low = min

{

T

(

1−
1

L

)

, η

}

.

Remark 5:χ∗
low can be at most⌊(L− 1)/Q⌋(1− 1/L).

This value ofχ∗
low is attained forT = ⌊(L− 1)/Q⌋ and

R = ⌈(L−1)2/Q⌉.
Remark 6:By (9), the conditionT ≤ Topt in (7) is

equivalent toR ≥ T (L−1)/(L− TQ). Thus, for a fixed
T <L/Q, we can always obtainχ∗

low= T (1−1/L) by using
a sufficiently largeR.

Remark 7: If all matricesZr,t for r ∈ [1 :R] andt ∈ [1 :T ]
coincide, the temporally correlated block-fading model for

Q = 1 reduces to the constant block-fading model studied
in [6]. The pre-log in the constant block-fading model is
M∗(1−M∗/L), whereM∗ , min{T,R, ⌊L/2⌋}; therefore,
it is upper-bounded byL/4. On the other hand, Theorem 1
for Q = 1 implies that the pre-log for the correlated block-
fading model is lower-bounded by (cf. (6))

χ ≥ min

{

T

(

1−
1

L

)

, R

(

1−
T

L

)}

, (10)

for a.a. coloring matricesZ∈Z. In particular, forT =L−1
and R = (L − 1)2, the lower bound in (10) becomes
L − 2 + 1/L. Thus, for a.a. choices of coloring matrices,
the pre-log is much higher than in the constant block-fading
model.3 Hence, the results predicted by the constant block-
fading model are pessimistic.

IV. PROOF OFPROPOSITION1

For L ≤ TQ, the inequality in (6) is trivially true,
because in this caseχlow ≤ 0. Therefore, it remains to
prove (6) for L > TQ, which will thus be assumed in
the following. By (4), the capacity can be lower-bounded
asC(ρ) ≥ (1/L)I(x; y) with the specific input distribution
x ∼ CN (0, ITL). Inserting this lower bound into (5) then
gives

χ ≥
1

L
lim
ρ→∞

I(x ; y)

log(ρ)
. (11)

In what follows, we thus assume thatx ∼ CN (0, ITL).
We have I(x ; y) = h(y) − h(y |x) with h denoting

differential entropy. Hence, we can lower-boundI(x ; y) by
upper-boundingh(y |x) and lower-boundingh(y). Similar to
[2, Eq. (8)], we have

h(y |x) ≤ TQR log(ρ) + O(1) , (12)

where “+ O(1)” means “up to a function ofρ that is bounded
for ρ→ ∞.” Furthermore, similar to [2, Eq. (12)], we have

h(y) ≥

(

∑

r∈[1:R]

|Ir|

)

log(ρ) + h(P ȳ) + c , (13)

whereȳ was defined in (3),

P , diag
(

[IL]I1
, . . . , [IL]IR

)

∈ C
∑

r∈[1:R]|Ir|×RL , (14)

theIr ⊆ [1 :L] for r ∈ [1 :R] are certain subsets that will be
specified later, andc is a finite constant. Note that in (13),
h(P ȳ) and c do not depend onρ. Using (12) and (13) in
I(x ; y) = h(y)− h(y |x), we obtain

I(x ; y) ≥

(

∑

r∈[1:R]

|Ir| − TQR

)

log(ρ) + h(P ȳ) + O(1) .

(15)

The proposed lower bound on the pre-log in (6) is established
by inserting (15) into (11) and choosing the sets{Ir}r∈[1:R]

3This implies that the coloring matrices corresponding to the constant
block-fading model belong to the complement ofZ (which has Lebesgue
measure zero and is unlikely to be observed in practice).



such that
∑

r∈[1:R]

|Ir| = min{TL− T + TQR,RL} , (16)

provided thath(P ȳ) > −∞. It remains to show that there
exist sets{Ir}r∈[1:R] satisfying (16) and a setZ ⊆ CRL×TQ

with a complement of Lebesgue measure zero for which
h(P ȳ) > −∞ for eachZ ∈ Z. This will be done in the
next section.

