
No Smurfs: Revealing Fraud Chains in Mobile
Money Transfers

Maria Zhdanova∗, Jürgen Repp∗, Roland Rieke∗†, Chrystel Gaber‡ and Baptiste Hemery§
∗Fraunhofer Institute SIT, Darmstadt, Germany

email:{maria.zhdanova,juergen.repp,roland.rieke}@sit.fraunhofer.de
†Philipps-Universität Marburg, Marburg, Germany

‡Orange, Caen, France
§Normandie Université, Caen, France; UNICAEN, GREYC, F-14032 Caen, France;

ENSICAEN, GREYC, F-14032 Caen, France; CNRS, GREYC, F-14032 Caen, France
email: baptiste.hemery@ensicaen.fr

Abstract—Mobile Money Transfer (MMT) services provided by
mobile network operators enable funds transfers made on mobile
devices of end-users, using digital equivalent of cash (electronic
money) without any bank accounts involved. MMT simplifies
banking relationships and facilitates financial inclusion, and,
therefore, is rapidly expanding all around the world, especially
in developing countries. MMT systems are subject to the same
controls as those required for financial institutions, including
the detection of Money Laundering (ML) – a source of concern
for MMT service providers. In this paper we focus on an often
practiced ML technique known as micro-structuring of funds
or smurfing and introduce a new method for detection of fraud
chains in MMT systems. Whereas classical detection methods are
based on machine learning and data mining, this work builds
on Predictive Security Analysis at Runtime (PSA@R), a model-
based approach for event-driven process analysis. We provide
an extension to PSA@R which allows us to identify fraudsters
in an MMT service monitoring network behavior of its end-
users. We evaluate our method on simulated transaction logs,
containing approximately 460,000 transactions for 10,000 end-
users, and compare it with classical fraud detection approaches.
With 99.81% precision and 90.18% recall, we achieve better
recognition performance in comparison with the state of the art.

Keywords-money laundering; mobile money transfer systems;
fraud detection; predictive security analysis; process behavior
analysis; machine learning

I. INTRODUCTION

Mobile Money Transfer (MMT) services are financial ser-
vices provided by a Mobile Network Operator (MNO) that
enable transfers of funds (cash) between service subscribers
through the use of mobile channels. These services do not
imply a banking contract and are not tied to a bank account.
Instead, the subscribers use mobile devices and a digital
currency, a.k.a. electronic money, to commit transactions.
MMT is a fast growing market expected to reach over 450
million subscribers in 2017, with a mobile transaction value of
more than $721 billion, according to Gartner [1]. More than
150 services are currently deployed in 72 countries, for the
most part, in Sub-Saharan Africa, where in 2012 there were
twice as many users for MMT services than for Facebook [2].
Examples of the most successful deployments are M-PESA
and Orange Money. As of 2012, M-Pesa, developed between

Safaricom and Vodafone, has been used by 15 million people
in Kenya [3]. Orange Money is deployed in 10 countries across
the region and has about 4 million subscribers [4].

The growing financial market is an attractive target for
attackers and fraudsters. MMT is an incentive for various
types of fraud driven by different actors involved in the
MMT ecosystem [5]. In particular, serious concerns have
been raised regarding the risk of Money Laundering (ML)
in MMT services, due to the provided ability for worldwide
funds exchange in digital currencies coupled with the lack of
oversight [6]. If proper controls are not deployed, fraudsters
can get access to the service without disclosing their identity
to the MNO, for example, taking advantage of prepaid phones,
“pooling” and delegation of mobile devices [7]. Due to Anti-
Money Laundering (AML) regulations in most countries, it is
compulsory for MMT service providers to report ML activities.
Therefore, ML detection is vitally important for MNOs to be
able to run mobile financial services and prevent reputation
risks. The goal of ML is to disguise the origin of illegal
incomes and make them appear legitimate using a range of
strategies to evade AML controls. One of the often practiced
techniques is smurfing that involves multiple third parties, so-
called “smurfs”, conducting money transfers on behalf of fraud-
sters, so that the transaction amounts are kept below reporting
levels [7], [8]. A smurf, or more commonly termed money
mule, is recruited by fraudsters as a financial intermediary who
accepts money from one fraudster and forwards it to another
fraudster for a fee. Mules are often engaged through the use
of phishing strategies, such as bogus jobs, and not aware that
they are dragged into illegal activities [9].

