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Abstract—We derive a lower bound on the capacity pre-log
of a temporally correlated Rayleigh block-fading multiple-input
multiple-output (MIMO) channel with T transmit antennas and
R receive antennas in the noncoherent setting (n@ priori
channel knowledge at the transmitter and the receiver). In
this model, the fading process changes independently acms
blocks of length L and is temporally correlated within each
block for each transmit-receive antenna pair, with a given ank
Q of the corresponding correlation matrix. Our result implies
that for almost all choices of the coloring matrix that modek
the temporal correlation, the pre-log can be lower-boundedoy
T(1—-1/L) for T < (L —1)/Q provided that R is sufficiently
large. The widely used constant block-fading model is equalent
to the temporally correlated block-fading model with Q = 1
for the special case when the temporal correlation for each
transmit-receive antenna pair is the same, which is unlikgl to
be observed in practice. For the constant block-fading mode
the capacity pre-log is given by7T'(1 — T'/L), which is smaller
than our lower bound for the case @ = 1. Thus, our result
suggests that the assumptions underlying the constant blke
fading model lead to a pessimistic result for the capacity pe-log.

|. INTRODUCTION

(SISO) case. The capacity pre-log, which is defined as the
ratio of the capacity to the logarithm of the signal-to-mois
ratio (SNR) as the SNR goes to infinity, has been character-
ized in [1] for the SISO case and in [2]-[4] for the single-
input multiple-output (SIMO) case. Faegular stationary
fading processes, the capacity of the MIMO channel has been
studied in [5]. It was proved that, in this case, the capacity
grows only doubly-logarithmically due to the regular faglin
assumption. Fononregular stationanfading processes, the
MIMO capacity pre-log is not known to date.

In this paper, we derive a lower bound on the capacity pre-
log of a rank€) temporally correlated block-fading MIMO
channel with block lengthl, T transmit antennas, anf
receive antennas. We show that the pre-log is lower-bounded
by T(1 — 1/L) for T < (L — 1)/Q provided thatR >
T(L—-1)/(L—TQ). This lower bound can be achieved for
almost all (a.a.) choices—i.e., up to a set of measure zero—
of the coloring matrix that models the temporal correlation
for the transmit-receive antenna pairs.

Our result is particularly surprising when compared to the

We analyze the capacity of a Rayleigh block-fading muFapacity for the constant block-fading model_ as derivec_i by
tiple-input multiple-output (MIMO) channel in the nonco-Zheng and Tse [6]. The constant block-fading model is a
herent setting where the transmitter and the receiver @fecial case of the temporally correlated block-fading ehod

aware of the channel statistics but haveanpriori channel

for Q = 1 that is obtained when the correlation matrices for

state information. In this setting, the penalty on capacityll transmit-receive antenna pairs are assumed to be equal,
incurred by allocating resources to channel estimation Which is unlikely to be observed in practice. Zheng and Tse
automatically accounted for. We model channel variatiog§iowed that the pre-log for the constant block-fading model
in time by the temporally correlated block-fading modelis M*(1 — M*/L) with M* £ min{T, R, |L/2]}, which
introduced in [1]. According to this model, the fading prese is less than or equal td./4. In the temporally correlated
takes on independent realizations across blocks of lendpieck-fading model forQ = 1, our lower bound on the pre-

L; however, for each transmit-receive antenna pair, it 189 is L —2+1/Lif T = L —1andR = (L —1)* for

correlated within each block with a given rark of the
corresponding. x L correlation matrix.

a.a. coloring matrice$.This shows that a much higher pre-
log can be achieved and, hence, the results predicted by the

The capacity of the temporally correlated block-fadingonstant block-fading model are pessimistic.
channel is not known even in the single-input single-output Apart from our main result, the methods employed in its

This work was supported by the WWTF under grant ICT10-06

(NOWIRE).

1in this paper, the terntapacity refers to capacity in the noncoherent

setting.

groof may be of independent interest. We use a generalized

2Note that the coloring matrix corresponding to the constémtk-fading
model belongs to the set of measure zero where this boundradé®ld.
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change-of-variables theorem for integrals in combinatiaf, ; € CLx@ with Q £ rank(ZT_,tZEt), is the vector of

with Bézout's theorem [7, Proposition B.2.7] to establisbhannel coefficients between ttté transmit antenna and the

certain transformation properties of differential enyremder rth receive antennay, ~ CN(0, I1) is the noise vector at

finite-to-one mappings. Furthermore, we use an importathie rth receive antenna; ande R* is the SNR. The vectors

property of subharmonic functions to lower-bound the irh,, and n, are assumed to be mutually independent and

tegral of a certain real analytic function. In the SIMO caséndependent acrosse [1: R] andt € [1:7], and to change

a similar problem was recently solved using an algebraiict an independent fashion from block to block (“block-

geometry method [3]. Our alternative method works in memoryless” assumption). The transmitted signal vectprs

more general setting and, thus, may also be useful for bourde assumed to be independent of the veckgrsand n,.

ing differential entropy terms appearing in other problemsWe note that the channel coefficient vectors can be written
The rest of this paper is organized as follows. The systess

model is presented in Section Il. The lower bound on the h.. = Z,. 5.4,

capacity pre-log is stated and discussed in Section Ill. A 4 . .
proof of the lower bound is provided in Sections IV and ith the Q-dimensional whitened vectoss,, ~ CA'(0, Io).