V. PROOF THAT h(P ȳ)>−∞

Let us split the vectorx into the vectorsxP ,
(

[x1]
T
P1
, . . . ,

[xT ]
T
PT

)T
andxD ,

(

[x1]
T
D1
, . . . , [xT ]

T
DT

)T
, wherePt ⊆ [1 :

L] andDt , [1 :L]\Pt for t ∈ [1 :T ]. Becauseh(P ȳ |xP) ≤
h(P ȳ), it is sufficient to show thath(P ȳ |xP) > −∞. As
in [3], we wish to relateh(P ȳ |xP) to the simpler quantity
h(s, xD) = h(s) + h(xD). This will be done via the family
of xP -parametrized mappings

φxP
: (s,xD) 7→ P ȳ , (17)

whereȳ is defined in (3), i.e.,

ȳ =
∑

t∈[1:T ]

Ξtst , (18)

with

Ξt ,





XtZ1,t
.. .
XtZR,t



∈ CRL×RQ . (19)

According to (18) and (19), the components of each vector-
valued mappingφxP

are multivariate polynomials of degree
2. The Jacobian matrixJφxP

of each mappingφxP
is equal

to

JφxP
(s,xD) = P






Ξ1 · · · ΞT

A1,1 · · · A1,T
...

...
AR,1 · · · AR,T







∈ C
∑

r∈[1:R]|Ir|×
(

TQR+
∑

t∈[1:T ]|Dt|
)

,
(20)

where

Ar,t ,
[

diag
(

a
(1)
r,t , . . . , a

(L)
r,t

)]Dt
, t ∈ [1 :T ] , r ∈ [1 :R] ,

with a
(ℓ)
r,t , [Zr,t]{ℓ}sr,t , ℓ ∈ [1 :L] . (21)

Note that by (14),JφxP
(s,xD) can be written as

JφxP
(s,xD) =






Ξ̃1 · · · Ξ̃T

[A1,1]I1
· · · [A1,T ]I1...

...
[AR,1]IR

· · · [AR,T ]IR






,

(22)
where

Ξ̃t ,







[XtZ1,t]I1
. . .
[XtZR,t]IR






.

Based on the family of mappingsφxP
in (17), the relation

betweenh(P ȳ |xP) andh(s, xD) can be established by using
the definition of conditional differential entropy [9, Chapter
8] and by applying the change-of-variables theorem for
integrals under finite-to-one mappings4 [10, Theorem 3.2.5].
For this, we need to show that the family of mappingsφxP

is finite-to-one almost everywhere (a.e.) for a.a. choices of
xP . We now define the setZ for which this proof works.

Definition 1: Let Z ⊆ CRL×TQ be the set of matricesZ
such that the following holds: There exist a choice of sets
{Ir}r∈[1:R] satisfying (16), i.e.,

∑

r∈[1:R]

|Ir| = min{TL− T + TQR,RL} , (23)

and a choice of sets{Pt}t∈[1:T ] satisfying
∑

t∈[1:T ]

|Pt| = max{T, TQR− (R−T )L} , (24)

such thatJφxP
(s,xD) is nonsingular a.e. for a.a. choices of

xP .

We will show presently that the setZ is nonempty. In fact,
it covers a.a. ofCRL×TQ.

Condition (23) on{|Ir|}r∈[1:R] and condition (24) on
{|Pt|}t∈[1:T ] guarantee that the matrixJφxP

(s,xD) is square.
More specifically, we have with (20) that

#rows =
∑

r∈[1:R]

|Ir| = min{TL− T + TQR,RL} , (25)

where (23) was used, and

#columns= TQR+
∑

t∈[1:T ]

|Dt| (26)

= TQR+ TL−
∑

t∈[1:T ]

|Pt|

= TQR+ TL−max{T, TQR− (R−T )L}

= min{TQR+ TL− T,RL} , (27)

where (24) was used. Thus, comparing (25) and (27), we
have#rows= #columns.

The next lemma states thatZ satisfies one of the claims
made in Proposition 1.

Lemma 1:The complement of the setZ has Lebesgue
measure zero.

Proof: See Appendix A.
In the remainder of our proof thath(P ȳ) > −∞, we

consider an arbitraryZ ∈Z. To use the change-of-variables
theorem, we will invoke Bézout’s theorem to show that the
mappingsφxP

are finite-to-one a.e.