The common approach to fraud detection in MMT is to use
classical statistical methods such as machine learning and data
mining [10]–[13]. For example, neural networks are used in
industrial products by Visa [14] and M-Pesa [15]. However,
these methods need a training database, which for ML can
be difficult to obtain, and often produce results that are not
easy to interpret. A serious challenge for ML detection is that
fraudulent transactions may have parameters (e.g., amount,
frequency) very close to regular money transfers and be nearly
indistinguishable from the behavior of legitimate subscribers.

We propose an alternative method for ML detection in MMT
services that is able to identify fraudsters and money mules
engaged in a fraud chain. In contrast to the classical approaches,
this method does not depend on any prior information about
fraud patterns or samples of ML transactions, nevertheless,
it shows comparable (or better) recognition performance in
terms of the precision and recall metrics. At that, it allows
analyst efficiency to be increased giving interpretable alerts.
Our method for fraud chain detection builds on model-based
approach for event-driven process analysis Predictive Security
Analysis at Runtime (PSA@R) [16]. Essentially, the method
introduced in this paper is an extension to PSA@R that allows
us to define and synchronize processes on different abstraction
levels using synthetic events derived from the runtime behavior
of MMT users. As no public data on ML is available, we
evaluate the proposed method on simulated transaction logs
produced by an advanced MMT simulator based on a multi-
agent platform [17]. We use the same logs for the comparative
study of several machine learning algorithms in order to obtain
comparable results required to judge about the efficiency of the
new detection method. For evaluation purposes, we implement
our method as a plug-in to process modeling and verification
tool Predictive Security Analyzer (PSA) [18].

The remainder of this paper is organized as follows: Sec-
tion II presents the MMT ecosystem and defines the fraud
scenario. Section III discusses the state of the art in fraud
detection, and Section IV formulates the design goals and
introduces the alternative method for detection of fraud chains.
Section V reports the protocol of our experiments and discusses
the obtained results in comparison with machine learning al-
gorithms. Finally, Section VI concludes the paper and outlines
directions for future research.

II. FRAUD CHAINS IN MOBILE PAYMENTS

A. MMT Ecosystem

An MMT service is a complex ecosystem that involves an
MNO, a private bank, the country’s Central Bank in which
the service is deployed, and service subscribers. An MNO
provides infrastructure and communication services and in
partnership with a private bank emits electronic money called
mMoney [19]. mMoney is a digital equivalent of funds (cash)
that can be used solely within the service system to conduct
mobile-enabled financial operations, such as Airtime Recharge
(AR), Money Deposit (MD) and Money Withdrawal (MW),
Merchant Payment (MP), domestic and international Client-
to-Client transfer (C2C). End-users and retailers are service
subscribers, holding a prepaid mobile account mWallet stored
on an MMT platform. As shown in Fig. 1, in order to conduct
C2C transfer, end-user Alice needs to convert her cash to
mMoney and deposit its amount into her mWallet with the
help of the retailer R1. Then, Alice can use her mobile device
to transfer mMoney to Bob, if he is subscribed to the same
MMT service. On receiving the transfer, Bob can withdraw
cash from his mWallet at the retailer R2.

Money Withdrawal C2C Transfer Money Deposit

BobAlice

R1

Cash mMoney

A R2

CashmMoney

mWallet

B
mMoney

mWallet

Figure 1. C2C funds transfer using MMT service.

B. Fraud Scenario

The fraud scenario studied in this paper originates from an
often practiced ML technique known as micro-structuring of
funds or smurfing. Smurfing involves multiple third parties
or third party accounts that conduct money transfers on
behalf of fraudsters so that large amounts of “dirty” money
are distributed among a number of smaller transactions [8].
It allows fraudsters to hide ML activities from controllers
and evade AML reporting requirements, thus, reducing the
likelihood of fraud detection.