: : Settingy = (yT,...,y5)T € CELandn2 (nT,...,n%)T
and in three appendices. _ _ € CFL, the R input-output relations (1) can be written more
Notation Sets are denoted by calligraphic letters (e-gcompactly as

7), and |Z| denotes the cardinality of. Sets of sets are o
denoted by fraktur letters (e.g)t). We use the notation y = \/;y +n,
[M:N] £ {M,M+1,...,N} for M,N € N. Boldface i
uppercase (lowercase) letters denote matrices (vectagk
serif letters denote random quantities, ed.js a random N
yE D
te[1:7T]

)

XiZyy

RL
matrix andx is a random vector. The superscriptsand s: € C, ©)

H stand for transposition and Hermitian transposition, re- XiZp
spectively. The all-zero matrix or vector of appropriateesi \yhere we have defined; 2 diag(x;) € CE*L ands; 2

is written as0, and the M x M identity matrix asIy;. (sT,,..., sL )T € CRQ. For later use, we also define2
For a matrix A € (CMxN, the element in theth row and ( T XT)’T cCTL g2 (ST ST)T c CTRQ_ and
jth column is denoted by, ;. We denote by{A]Y, where '’ "7T ’ Lot ’

Z C[l:M]andJ C [1: NJ], the |Z| x |J| submatrix Ziy - Zir

of A containing the elements; ; with i € 7 and j € J,; Z = : : € CRLXTQ
furthermore,[A], £ [A]"Y) and [4]7 £ [A][jl:M]. We Zri - Znr

denote by[z], € CI the subvector ofr containing the
elementsz; with ¢ € Z. The diagonal matrix with the
elements ofz in its main diagonal is denoted hjiag(x).

We definediag(Ay, ..., Ax) as the block diagonal matrix ~ !!l. AL OWERBOUND ON THE CAPACITY PRE-LOG

with the matricesA,, ..., Ax on the main block diagonal.  Because of the block-memoryless assumption, the coding

The modulus of the determinant of a square matixis  theorem in [8, Section 7.3] implies that the capacity of the
denoted by|A|. Forz € R, |z] = max{m € Z|m <z} channel (2) is given by

and [2] £ min{m € Z | m > x}. We write E[-] for the

expectation operator, an@l\V (p, ) for the distribution of C(p) = lsup](x;y). (4)

a jointly proper Gaussian random vector with mgarand Ly

covariance matri®s. The Jacobian matrix of a differentiableere, 7(x;y) denotes mutual information [9, p.251] and the

function ¢ is denoted byJ,. supremum is taken over all input distributiofison C** that
satisfy the average power constraint

We will refer to Z as thecoloring matrix

Il. SYSTEM MODEL

E[|[x||?] < TL.
We consider a MIMO channel with’ transmit andR [ <

receive antennas. The fading process associated with edble capacity pre-log is then defined as

transmit-receive antenna pair conforms to the temporally R Clp)

correlated block-fading model [1], which results in the-fol x = lim 1 : ()
lowing channel input-output relations within a given block p=ec log(p)

of length L: We will obtain the main result of this paper, which is stated

in Theorem 1 below, by maximizing with respect Tothe
y, = \/; Z diag(h,¢)x¢ + n,, re€[l:R]. (1) lower bound ony given in the following proposition.
teLT] Proposition 1: For T'< R, there exists a sef C CLxTQ
Here, x;, € C% is the signal vector transmitted by thewith a complement of Lebesgue measure zero such that for
tth transmit antennay, € CL is the vector received by each coloring matrixZ € Z, the capacity pre-log of the
the rth receive antennah,; ~ CN(O,ZMZEt), where channel (1) satisfies



1) R<1 TQ>} ®) @ = 1 reduces to the constant block-fading model studied
9 - L .