Lemma 2:Let M̃ be defined as the set of all(s,xD) such
thatJφxP

(s,xD) is nonsingular. Then for ally ∈ φxP
(M̃),

4For a finite-to-one mapping, the inverse image of each point in the
codomain is a set of finite cardinality.



we have

|φ−1
xP

({y}) ∩ M̃| ≤ m̃ , 2

(∑
t∈[1:T ]|Dt|+TQR

)

. (28)

Proof: Let y ∈ φxP
(M̃). Then according to (17)–(19),

the zeros of the vector-valued mapping

(s,xD) 7→ φxP
(s,xD)− y

are the common zeros of
∑

t∈[1:T ]|Dt|+ TQR polynomials
of degree 2. Thus, by a weak version of Bézout’s theorem [7,
Proposition B.2.7], the number of isolated zeros (i.e., with no
other zeros in some neighborhood) cannot exceedm̃. Since
JφxP

is nonsingular onM̃, the functionφxP
restricted toM̃

is locally one-to-one and, hence,φxP
−y has only isolated

zeros onM̃. Therefore, the number of points(s,xD) ∈ M̃
such thatφxP

(s,xD) = y cannot exceed̃m.
Next, we will establish a transformation property of dif-

ferential entropy under finite-to-one mappings in a general
setting. More specifically, we will obtain a lower bound on
differential entropy using the change-of-variables theorem for
finite-to-one mappings [10, Theorem 3.2.5] in combination
with the uniform bound in Lemma 2.

Lemma 3:Let u ∈ Cn be a random vector with contin-
uous density functionfu. Furthermore, letκ : Cn→ Cn be
a continuously differentiable mapping with Jacobian matrix
Jκ and letM , {u ∈ Cn : |Jκ(u)| 6= 0} and v , κ(u).
Assume that the complement ofM has Lebesgue measure
zero and|κ−1({v}) ∩M| ≤ m < ∞ for all v ∈ Cn, with
some constantm ∈ N. Then there exists a setU ⊆ Cn such
that

h(v) ≥ −m log(m)− m

∫

U

fu(u) log(fu(u)) du

+ m

∫

U

fu(u) log(|Jκ(u)|
2) du .

Proof: See Appendix B.
To lower-boundh(P ȳ

∣

∣xP), we first lower-bound the dif-
ferential entropiesh(P ȳ

∣

∣xP= xP). By Lemma 2, we have
|φ−1

xP
({y}) ∩ M̃| ≤ m̃. Furthermore, since we assumeZ ∈

Z, we have by Definition 1 thatJφxP
(s,xD) is nonsingular

a.e. and, hence, the complement ofM̃ has Lebesgue measure
zero. Thus, we can invoke Lemma 3 withh(v) = h(P ȳ

∣

∣xP=
xP), κ = φxP

, u = (s, xD), andm = m̃ to obtain

h(P ȳ
∣

∣xP = xP) ≥ − m̃ log(m̃)

− m̃

∫

U

fs,xD (s,xD) log(fs,xD (s,xD)) d(s,xD)

+ m̃

∫

U

fs,xD(s,xD) log(|JφxP
(s,xD)|

2) d(s,xD) . (29)

Using (29), we can now lower-boundh(P ȳ
∣

∣xP) as follows:

h(P ȳ
∣

∣xP) =

∫

fxP (xP)h(P ȳ
∣

∣xP = xP) dxP

≥

∫

fxP (xP)

[

− m̃ log(m̃)

− m̃

∫

U

fs,xD (s,xD) log(fs,xD (s,xD)) d(s,xD)

+ m̃

∫

U

fs,xD (s,xD) log(|JφxP
(s,xD)|

2) d(s,xD)

]

dxP .

(30)

The lower bound in (30) consists of three terms. The first
term is just a finite constant. The second term is finite
because the differential entropy of the Gaussian random
vector(s,xD) is finite. The last term is finite if

∫

CTL+TQR

fs,x(s,x) log(|JφxP
(s,xD)|

2) d(s,x) (31)

is finite. To show that (31) is finite, we will invoke the
following general result for analytic functions.