Definition 1 (Fraud chain): A fraud chain is a group of end-
users of an MMT service identified by their mobile accounts
that misuse the service to hide or disguise the origin of
funds and to evade monetary record keeping and AML report
requirements implemented by an MMT service provider to
control mMoney transfers. The fraud chain consists of a
sending fraudster, a receiving fraudster and intermediaries, i.e.
money mules or smurfs, involved in an ML activity. At that,
the length of a fraud chain is determined by the number of
money mules performing fraudulent transactions.

Definition 2 (Money Laundering activity): A Money Laun-
dering (ML) activity of a fraud chain can consist of one or
more ML operations occurring at arbitrary time intervals during
the observation period.

Definition 3 (Money Laundering operation): Each Money
Laundering (ML) operation represents a complete structured
money transfer between two fraudsters and consists of several
individual ML transactions between the fraudsters and the
mules belonging to the fraud chain.

If fraudsters want to act smart and use different mules for
every ML operation, then, the longer the observation period,
the higher the length of the fraud chain is.

We consider an ML scenario as depicted in Fig. 2. Fraudsters
Mallory and Oscar are end-users of an MMT service. Mallory
needs to transfer a large amount X of mMoney to Oscar and
does not want to leave any direct traces between their mobile
accounts that can be logged by the service platform or trigger

M3

U3

U1

U2

U4

R2

R1

Mallory

Oscar

x1 x2
x3

M2M1

Figure 2. Fraud scenario (smurfing).

an alarm on exceeding transaction amounts. Mallory recruits,
e.g. using phishing, n end-users as money mules, who form
her network of intermediaries participating in ML. For each
ML operation, Mallory selects an arbitrary number of mules
from this network and transfers to each mule Mi a small share
xi of the total mMoney amount to be “laundered”, such that∑

xi = X . In Fig. 2, the six corresponding ML transactions
are denoted with solid (red) lines. Mules keep a small fixed
percentage (≤ 10%) of the received mMoney as a service fee
and transfer the rest to Oscar.

The explored fraud scenario involves following assumptions:
(i) fraudsters and mules can make regular transactions (shown
with dotted (green) lines in Fig. 2), such as MD or C2C transfers,
along with ML transactions; (ii) mules do not make fraudulent
transfers among themselves.

III. STATE OF THE ART

A. Fraud Detection Database

There is a lack of publicly available databases for fraud
detection [10], [11] that prevents a sound comparison of
fraud detection techniques. Most studies on fraud detection
[10], [20] are based on private databases, and thus, cannot
be used for comparison. This can be easily understood as
responsible parties may be reluctant to disclose information
about vulnerabilities of their services and are obliged to
maintain privacy of their clients. In order to create such
databases, several attempts in different fields were undertaken
to produce synthetic data [21]–[23]. Simulators from [21],
[22] are dedicated to fraud in video-on-demand systems and
are not applicable in our case. The synthetic database [23]
targets MMT systems as well. However, it does not model the
MMT architecture and ML techniques such as smurfing. The
simulator introduced in [17], [24] enables the simulation of
more complex scenarios such as ML activities. For this reason,
we adopt it as a base for the MMT simulator used to create
synthetic databases for ML detection (cf. Section V-A).

B. Fraud Detection Techniques

Many techniques have been investigated for fraud detection,
mainly from the statistical and data mining field [10]–[13].
The easiest way is to use thresholds on transaction amounts or
any other statistical value, such as transaction or expenditure
rate [10]. Among the data-mining techniques, mostly used are
neural networks, SVMs, Bayesian network models, and naive
Bayes scoring. Here, we can also cite decision trees, decision
tables and logistic regression which are easier to interpret than
neural networks or SVMs. However, well-known industrial
actors still use quite old techniques: VISA implements neural
networks in the fraud detection tool RST performing real-time
scoring of transactions [14]. The M-PESA MMT service has
deployed MinotaurTM Fraud Management Solution based on
the use of business rules and neural networks [15].