X > Xow(T) £ min{T<1—Z in [6]. The pre-log in the constant block-fading model is
M*(1—M*/L), whereM* = min{T, R, | L/2]}; therefore,

Proof: See Section IV. _ _ B it is upper-bounded by./4. On the other hand, Theorem 1
The main result of this paper is stated in the following, O = 1 implies that the pre-log for the correlated block-
theorem.

fading model is lower-bounded by (cf. (6))
Theorem 1:There exists a se C CHEXTQ with a com- ] T
plement of Lebesgue measure zero such that for each coloring X > min {T(l - —) , R(l - —) } , (10)

matrix Z € Z, the capacity pre-log of the channel (1) satisfies L L

1 . for a.a. coloring matrice& € Z. In particular, forl’= L —1
S F A T(l - f) if T < Topt ) and R = (L —1)?, the lower bound in (10) becomes
X Z Xlow = T o T L — 2+ 1/L. Thus, for a.a. choices of coloring matrices,
where 7 "> Lopt the pre-log is much higher than in the constant block-fading

model® Hence, the results predicted by the constant block-
& [Topt | Q 1 fading model are pessimistic.
n = max< R(1— — ) [Topt]1—— (8)

L
and IV. PROOF OFPROPOSITION1
Tope 2 RL < min{R,L/Q}. 9) For L < TQ, the inequality in (6) is trivially true,
L+ RQ -1 because in this casg,, < 0. Therefore, it remains to

prove (6) for L > T'@Q, which will thus be assumed in

Proof: We obtain a lower bound on the pre-log fBitrans- ) )
the following. By (4), the capacity can be lower-bounded

mit antennas by maximizing,,,, with respect to the number . N o
of effectively used transmit antennas (note that we can)edwaasc(p) > (1/L)I(x;y) _W'th the specific mput_ distribution
switch off some antennas). Thus, we will take the maximufth ™ CN(0, I7.). Inserting this lower bound into (5) then
of xiow(T™) in (6) with respect taI'* < min{7T, R}. Here, gives

T* is also restricted by < R because Proposition 1 holds X > L lim I(xy) . (11)
only for T* < R. Becauseyi,w (1) is the minimum of two L p=oo log(p)

quantities where the first is monotonically increasinglin  In what follows, we thus assume that- CA(0, Iry).

and the second is monotonically decreasing'in it attains ~ We have I(x;y) = h(y) — h(y|x) with h denoting

its maximum at the intersection poittt,,, defined in (9). If differential entropy. Hence, we can lower-boufk;y) by

T < Topt, We havexiow () = T(1—1/L), which proves the upper-bounding:(y|x) and lower-bounding(y). Similar to
first case in (7). Fofl" > T,p,, we have to take into account[2, Eq. (8)], we have

that 7o, might not be a natural number. Thus, we have to
take the maximum of 1o (| Topt }) @Nd x1ow ([Topt 1), Which h(y|x) < TQRlog(p) + O(1), (12)
turns out to bey in (8). This shows the second case in (there
and concludes the proof.

Remark 1:The setZ will be specified in Definition 1 in

Section V. -
Remark 2:For a fixed R, the maximum value ofy}, h(y) = ( > |L|> log(p) + h(Py) +c,  (13)
in (7) is obtained by using eithdfl, | or [T,y | transmit r€[1:R]

antennas. This implies that the optimal number of transrm'merey was defined in (3),

antennas is upper-bounded (¥, .

“+ O(1)" means “up to a function o that is bounded
for p — oo.” Furthermore, similar to [2, Eq. (12)], we have

Remark 3:For L = @Q, xj,, is equal to zero and hence P £ diag([I.];,,...,[IL];,) € CZreml X BE (14
trivial. '

Remark 4:The lower bound},, in (7) can be expressedthe Z,. C [1: L] for r € [1: R] are certain subsets that will be
as specified later, and is a finite constant. Note that in (13),

X = min{T(l—l),n}. h(Py) and ¢ do not depend om. Using (12) and (13) in
v L I(x;y) = h(y) — h(y|x), we obtain

Remark 5:x;.,, can be at mos{(L—1)/Q|(1—1/L).
This value ofyj , is attained forl’ = [(L—1)/Q| and I(x;y) > ( Z |Z| —TQR) log(p) + h(Py) + O(1).
R = |—(L_1)2/Q1 re[l:R) (15)

Remark 6:By (9), the conditionT < T, in (7) is . . .
equivalent toR > T(L—1)/(L — TQ). Thus, for a fixed The proposed lower bound on the pre-log in (6) is established

T < L/Q, we can always obtain;, = T'(1—1/L) by using by inserting (15) into (11) and choosing the s€f$},.c(1. x|
a suff|C|entIy largeR' 3This implies that the coloring matrices corresponding te donstant

Remark 7:1f all matricesZ,., for r € [1: R] a”dt € [1:7] block-fading model belong to the complement &f (which has Lebesgue
coincide, the temporally correlated block-fading modeal fameasure zero and is unlikely to be observed in practice).