Lemma 4:Let f be an analytic function onCN that is not
identically zero. Then

I1 ,

∫

CN

exp(−‖ξ‖2) log(|f(ξ)|) dξ > −∞ . (32)

Proof: See Appendix C.
Sincefs,x is the density of a standard multivariate Gaussian

random vector anddet(JφxP
(s,xD)) is a complex polyno-

mial that is not identically zero due to the definition ofZ in
Definition 1, the integral in (31) is finite by Lemma 4. Hence,
with (30), we obtainh(P ȳ

∣

∣xP) > −∞. This concludes the
proof thath(P ȳ)>−∞.

APPENDIX A: PROOF OFLEMMA 1

We can viewdet(JφxP
(s,xD)) as a functionf(Z,x, s).

Assume that there is a choice of sets{Ir}r∈[1:R] satisfying
(23) and a choice of{Pt}t∈[1:T ] satisfying (24) such that
f(Z0,x0, s0) 6= 0 at some(Z0,x0, s0). Thus, because for
fixed x0 and s0 the functionf(Z,x0, s0) is a polynomial
in the entries ofZ and hence analytic inZ, there is a set
Z̃ ⊆CRL×TQ with a complement of Lebesgue measure zero
such thatf(Z,x0, s0) 6= 0 for all Z ∈ Z̃. Hence, for each
fixedZ1∈Z̃, f(Z1,x, s) is not identically zero; furthermore,
it is analytic in x and s. Therefore, it is nonzero for a.a.
(x, s). We conclude thatJφxP

(s,xD) is nonsingular and thus
Z1 ∈ Z. Definition 1 implies thatZ̃ ⊆ Z, and hence the
complement ofZ has Lebesgue measure zero.

It remains to find choices of{Ir}r∈[1:R] and{Pt}t∈[1:T ]

such that f(Z,x, s) 6= 0 at some (Z,x, s). We start
by choosing sets{Ir}r∈[1:R] that satisfy (23). Letk ,

min
{⌊

(TL− T )/(L− TQ)
⌋

, R
}

and ℓ , TL− T − (L −
TQ)⌊(TL− T )/(L− TQ)⌋, and define

Ir ,











[1 :L], if r ∈ [1 :k]

[1 :TQ+ ℓ], if r = k + 1

[1 :TQ], if r ∈ [k + 2:R].

(33)

For this choice,[1 :TQ] ⊆ Ir for all r ∈ [1 :R], and as many
Ir as possible without violating (23) are equal to[1 :L]. The
sets{Pt}t∈[1:T ] have to satisfy (cf. (24))

∑

t∈[1:T ]

|Pt| = max{T, TQR− (R−T )L} , ϑR . (34)

We define the setsPt such that1 ∈ P1, 2 ∈ P2, . . . , T ∈ PT ,
and furtherT+1 ∈ P1, T+2 ∈ P2, etc., up toL ∈ PL mod T .



If (34) is not yet satisfied, we look for the minimalt′ such
that |Pt′ | is minimal and1 /∈ Pt′ and start again with1 ∈
Pt′ , 2 ∈ Pt′+1, . . . We proceed until (34) is satisfied. This
construction of the setsPt can be formulated as

Pt ,

{

i∈ [1 :L] : ∃j ∈ [1:ϑR] such thati ≡ j mod L

andj +

⌊

j−1

lcm(T, L)

⌋

≡ t mod T

}

, (35)

where lcm(·, ·) denotes the least common multiple. For
example, forT = R = 3, L = 6, and Q = 1, we have
ϑR = 9 and (35) yieldsP1 = {1, 4, 3}, P2 = {2, 5, 1},
andP3 = {3, 6, 2}. Note that since the sizes of the setsPt
differ at most by1, (35) together with (34) yields

|Pt| ≤

⌈

max{T, TQR− (R−T )L}

T

⌉

≤

⌈

max{T, TQR− (R−T )TQ}

T

⌉

= TQ , (36)

whereL > TQ has been used. Some properties of the sets
Pt are summarized in the following lemma, whose proof is
omitted due to space limitations.