Several machine learning techniques, such as SVM or
random forest, have gained prominence in the recent years.
Bhattacharyya et al. [13] made a comparative study of SVM,
random forest and logistic regression on a database of real-life

credit card transactions. While SVM and logistic regression
show good results, the random forest technique has the overall
better performance in their study. Gaber [24] presents a
comparative study of several machine learning algorithms on a
synthetic database of MMT transactions. The fraud cases relate
to theft and malicious infections of mobile phones. The studied
algorithms are Bayes net, naive Bayes, SVM, regressions,
nearest neighbors, decision table, decision tree and random
forest. The best algorithms in this study are PART decision
table, C4.5 decision tree and random forest. Lopez-Rojas and
Axelsson [23] show that random forest provides better results
than naive Bayes classifier and random tree on a synthetic
database of MMT transactions containing ML.

The survey by Sudjianto et al. [12] covers such methods
as SVM, decision trees (CART, C4.5, C5.0), neural networks,
Bayesian belief networks, hidden Markov models and link
analysis as well as unsupervised techniques, such as anomaly
detection and clustering. Bolton and Hand [10] overview fraud
detection methods, such as rule-based methods or link analysis.
However, these works do not give a clear comparison or rec-
ommendations regarding these techniques. A critique of fraud
detection techniques concerning their commercial applicability
is provided by Phua et al. [11]. The two main points are that
there is too much emphasis on non-linear supervised machine
learning techniques, such as neural networks or SVMs; and
that semi-supervised or unsupervised techniques are the only
data mining options for future approaches.

To the best of our knowledge, the only application of
business process analysis to fraud detection in MMT systems
was reported in [25]. A process model reflected transfer habits
of end-users. The detection was based on the assumption that
for each end-user the transaction amount is limited to a constant
range and does not suddenly change. Amount classes were
defined and transitions between these classes were monitored.
If an abnormal change was observed, an alert was generated
and the transaction was labeled as fraudulent. The fraud
scenario implied that fraudulent transactions have much lower
amounts than the average in the system. The work showed a
good performance with the recall of 80%-90% on modeled
transactions and 40%-45% on all fraudulent transactions.

IV. MODEL-BASED FRAUD DETECTION IN MMT SERVICE

A. Design Goals

The state of the art technologies for fraud detection in the
banking field may impose substantial limitations when applied
to MMT. Since in most cases supervised methods are used, a
good training database is vital for the reliable performance. The
problem is that for MMT services respective data are usually
not available. The chosen fraud scenario poses additional
difficulties: fraudsters tend to camouflage ML activities, so that
they would be statistically indistinguishable from the behavior
of a regular user. We aim to provide an alternative method for
fraud detection in MMT services achieving the following:

Recognition performance: The method is intended to
support analyst activity and should offer recognition perfor-
mance comparable to the state of the art. Considering that

parameters of ML operations may be very close to those of
legitimate transactions false positives are held acceptable and
deserving further investigation. False negatives, on the contrary,
are critical, because fraud committed with an MMT service
can have legal implications for its provider.

Usability: The method should increase analyst efficiency.
Usability in this case means that the method should be easy
to use, give meaningful alerts and reduce total alert volume,
offer comparable or better performance than traditional fraud
detection techniques. Alert reduction is an important goal
because the extensive number of alerts produced by a fraud
detection system affects reaction times and hinders its adoption.
For the same reason, alerts need to be easily interpretable and
signify actionable results. At that, detection delay – the time
span between a fraudulent event and its recognition – is a
major performance metric and should be minimal.

Autonomy: The method should not depend on availability
and relevance of training data and signature bases. For ML,
real samples of fraudulent operations are often unavailable.
Though simulated data sets can be used instead in some cases
(cf. Section III), we believe that such dependency would limit
the adoption. Signature-based methods use preset fields that
must be met to trigger a rule. As ML schemes are diverse and
flexible, the later is also considered to be restrictive.