such that Based on the family of mappings,,. in (17), the relation
. betweem (Py|xp) andh(s,xp) can be established by using
Z \Z,| = min{TL —T+TQR,RL},  (16) the definition of conditional differential entropy [9, Chap
r€[1:R] 8] and by applying the change-of-variables theorem for

provided thath(Py) > —oco. It remains to show that thereNtegrals under finite-to-one mappirtgd0, Theorem 3.2.5].
exist sets(Z, } (1. x Satisfying (16) and a sef C cRLxTQ  For this, we need to show that the family of mappings,

with a complement of Lebesgue measure zero for whid$, finite-to-one almost everywhere (a.e.) for a.a. choides o
h(Py) > —oco for eachZ € Z. This will be done in the Z7- We now define the seE for which this proof works.

next section. Definition 1; Let £ C CRLXT® pe the set of matrice&
such that the following holds: There exist a choice of sets
V. PROOF THAT h(Py) > —o0 {Z,}rep:r) satistying (16), i.e.,
Let us split the vectox into the vectorsp £ ([x1]7T>1, cee Z 1Z,| = min{TL—T +TQR, RL} (23)
T andxp 2 (jxi]% T T wh c1: o
[XT]PT) andxp = ([xl]D17 RN [XT]DT) , WhereP; C [1 re[l:R]

L] andD; = [1: L]\ P, for ¢ € [1:T]. Becauseh(Py|xp) <
h(Py), it is sufficient to show thak(Py|xp) > —co. As
in [3], we wish to relateh(Py|xp) to the simpler quantity P — T TOR — (R—T)L 24
h(s,xp) = h(s) + h(xp). This will be done via the family 2 [Pl = max{T.TQR~ (R-T)L},  (24)
of xp-parametrized mappings

and a choice of set§P; } (1. satisfying

te[1:T)

such that/,, (s, zp) is nonsingular a.e. for a.a. choices of

Gap: (8,2D) = Py, A7) zp.
wherey is defined in (3), i.e., We will show presently that the sét is nonempty. In fact,
it covers a.a. ofCREXTQ,
g= > Eis, (18)  condition (23) on{|Z|},cp.r and condition (24) on
. te[1:T] {IPt|}tepr.m) uarantee that the matriks, (s, zp) is square.
with More specifically, we have with (20) that
XiZ1 )
z, & - cCRLxRQ g9y #Tows= ) |L| = min{TL T +TQR,RL}, (25)
X, Z re[l:R]
t4 Rt

According to (18) and (19), the components of each vecta’}l-here (23) was used, and

valued mappings,.,, are multivariate polynomials of degree #columns= TQR + Z Dy (26)
2. The Jacobian matrif,, = of each mapping., is equal te[LT]
to
=TQR+TL- > |Pi
Al,l Al.,T te[1:T]
Jpo (s,@p) = P By -+ Er A: A: = TQR+TL —max{T,TQR — (R—T)L}
R1- ARy
! = min{TQR+TL —T,RL}, (27)

€ CTrequmlTrlx (TQR+Tocnin D) |
(20) where (24) was used. Thus, comparing (25) and (27), we
where have#rows= #columns.
The next lemma states that satisfies one of the claims

FNNIEE ) (L)y1Pe ) .
Ay = [diag (ap/,-.a.0)] 7 t€ LT r € [1:R], e in Proposition 1.
with aﬁ? £ (Z i)y sre, LE€[1:L]. (21) Lemma 1:The complement of the se has Lebesgue
measure zero.
Note that by (14 can be written as .
y Ao, (s, @) Proof: See Appendix A. [
[A1a];, -+ [Avirly, In _the remaiqder of our proof thai(Py) > —oo, we
Js (s,2p) = | B1 - Er : : consider an arbitraryZ € Z. To use the change-of-variables
Popl® Ar A ’ theorem, we will invoke Bézout's theorem to show that the
[Arilz, -~ [ArTz, (22) mappingse,.,, are finite-to-one a.e.
where Lemma 2:Let M be defined as the set of &, zp) such
. (X Z1 4], that Jy, (s, xp) is nonsingular. Then for aly € ¢, (M),
= =
[XtZR t]I 4For a finite-to-one mapping, the inverse image of each painthe
’ R

codomain is a set of finite cardinality.



we have

6L () N M| < i 2 2(SecnnlPI+TQR) - (2g)
Proof: Lety € ¢, (M). Then according to (17)—(19),
the zeros of the vector-valued mapping

(8,2D) = Pup (s, D) =y

are the common zeros Of, ., +|D:| + TQR polynomials
of degree 2. Thus, by a weak version of Bézout's theorem
Proposition B.2.7], the number of isolated zeros (i.e.hwid
other zeros in some neighborhood) cannot exc@edince
J,,,. is nonsingular onM, the functiong,,,, restricted taM
is locally one-to-one and, hence,., —y has only isolated

410 [ uno (5,00) 08(1Jo (5. @) ) dls, 2) | e
u
(30)
The lower bound in (30) consists of three terms. The first
term is just a finite constant. The second term is finite

because the differential entropy of the Gaussian random
vector (s, xp) is finite. The last term is finite if

Lo fes@) 08, (s,20) P dls.2) - (31)
[7, CTL+TQR

is finite. To show that (31) is finite, we will invoke the
following general result for analytic functions.