Lemma 5:Suppose thatR>T . Let P̃t∈ [1 :L] be defined
according to (35) but forR−1 receive antennas (i.e.,R is
formally replaced byR−1) and setLt , P̃t\Pt. Then

(i) Lt ∩ Lt′ = ∅ for t 6= t′

(ii) Lt ⊆ IR
(iii) There exist pairwise disjoint setsGt satisfying|Gt| = Q,

Gt ∩Pt 6= ∅, andG ,
⋃

t∈[1:T ] Gt = IR\
⋃

t∈[1:T ] Lt.

We will also make repeated use of the following result,
which is a corollary of [11, pp. 21–22].

Lemma 6:Let M ∈ CN×N, and let I,J ⊆ [1 : N ]

with |I| = |J |. If [M ]
J
[1:N ]\I = 0 or [M ]

[1:N ]\J
I = 0, and

if [M ]
J
I is nonsingular, thendet(M) 6= 0 if and only if

det
(

[M ]
[1:N ]\J
[1:N ]\I

)

6= 0.

Remark 8:Lemma 6 is just an abstract way to describe a
situation where given a matrixM , one is able to make row
and column interchanges that yield a new matrix of the form
(

A B
0 C

)

whereA andC are square matrices. In this case, it is
a basic result that the determinant ofM equals the product
of the determinants ofA andC.

For the choices of{Pt}t∈[1:T ] and {Ir}r∈[1:R] described
above, it now remains to findx, s, and Z such that
f(Z,x, s) = det(JφxP

(s,xD)) is nonzero. This will be
done by an induction argument overR ≥ T .

Induction hypothesis: For R ≥ T (as assumed in Propo-
sition 1), {Pt}t∈[1:T ] as in (35), and{Ir}r∈[1:R] as in (33),
there exists a point(Z,x, s) with x = (1, . . . , 1)T such that
f(Z,x, s) = det(JφxP

(s,xD)) is nonzero.
Base case (proof forR = T ): We have to show that the

determinant of the matrix in (22) is nonzero forR=T . For

R=T , (34) reduces to
∑

t∈[1:T ]|Pt| = T 2Q, and with (36),
we obtain|Pt| = TQ. Furthermore, from (33),Ir = [1 :L]
for r ∈ [1 :T ]. We choosesr,t = 0 for r 6= t, and we choose
[Zr,t]Pr

such that
[(

Zr,1 · · · Zr,T
)]

Pr
is nonsingular. We

have [Ar,t]Pt
= 0 (cf. (21), noting thatPt ∩ Dt = ∅).

Hence, we can use Lemma 6 withM , det(JφxP
(s,xD))

given by (22) and[M ]JI = diag
([(

Z1,1 · · · Z1,T

)]

P1
, . . . ,

[(

ZT,1 · · · ZT,T
)]

PT

)

. It thus remains to show that the

determinant of the matrix[M ]
[1:N ]\J
[1:N ]\I corresponding to







[A1,1]D1. ..
[AT,T ]DT






(37)

is nonzero. Because of (21), this matrix is a diagonal matrix
and can be chosen to have nonzero elements by choosing
[Zt,t]Dt

andst,t such that[Zt,t]{i}st,t 6= 0 for all i ∈ Dt.
Thus, the matrix in (37) is a diagonal matrix with nonzero
entries and hence its determinant is nonzero.

Inductive step: We have to show that we can findZR,t and
sR,t for t ∈ [1 : T ] such that the determinant of the matrix
JφxP

(s,xD) in (22) is nonzero assuming that it is nonzero
for theR−1 setting. LetG, Gt, andLt be as in Lemma 5 and
let gt∈ Gt∩Pt ( 6= ∅ due to Lemma 5). Set[ZR,t]G\Gt

= 0.
Furthermore, let[ZR,t]Gt

be nonsingular for allt ∈ [1 : T ].
It easily follows that

(

[ZR,1]G · · · [ZR,T ]G
)

is nonsingular.
Next, we choosesR,t such that it is orthogonal to the rows
of [ZR,t]Gt\{gt} and satisfies[ZR,t]{gt}sR,t 6= 0. With (21)
and gt ∈Pt, we then obtain[AR,t]G = 0, t∈ [1 : T ]. Hence,
according to Lemma 6 withM given by (22) and[M ]JI =
(

[ZR,1]G · · · [ZR,T ]G
)

, the determinant ofJφxP
(s,xD) in

(22) is nonzero if and only if the determinant of the following
matrix is nonzero:












[A1,1]I1
· · · [A1,T ]I1

Ξ̂1 · · · Ξ̂T
...