Next we introduce our method for detection of fraud chains
related to ML; its pros and cons in comparison with classical
machine learning techniques will be discussed in Section V-D.

B. Predictive Security Analysis at Runtime (PSA@R)

As a basis for the fraud chain detection method proposed in
this paper we adopted a model-based approach for event-driven
process security analysis PSA@R [16]. Here we summarize
the concepts used for the analysis of the MMT system.

The core idea of PSA@R is to validate security compliance
of critical processes, evaluating events related to their execution
against formally defined workflows and security properties
of these processes. It enables identification and management
of changes in process behavior as well as early detection of
possible security requirement violations for proactive response.

Fig. 3 shows three major phases of PSA@R in the ap-
plication to an MMT system. Firstly, at the specification
phase, chosen MMT processes need to be formally defined.
At that, three interrelated formal models are created: process
model, event model and security model. An operational process
model is specified using Asynchronous Product Automata
(APA), a family of elementary automata [26]. PSA@R uses an
operational formal model of a process to compute its expected
behavior depending on the observed system state. The process
behavior is represented as a directed Reachability Graph (RG)
of an APA, whose nodes refer to states and labeled edges to
state transitions of the APA. State transitions are driven by
(internal) events extracted from the input event stream. An
event implies that a certain process action has been executed
resulting in a new state. An event model maps real events
(MMT transactions) to internal events filtering out information
not relevant for security analysis. A security model specifies

Figure 3. Phases of Predictive Security Analysis at Runtime in MMT system.

process security properties by means of finite-state automata,
so-called monitor automata [16], which define a set of security
states for each state of the RG. Security critical states of a
monitor automaton signify violations of security requirements.

At runtime, PSA@R performs monitoring and anomaly
detection in the MMT system. In order to verify the actual
process behavior, events from the input stream representing
actions of the MMT system are checked against the process
model of the originating process instance. PSA@R identifies
deviations from the expected workflow and produces alerts. For
security compliance control, PSA@R validates if the actual
process behavior meets the specified security properties. If an
event triggers a state transition in one of monitor automata
representing security properties, the state of the automaton
changes accordingly. In case a critical state is reached, a secu-
rity alert is generated. If PSA@R finds within the prediction
scope a possible state transition of a monitor automaton which
leads to a critical state it generates a predictive alert (warning).

PSA@R requires as input only descriptions of process
workflows that need to be verified at runtime and corresponding
security requirements, and does not use any other prior
information, such as samples of ML transactions. At that,
the underlying method of formal specification allows easy
interpretable alerts to be produced during runtime, since they
are linked to the states of the process or security model.

For the purpose of ML detection, we extend PSA@R with an
additional method allowing to reveal fraud chains. We describe
our contribution in the next section.

C. Revealing Fraud Chains

Detection of fraud chains in MMT services is a new
application scenario for PSA@R. One of the main challenges
in adoption of a model-based approach is to find a proper
abstraction level to define processes regarding ML activity,
otherwise the performance and usability are affected [25]. For
this reason, we had to extend PSA@R, namely, to add a
capability to define and synchronize processes on different
abstraction levels using synthetic events derived from the
monitoring data. Following PSA@R, we describe underlying
formal models and then introduce an algorithm which allows us
to identify fraudsters among end-users and reconstruct chains
of money mules used for ML. Further we refer to the proposed
detection method as the FCD (Fraud Chain Detection).

Event Model: We focus on the suspicious behavior of end-
users observed from incoming and outgoing transactions on
their mobile accounts. Events are propagated when an end-
user commits a transaction. The transactions log defines the
format of events received from the MMT system and contains
for every transaction T the sender s, receiver r and amount
a, along with other fields pi, omitted in the current study. We
define the event mapping as follows: T (s, r, a, pi)→ E(s, r, a).
Every internal event E(s, r, a) generates two actions: the
send(E) action related to the sender of the transaction T and
the corresponding receive(E) action for the receiver of this
transaction.