Lemma 4:Let f be an analytic function o” that is not
identically zero. Then

zeros onM. Therefore, the number of poin{s, zp) € M

such thatgbmp(g,mp) =y cannot exceeqh. m I 2 / exp(—||€]2) log(| f(£)]) d€ > —co. (32)
Next, we will establish a transformation property of dif- cN
ferential entropy under finite-to-one mappings in a generalproof: See Appendix C. -

setting. More specifically, we will obtain a lower bound on
differential entropy using the change-of-variables tle@ofor random vector andet

finite-to-one mappings [10, Theorem 3.2.5] in COrm;"nat'ol%ial that is not identically zero due to the definition Bfin

with the uniform bound in Lemma 2. Definition 1, the integral in (31) is finite by Lemma 4. Hence,

Lemma 3:Let u € C" be a random vector with contin-yjith (30), we obtaina(Py|xp) > —cc. This concludes the

uous density functiory,. Furthermore, let.: C" — C" be  proof thath(Py) > —ooc.
a continuously differentiable mapping with Jacobian nxatri
J, and let M = {u € C": |J.(u)| # 0} andv = k(u).

=K
Assume that the complement d# has Lebesgue measure

Sincefs x is the density of a standard multivariate Gaussian
(J¢..,(8,2p)) is @ complex polyno-

APPENDIXA: PROOF OFLEMMA 1

zero and|x~'({v}) N M| < m < o for all v € C", with
some constantn € N. Then there exists a s&t C C™ such
that

h(v) > —mlog(m) — m /u Fulw) log(fuluw)) du
m uw(u)lo L(w)?) du .
4 /uf( ) log (1T, (w)[?) d

Proof: See Appendix B.
To lower-boundh(Py

[
xp), we first lower-bound the dif-
ferential entropiesi(Py|xp=zp). By Lemma 2, we have
|9t {y}) N M| < 7. Furthermore, since we assunfec
Z, we have by Definition 1 thafs, (s, zp) is nonsingular

We can viewdet(Jy, (s, zp)) as a functionf(Z, z, s).
Assume that there is a choice of séi5.}, (1. Satisfying
(23) and a choice of P;}.c1. satisfying (24) such that
f(Zy,x0,80) # 0 at some(Zy, xo, so). Thus, because for
fixed ¢y and s the function f(Z, o, s¢) is a polynomial
in the entries ofZ and hence analytic itZ, there is a set
Z CCRL*TQ with a complement of Lebesgue measure zero
such thatf(Z, xg, so) # 0 for all Z ¢ Z. Hence, for each
fixed Z, € Z, f(Z,,x, s) is not identically zero; furthermore,
it is analytic inx and s. Therefore, it is nonzero for a.a.
(z, s). We conclude thafl;, (s, zp) is nonsingular and thus
Z, € Z. Definition 1 implies thatZ C Z, and hence the
complement ofZ has Lebesgue measure zero.

a.e. and, hence, the complement\dfhas Lebesgue measure It remains to find choices OfZ, }rep:r) @nd{ Py }iepim)

zero. Thus, we can invoke Lemma 3 wiiliv) = h(Py‘Xp:
Tp), K= Qgp, U= (s,xp), andm = m to obtain

h(Py|xp=xp) > —imlog(m)
_ / Fox (8 20) 108(faxn (8, 70)) d(8, D)
u

+ Th/ Joxo (s,zp) 1Og(|J¢mp(S’ wD)|2) d(s,zp). (29)
u
Using (29), we can now Iower-bourim[Py\xP) as follows:
h(P9|X7>) = /fo (.’137)) h(P9|X7> = .’137)) d:]?p
> / fx,,<mp)[— i log (1)
=1 [ Foxo (3 @0) 108 oo (5,0) (s, )

such thatf(Z,z,s) # 0 at some(Z,x,s). We start
by choosing sets{Z,},c1.p that satisfy (23). Letk =
min {|(TL - T)/(L - TQ)|,R} and¢ £ TL —T — (L —
TO)|(TL-T)/(L—-TQ)], and define

[1:1], if re[l:k]
I, 2 [1:TQ+ ), fr=k+1 (33)
1:TQ], if re[k+2:R].