...
[AR−1,1]IR−1

· · · [AR−1,T ]IR−1

0 · · · 0 [AR,1]⋃
t∈[1:T ] Lt

· · · [AR,T ]⋃
t∈[1:T ] Lt













,

where

Ξ̂t ,







[Z1,t]I1.. .
[ZR−1,t]IR−1






.

By choosing the remaining rows ofZR,t appropriately, we
obtain[AR,t](

⋃
t′∈[1:T ] Lt′)\Lt

= 0 anddet
(

[AR,t]
Lt

Lt

)

6= 0. By
Lemma 6, it can then be easily seen that the determinant of
JφxP

(s,xD) in (22) is nonzero if and only if the determinant
of (22) for R−1 is nonzero, which is true by the induction
hypothesis.

APPENDIX B: PROOF OFLEMMA 3

First, we state the version of the change-of-variables
theorem [10, Theorem 3.2.5] that we will use.

Lemma 7:Let ψ : Cn→ Cn be a differentiable mapping
with Jacobian matrixJψ. Then for any measurable, nonneg-



ative, real-valued functiong on Cn and any measurable set
S ⊆ Cn, we have
∫

S

g(ψ(u)) |Jψ(u)|
2 du =

∫

Cn

g(v)Nr(ψ |S,v) dv ,

whereNr(ψ |S,v) denotes the number of pointsu ∈ S such
that ψ(u) = v. (Note, in particular, thatNr(ψ |S,v) = 0 if
there is nou ∈ S such thatψ(u) = v.)

We will also make use of the following lemma to obtain
one-to-one mappings with maximal support.

Lemma 8:For any Lebesgue measurable setA ⊆ Cn and
any mappingψ : Cn → Cn such that|ψ−1({v}) ∩ A| ≤
m <∞ for all v ∈ Cn, there exists a Lebesgue measurable
set B ⊆ A such thatψ

∣

∣

B
is one-to-one andψ(B) = ψ(A).

Furthermore,|ψ−1({v}) ∩ (A\B)| ≤ m− 1 < ∞ for all
v ∈ Cn.

Proof: Let M denote the set of all measurable subsets
V ⊆ A such thatψ

∣

∣

V
is one-to-one. We have the natural

partial order of inclusion onM. For any chain (i.e., totally
ordered set)C of sets inM, the union of all sets inC is an
upper bound for all sets inC (i.e., for anyA0 ∈ C we have
A0 ⊆

⋃

C∈C
C) and belongs toM. Thus, by Zorn’s lemma,

there exists at least one maximal element inM. Let B be a
maximal element inM. If there exists av ∈ ψ(A)\ψ(B),
we can add one pointu ∈ ψ−1({v}) to B and B ∪ {u}
belongs toM with B $ B ∪ {u}, which is a contradiction
to the maximality ofB. Hence,ψ(B) = ψ(A). Furthermore,
sinceB ∈ M the setB is measureable andψ

∣

∣

B
is one-to-one.

Finally, for eachv ∈ ψ(A), there exists au ∈ B such that
ψ(u) = v. Thus,|ψ−1({v})∩ (A\B)| ≤ |ψ−1({v})∩A)|−
1 ≤ m−1.

For M andm as defined in Lemma 3, we now partition
the setM into subsetsVi with i ∈ [1 :m] such that each
κi , κ

∣

∣

Vi
is one-to-one andCn\

⋃

i∈[1:m] Vi has Lebesgue
measure zero. The existence of such sets can be shown by
using Lemma 8 repeatedly. Next, we define the setU used
in Lemma 3. Let

Ũ ,

{

u∈M :
fu(u)

|Jκ(u)|2
≥

fu(ũ)

|Jκ(ũ)|2

∀ ũ ∈ κ−1(κ({u})) ∩M

}

. (38)

Note thatκ(Ũ) = κ(M). The setŨ is measurable since it is
the preimage of{1} under the measurable function5

g(u) ,

fu(u)
|Jκ(u)|2

maxi∈F(u)
fu(κ

−1
i

(κ(u)))

|Jκ(κ
−1
i

(κ(u)))|2

,

whereF(u) , {i ∈ [1 :m] : κ(u) ∈ κi(Vi)}. By Lemma 8
with ψ=κ andA= Ũ , there exists a setU ⊆ Ũ such thatκ