Process Model: We define an abstract ML process that
represents ML activity of a fraud chain. Each state of this
process refers to a money transfer between two fraudsters
made through the mediation of a mule. Fig. 4a shows an
RG for the ML process: the more nodes the graph has, the
more intermediary-enabled transfers were performed. Thus, the
number of the nodes determines the length of a fraud chain.
State transitions in this process model are driven by events
representing transactions committed in the MMT system. The
edges of the RG are labeled with the respective actions send,
receive, and laundering (cf. Fig. 4a). The actions send and
receive correspond to an individual process that represents the
behavior of end-users conducting C2C transfers. Instances of
this process are characterized by the user identifier available as
an attribute of the event, i.e. s or r. At that, an observed MMT
event changes the current process state for both the sender and
the receiver. Monitoring of individual processes allows us to
single out mule candidates and potential fraudsters, as senders
and receivers of transfers made with mWallets of the supposed
mules. A network process represents the behavior shown by a
group of end-users, in our case, by a pair of fraudsters, who
organized a fraud chain. An identifier of a network process
instance is an identifier of the fraudster pair. Multiple instances
of the network process refer to the same state of the abstract
ML process. When a new mule candidate appears, the synthetic
laundering action is generated, and the respective network
process proceeds to a new ML state (see algorithm FCD).

Security Model: We set a security goal for the individual
processes as follows: Mobile accounts in an MMT service
owned by end-users must not be used to conduct money
transfers on behalf of a third party. To determine if the
observed behavior of an end-user can be rated as ML activity
and single out mule candidates we use the following criterion:

Criterion 1: If for an mWallet of an end-user an outgoing
C2C transaction send with the amount asent and a previously
committed incoming C2C transaction receive with the amount
arec : arec − asent ≤ ∆a exists, then the user owning this
mWallet is labeled as a mule candidate; the sender s of receive
and the receiver r of send are labeled as fraudster candidates.
The parameter ∆a is a service fee charged by mules. It can vary
between fraud chains, but is constant for all ML operations
performed by the same chain. In accordance with [27], we limit
the fee to 0 < ∆a ≤ 10% in our experiments (cf. Section V-B).

M-1 M-4M-3M-2

receive

laundering

send

send

laundering

receive

receive

laundering

send

(a) Reachability graph of the ML process.

(,,laundering_cnt>lim());normal laundering

(b) Monitor automaton determining the length of ML fraud chains.

Figure 4. Process model and security model for ML detection

For the network processes, we formulate the following
security goal: End-users of an MMT service must not conduct
structured money transfers involving intermediate mobile ac-
counts. This goal is intended to rule out the behavior that helps
to disguise the original source and total amount of mMoney
transfer. To decide if end-users suspected to be money mules
are engaged into the same fraud chain we evaluate the criterion:

Criterion 2: f1 and f2 are fraudster candidates. If for each
of the two mule candidates m1 and m2 an outgoing C2C
transaction send : r = f2, and a previously committed
incoming C2C transaction receive : s = f1 exists, and
∆m1

a = ∆m2
a , then both mule candidates m1 and m2 belong

to the fraud chain (f1, f2).
Generally speaking, it is possible that in an MMT service

legitimate chains emerge. For example, parents can transfer
money to their child, so that s/he is able to pay the rent to the
landlord. But the length of such chains will be usually short
(in this scenario it equals 1). For this reason, we introduce a
detection threshold to enable the control over generated alerts.
The detection threshold defines the number of intermediaries
involved into transfers between two end-users. The higher this
number, the more likely the observed activity is ML. The
monitor automaton representing this condition is given by
Fig. 4b, where lim() refers to the detection threshold.