For this choice[l1:TQ] C Z, for all » € [1: R], and as many
T, as possible without violating (23) are equal[to L]. The
sets{P: }+c1.7) have to satisfy (cf. (24))

> IP] = max{T,TQR— (R—-T)L} £ ¥p. (34)
te[1:T]

We define the setB; such thatl € P;,2 € P,, ..., T € Prp,
and furtherl'+1 € Py, T+2 € P,, etc., up tol. € Pr, mod 7-



If (34) is not yet satisfied, we look for the minimél such R=T, (34) reduces t@te 11| Pel = T%Q, and with (36),
that [Py | is minimal andl ¢ P, and start again with € we obtain|P;| = TQ. Furthermore from (33)7, = [1: ]

Py, 2 € Puyr, ... We proceed until (34) is satisfied. Thisfor » € [1:7]. We chooses, ; = 0 for r # ¢, and we choose
construction of the set®, can be formulated as [Z,.]p, such that[(Z,; - ZT,T)}PT is nonsingular. We
have [A,;]p, = 0 (cf. (21), noting thatP, N D; = 0).
Py 2 i€[l:L]:3j€[1:9g] such that = j mod L Hence, we can use Lemma 6 wiflf = det(Jg, (s, zp))

o1 given by (22) andM]; = diag ([(Z1,1 --- ZLT)}PI, -
andj + {7)J =t mod T}, (3%) [(Zr1 - Zrr)]p,)- It thus remains to show that the

lem(T, L N\ )
determinant of the matrlJ[<M] LN\T corresponding to
where lem(-,-) denotes the least common multiple. For

example, forT = R = 3, L =6, andQ = 1, we have [A1a]p,
Yr = 9 and (35) yieldsP; = {1,4,3}, P, = {2,5,1}, (37)
andP; = {3,6,2}. Note that since the sizes of the s@s [AT-,T]DT

differ at most byl, (35) together with (34) yields _ ) o ) _
is nonzero. Because of (21), this matrix is a diagonal matrix

Dl < max{T,TQR— (R—T)L} and can be chosen to have nonzero elements by choosing
[Pl < T [Z+4]p, and sy such that{Z; ;] ;;ys: # 0 for all i € Dy.
max{T,TQR — (R—T)TQ} Thu_s, the matrix in_ (37) is a_diagc_mal matrix with nonzero
< T entries and hence its determinant is nonzero.

Inductive stepWe have to show that we can firflz ; and

=TQ, (36) sgry for t € [1:T] such that the determinant of the matrix

+»(8:Tp) N (22) is nonzero assuming that it is nonzero

or the R—1 setting. Letg, G;, andL; be as in Lemma 5 and

t g€ G:NP; (# 0 due to Lemma 5). SEZx¢]g\g, = 0.

- Furthermore, le{Zg ;]g, be nonsingular for alt € [1: 7.
Lemma 5:Suppose thal >T'. Let P, €[1: L] be defined |t easily follows that([Zr1lg -~ [Zr7]g) is nonsingular.

according to (35) but for? —1 receive antennas (i.eR is Next, we choose ; such that it is orthogonal to the rows

where L > T'Q has been used. Some properties of the s
P, are summarized in the following lemma, whose proof i
omitted due to space limitations. €

formally replaced byR—1) and set’, < P;\P;. Then of [ZR,t]g,\(4} and satisfie§Zr ] (y,}sr: # 0. With (21)
() Lo Ly =0fortst and g; € P, we then obtaifAr:]g =0, t € [1:T]. Hence,
(i) £, C Tn according to Lemma 6 wittM given by (22) andM]J =

= ([Zralg -+ [Zr1lg), the determinant off,, (s,zp) in

(iii) There exist pairwiseAdisjoint sety satisfying|G;| = Q (22) is nonzero if and only if the determinant of the follogin
GNP # 0, andG = Uy Gt = Zr\Uiepari £¢ matrix is nonzero:

We will also make repeated use of the following result, (A1 4] (A1 7]
which is a corollary of [11, pp. 21-22]. '

(1
[

Lemma 6:Let M € CV*N, and letZ,7 C [1 : N] b r A . e [An ,
with |I| |j| If [ ] —0or [M][IN]\J: 0, and [ R—l,l]ZRfl [ R—I,T]IR—I
[L:NNZ z ) 0 [Ar1ly c,  [ArTly L
if [M]7 is nonsingular, thenlet(M) # 0 if and only if T el T
det ([M][NNY ) # 0. where
Remark 8:Lemma 6 is just an abstract way to describe a 214z,

4L

[

situation where given a matri®Z, one is able to make row t .
and column interchanges that yield a new matrix of the form (ZRr-1,]7, |

(AB) where A andC are square matrices. In this case, it |% hoosing th - o iatel
a basic result that the determinant®f equals the product y ChoosIng the remaining rows Gy, appropriately, we

i Ly
of the determinants oft and C'. obtain[Ap, t](u e Lo =0 anddet ([Ar.|..) # 0. By

For the choices O{Pt}teu ) and {Z,},.cp.r) described Lemma 6, it can ‘then be easily seen that the determinant of
above, it now remains to flndc s, and Z such that e (s,zp) in (22) is nonzero if and only if the determinant
f(Z,@,s) = det(J,, (s,xp)) is nonzero. This will be of (22) for R—1 is nonzero, which is true by the induction
done by an induction argument ov&r> T. hypothesis.