∣

∣

U

5The function g is measurable by the following argument:κ−1

i
is

continuous by the inverse function theorem. Hence, for allu with equal
F(u), the denominator in the definition ofg is just the maximum over
a finite set of continuous functions and thus measureable. Since there are
only a finite number of possible realizations ofF(u), we can partition the
domain ofg into a finite number of sets whereg is measureable. Therefore,
g is measureable.

is one-to-one andκ(U) = κ(Ũ) = κ(M). Applying Lemma 7
with g(v) = −fv(v) log(fv(v)), ψ = κ, andS = U yields
(fv denotes the density ofv = κ(u))

h(v) = −

∫

Cn

fv(v) log(fv(v)) dv

(a)
= −

∫

Cn

fv(v) log(fv(v))Nr(κ |U ,v) dv

= −

∫

U

fv(κ(u)) log(fv(κ(u))) |Jκ(u)|
2 du . (39)

Here,(a) holds becausev is supported (up to a set of measure
zero) onκ(U); note also thatNr(κ |U ,v) is 1 for v = κ(u)
and 0 else. The next step is to establish a relation between
the densitiesfv(κ(u)) andfu(u) for u ∈ U . Let U ′⊆ U be
any measurable subset ofU . We have
∫

U ′

fv(κ(u)) |Jκ(u)|
2 du =

∫

κ(U ′)

fv(v) dv

= Pr{v ∈ κ(U ′)}

= Pr{u ∈ κ−1(κ(U ′))}

=

∫

κ−1(κ(U ′))

fu(u) du . (40)

Sinceκi = κ
∣

∣

Vi
, we have

⋃

i∈[1:m]

κ−1
i (κ(U ′)) =

⋃

i∈[1:m]

(κ−1(κ(U ′)) ∩ Vi) ,

and sinceCn\
⋃

i∈[1:m] Vi has Lebesgue measure zero, the
set
⋃

i∈[1:m] κ
−1
i (κ(U ′)) is equal toκ−1(κ(U ′)) up to a set

of Lebesgue measure zero. Thus,
∫

κ−1(κ(U ′))

fu(u) du =
∑

i∈[1:m]

∫

κ
−1
i

(κ(U ′))

fu(u) du (41)

(note thatκ−1
i (κ(U ′)) ⊆ Vi and theVi are disjoint). Using

for an arbitraryi ∈ [1 : m] Lemma 7 withψ = κ−1
i and

S = κi(κ
−1
i (κ(U ′))), and using the inverse function theorem,

we obtain (note thatJκ =Jκi
on Vi becauseκi = κ

∣

∣

Vi
)

∫

κ
−1
i

(κ(U ′))

fu(u) du =

∫

κi(κ
−1
i

(κ(U ′)))

fu(κ
−1
i (v))

|Jκ(κ
−1
i (v))|2

dv .

(42)
Another application of Lemma 7 withψ = κ̃ , κ

∣

∣

U
and

S = κ̃−1(κi(κ
−1
i (κ(U ′)))) then gives

∫

κi(κ
−1
i

(κ(U ′)))

fu(κ
−1
i (v))

|Jκ(κ
−1
i (v))|2

dv

=

∫

κ̃−1(κi(κ
−1
i

(κ(U ′))))

fu(κ
−1
i (κ̃(ũ))) |Jκ(ũ)|2

|Jκ(κ
−1
i (κ̃(ũ)))|2

dũ . (43)

We can upper-bound (43) by
∫

κ̃−1(κi(κ
−1
i

(κ(U ′))))

fu(κ
−1
i (κ̃(ũ))) |Jκ(ũ)|2

|Jκ(κ
−1
i (κ̃(ũ)))|2

dũ

(a)

≤

∫

κ̃−1(κi(κ
−1
i

(κ(U ′))))

fu(ũ) |Jκ(ũ)|2

|Jκ(ũ)|2
dũ



=

∫

κ̃−1(κi(κ
−1
i

(κ(U ′))))

fu(ũ) dũ

(b)