Induction hypothesisFor R > T (as assumed in Propo- APPENDIXB: PROOE OFLEMMA 3

sition 1), {P;}ie1.1) @s in (35), and(Z, },¢(1.5) as in (33), , ) ]
there exists a pointZ, z, s) with z = (1,...,1)" such that First, we state the version of the change-of-variables

f(Z,%,s) = det(J,, (s,zp)) is nonzero theorem [10, Theorem 3.2.5] that we will use.
3 3 zp ) .

Base case (proof folk = 7'): We have to show that the Lemma 7:Let ¢): C" — C" be a differentiable mapping
determinant of the matrix in (22) is nonzero fr=7". For with Jacobian matrix/,,. Then for any measurable, nonneg-



ative, real-valued functiog on C™ and any measurable setis one-to-one ané(U/) = x(U) =
S C C™, we have with g(v) = —fy(v) log(fv(v)),

/ () | Ty () du = / 9(v) Ne(9)| S, ) dv,
S Cn

, h(v) = = [ fu(v)log(fu(v)) dv
whereNr(¢|S, v) denotes the number of pointse S such cr
thaty(u) = v. (Note, in particular, thalNr(¢)|S,v) = 0 if (a)
there is nou € S such thaty)(u) = v.) - Cnf"(v)1Og(f"(v))Nr(“|u’v) dv
We will also make use of the following lemma to obtain
one-to-one mappings with maximal support. = —/ fu(k(w))log(fu(k())) | (w)|* du. (39)
u

k(M). Applying Lemma 7
=k, andS = U yields
(fv denotes the density of = x(u))

Lemma 8:For any Lebesgue measurable getc C" and
any mappingy: C* — C" such that[yy~!({v}) N A| <
m < oo for all v € C", there exists a Lebesgue measurab
set B C A such that1/;|6 is one-to-one and)(B) = ¢ (A).
Furthermore,|¢ 1 ({v}) N (A\B)| < m—1 < oo for all
veCn

Proof: Let 9t denote the set of all measurable subsets fu(k(w)) | (w)]? du :/ fu(v) dv
Y C A such that¢|v is one-to-one. We have the natural Ju’ w(U)
partial order of inclusion oPt. For any chain (i.e., totally = Pr{v e (')}
ordered setl of sets in9t, the union of all sets i€ is an — Pr{uc n(s(U)}
upper bound for all sets i& (i.e., for any A, € € we have -
Ao C Uc_e¢C) and belongs t@ﬁ. Thus, by Zorn’s lemma, :/ fulw)du. (40)
there exists at least one maximal elemenfin Let 3 be a K= ((U))
maximal element i)t. If there exists av € ¥(A)\¥(B), Sincer; = K|, , we have
we can add one point € ¥~ !({v}) to B and BU {u} Vi
belongs to9 with B & B U {u}, which is a contradiction U kN (R(U) = U (" WU NV,
to the maximality of3. Hence»(B) = ¥ (.A). Furthermore, ie[Lim] ie[Lim]
sinceB € M the setB3 is measureable anpl\B iS one-to-one. )
Finally, for eachv € v (A), there exists ar € B such that and sinceC™\ .., Vi has Lebesgue measure zero, the
Y(uw) =v. Thus, [t ({v}) N (A\B)| < [ {v})NA)| = setU,cprm k;(k(U")) is equal tor~ ! (k(U')) up to a set
1<m-—1. m of Lebesgue measure zero. Thus,

For M andm as defined in Lemma 3, we now partition
the setM into subsetsV; with i € [1:m] such that each / faw)du = /71 fu(u)du  (41)
ki = k|, is one-to-one and™\ Uy, Vi has Lebesgue " (<) i€[tim) R (5U)

measure zero. The existence of such sets can be showrh%e thatr; *(s(U')) C Vi and theV; are disjoint). Using
using Lemma 8 repeatedly. Next, we define thelgetsed ¢, . arbiiraryz’ e ml] Lemma 7 withep — w1 and

in Lemma 3. Let S = ri(k; ' (x(U"))), and using the inverse function theorem,

Here,(a) holds because is supported (up to a set of measure
fero) onk(U); note also thalNr(x |U, v) is 1 for v = k(u)
and 0 else. The next step is to establish a relation between
the densitiesf, (x(w)) and fu(u) for uw € U. LetU' CU be

any measurable subset @f We have

g8 {ue ™ fu(u)2 > fu('il)2 we obtain (note thaff,, = J,, onV; because:; = 'V”|V1:)
| s ()] | ()] f (m-ﬁl('v))
_ 1 / fu(u) du :/ .
Vaer (s({u}))nMe. (3B8)  Jiteur kil ) [Te (K7 (0))[2 “2)
Note thatx(U/) = x(M). The setd is measurable since it is Another application of Lemma 7 withh = & £ "}u and
the preimage of 1} under the measurable function S = gfl(ﬂi(,ﬁi—l(ﬁ(u/)))) then gives
Ju(u) -1
gw) = ST / fu%l(v))‘z dv
maX;ec F(u) m ri(i; H(w(U))) | (k" (0))]
JulkiH(R(@)) [T (@)
where F(u) £ {i € [1:m]: r(u) € x;(V;)}. By Lemma 8 :/ RS oy du. (43)
(w) ={i€[1:m]: v(u) € ri(Vi)}. By At i(n ) | Iy (R (@)))[?

with ¢ =rx and A= U, there exists a sét C I/ such thak\u
We can upper-bound (43) by

5The function g is measurable by the following 'crtrgumerm';1 is IR ~\ 12
continuous by the inverse function theorem. Hence, forualvith equal fu(lii (n(u))) |Jn (u)|
F(u), the denominator in the definition af is just the maximum over - _ , 1/~ ~ 2
a finite set of continuous functions and thus measureableeShere are R (s (T (0(U))) [ (Hi (F(a)))]
only a finite number of possible realizations B{w), we can partition the 1, (ﬁ) |J (,&)|2

u K

g is measureable. w/kl(ni(nil(li(b{’)))) |Jis(w)]?

du

—
Q
=

domain ofg into a finite number of sets whereis measureable. Therefore,

IN

du



/ ful@) da
B (ki(r; M (6(U))))

®) o
< fu(a)du, (44)
u/

where in (a) we used the fact thali ¢ U (we havew €

R i (R U)) = & (i (ROUD) = (R o

ki) (R~ Yom) Y U)) CU' CUC L?) and the inequality in
(38), and in(b) we usedi ! (k;(k; ' (k(U')))) € U'. Note
that the upper bound (44) does not dependian [1 : m].

Hence, (40)—(44) yield

fo(s(u) [Te(u)]* du < m | fu(u)du,
u’ u’

for an arbitrary measurable s&t C U/. Thus,

fulk(w) [T (w)]? < m fu(u) a.e. ond.

Inserting this into (39) leads to

- st e )
— mlog(m m/ fu(u) log(fu(u)) du
+m /u Fulw) 1og(| T (w)|2) du

h(v)

| \/

Y
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Sincef is not identically zero, there isg& < C" such that
f(&) # 0. Theng(&) £ f(&€ + &) is an analytic function
that is nonzero a§ = 0. By changing variableg — & + &,
we obtain forl; in (32)

L= / exp(— 1€ + £ol2) log(|g (£)]) d€ .
(CN
Noting that
1€+ £oll? < )12 + 2l€Nl€ol + l1€o]2

<
< JI€11* + 2 max{[|€]|*, |€o]I*} + I &olI*
< 3JI€)1* + 31&ll* .

we can lower bound; by

B e(sle) oo i £ B @)

with ¢ £ exp(—3]|&o]|?). Using the mapping: R2N— CV;
@ — (z[.n] + iTN11.2n3)), WE can writel, in (45) as

I, = c/ exp(—3||z||*) u(x) dx
R2N

with u(z) £ log(|g(¢(x))|). Since g(0) # 0, we have
u(0) > —oco. By [12, Example 2.6.1.3Ju(x) is a subhar-

(46)

monic function. A useful property of subharmonic functiong
is stated in the following lemma (see [12, Theorem 2.6.2.1])

Lemma 9:Letwu be a subharmonic function o C R2¥,
and letx € R2N. If B, . CW for somer >0, with B, =
{veR?: |lv—=z| <1}, then

1
< m/&c 7u(y) ds(y) ,

whereS,, = {y € R*V . ||y — x| = r}, ooy is the area

of the unit sphere irR?Y, andds denotes integration with

respect to th€2N —1)-dimensional Hausdorff measure (cf.
[10, Subsection 2.10.2]).

Using a well-known measure-theoretic result [10, Theo-
rem 3.2.12], we obtain

[ exv(=3lel) u(a) do
R2N

_/(0 )/s exp(=3r?) u(y)ds(y) dr. (47)

We thus have

@ / / exp(—3r?) u(y) ds(y) dr
0 OO 50 r

Z coaN u(O)/ r2N =1 dr
(0,00)
©

> —00,

I

exp(—3r?)

where(a) follows by using (47) in (46)(b) is due to Lemma
9, and(c¢) holds because:(0) > —oco. With (45), it then
follows thatl; > —cc.
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