≤

∫

U ′

fu(ũ) dũ , (44)

where in (a) we used the fact that̃u ∈ Ũ (we haveũ ∈
κ̃−1(κi(κ

−1
i (κ(U ′)))) = κ̃−1(κi(κ

−1
i (κ̃(U ′)))) = (κ̃−1 ◦

κi)((κ̃
−1 ◦ κi)−1(U ′)) ⊆ U ′⊆ U ⊆ Ũ) and the inequality in

(38), and in(b) we usedκ̃−1(κi(κ
−1
i (κ(U ′)))) ⊆ U ′. Note

that the upper bound (44) does not depend oni ∈ [1 :m].
Hence, (40)–(44) yield

∫

U ′

fv(κ(u)) |Jκ(u)|
2 du ≤ m

∫

U ′

fu(u) du ,

for an arbitrary measurable setU ′⊆ U . Thus,

fv(κ(u)) |Jκ(u)|
2 ≤ mfu(u) a.e. onU .

Inserting this into (39) leads to

h(v) ≥ −

∫

U

mfu(u) log

(

mfu(u)

|Jκ(u)|2

)

du

≥ − m log(m)−m

∫

U

fu(u) log(fu(u)) du

+ m

∫

U

fu(u) log(|Jκ(u)|
2) du .

APPENDIX C: PROOF OFLEMMA 4

Sincef is not identically zero, there is aξ0∈CN such that
f(ξ0) 6= 0. Theng(ξ) , f(ξ + ξ0) is an analytic function
that is nonzero atξ = 0. By changing variablesξ 7→ ξ+ ξ0,
we obtain forI1 in (32)

I1 =

∫

CN

exp(−‖ξ + ξ0‖
2) log(|g(ξ)|) dξ .

Noting that

‖ξ + ξ0‖
2 ≤ ‖ξ‖2 + 2‖ξ‖‖ξ0‖+ ‖ξ0‖

2

≤ ‖ξ‖2 + 2max{‖ξ‖2, ‖ξ0‖
2}+ ‖ξ0‖

2

≤ 3‖ξ‖2 + 3‖ξ0‖
2 ,

we can lower boundI1 by

I1 ≥ c

∫

CN

exp(−3‖ξ‖2) log(|g(ξ)|) dξ , I2 , (45)

with c , exp(−3‖ξ0‖2). Using the mappingϕ : R2N→CN ;
x 7→

(

x[1:N ] + ix[N+1:2N ]

)

, we can writeI2 in (45) as

I2 = c

∫

R2N

exp(−3‖x‖2)u(x) dx , (46)

with u(x) , log(|g(ϕ(x))|). Since g(0) 6= 0, we have
u(0) > −∞. By [12, Example 2.6.1.3],u(x) is a subhar-
monic function. A useful property of subharmonic functions
is stated in the following lemma (see [12, Theorem 2.6.2.1]).

Lemma 9:Let u be a subharmonic function onW ⊆ R2N,
and letx∈R2N. If Bx,r⊆W for somer > 0, with Bx,r ,

{v ∈R2N : ‖v−x‖ ≤ r}, then

u(x) ≤
1

σ2N r2N−1

∫

Sx,r

u(y) ds(y) ,

whereSx,r , {y ∈ R2N : ‖y−x‖ = r}, σ2N is the area
of the unit sphere inR2N, andds denotes integration with
respect to the(2N−1)-dimensional Hausdorff measure (cf.
[10, Subsection 2.10.2]).

Using a well-known measure-theoretic result [10, Theo-
rem 3.2.12], we obtain
∫

R2N

exp(−3‖x‖2)u(x) dx

=

∫

(0,∞)

∫

S0,r

exp(−3r2)u(y) ds(y) dr . (47)

We thus have

I2
(a)
= c

∫

(0,∞)

∫

S0,r

exp(−3r2)u(y) ds(y) dr

(b)

≥ c σ2N u(0)

∫

(0,∞)

exp(−3r2) r2N−1dr

(c)
> −∞ ,

where(a) follows by using (47) in (46),(b) is due to Lemma
9, and (c) holds becauseu(0) > −∞. With (45), it then
follows thatI1 > −∞.
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