Algorithm FCD: An RG that describes the common behavior
of MMT end-users as well as the behavior of the parties
involved into ML is computed (see Fig. 4a). During simulation,
multiple process instances reflecting the end-user behaviors
and ML activities are assigned to this graph. The detection
algorithm verifies whether transitions in this processes occur.
As defined in the event model, every transaction (MMT event)
is mapped to the internal event E(s, r, a) that generates the
send(E) action and the corresponding receive(E) action. For
every receive(E) action the respective transactions are stored
in the transactions table RT under the identifier of the receiver
r of the event E :
RT [r] := RT [r] ∪ E
Based on the data stored in the element RT [s] of the table

RT for every send(E) action ML candidates are determined
by means of the function getlc. The result of this function is
a list of sending fraudster candidates. In the function getlc a
heuristics for the candidate selection is implemented based on
Criterion 1. In the laundering table LT all transactions related
to the particular fraudster pair (f1, f2) are stored. The function

check_laundering implements a heuristics defining whether
the laundering process for a fraudster pair continues, as given
by Criterion 2. The helper functions getr and gets deliver
the identifier of the receiver and the sender for a transaction
respectively. The pseudo code 1 describes the processing of
the send(E) action on an abstract level.

Algorithm 1 (FCD):
for f1 in getlc(E ,RT [gets(E)]) do

f2 := getr(E)
lid := (f1, f2)
if check_laundering(LT [lid], E) then

LT [lid] := LT [lid] ∪ E
generate_action(laundering, lid, E)

end if
end for
generate_action(receive(E), getr(E), E)

The function generate_action generates a new action (1st pa-
rameter) for a given process (2nd parameter) and is responsible
for state transitions in the RG for this process.

V. EXPERIMENTS

A. MMT Simulations

We use the MMT simulator from [17], [24] to generate a
database needed to conduct experiments on ML detection. As
the simulator presented in [23], this one is based on a multi-
agent platform. However, it simulates both the MMT system
and users of this system, as well as the habits of end-users.

The simulated platform is made of (1) a front office which
interacts with users and processes operation requests and
connections to the service, (2) an account management system
which controls accounts and processes financial operations, (3)
a logs server and (4) a data warehouse which registers the
history of the front office and the account management. The
payment sequence expects the following pattern [28]: (1) au-
thentication, (2) transmission of sender’s payment instructions
and transaction details to the MMT platform, (3) authorization
by the MMT platform, (4) credit and debit on the receiver’s
and sender’s accounts. A log entry is created when a simulated
user carries out a transaction and registered in the transaction
database, after the account management system. Each entry
contains the transaction type, the transaction amount, the sender
and receiver pre- and post-transaction balance, the sender and
receiver category, and the transaction date. The generated
database contains all simulated transactions for several months.

Three categories of legitimate actors are involved in the
MMT system: End-users, Merchants and Retailers. Each
category consists of several roles that are associated with
specific actions in the platform. End-users are individuals who
use their mobile devices to access the MMT platform and carry
out transactions. Merchants sell services or goods to end-users.
Retailers are in charge of the distribution of electronic money.

The simulation is based on the assumption that legitimate
users’ transactions are mostly related to their habits. A habit
is a repetition of a sequence of legitimate transactions which
are characterized by (1) a type of transaction, (2) a normally

(a) End-user 1 (b) End-user 2

Figure 5. Two end-users of MMT system with different habits.

distributed transaction amount, (3) a normally distributed
period of time between two transactions of the considered
habit, (4) an initial date and (5) a final date. A user’s behavior
is composed of a set of habits H = {H1, ...,Hi, ...,Hn},
where Hi is a habit for one specific type of transaction. Habits
assigned to end-users come from a list of five available habits:
Money Deposit (MD), Money Withdrawal (MW), Merchant
Payment (MP), Client-to-Client transfer (C2C) and Airtime
Recharge (AR). Fig. 5 presents two different configurations for
end-users. Their sets of habits differ. They can have common
habits that may be configured with different parameters.

The malicious behavior of fraudsters and mules is also
modeled as habits. Thus, fraudsters and mules are selected
randomly from the end-users, and the respective habit is added
to their habits. Each sending fraudster is associated with a list
of mules representing the mules recruited by the fraudster. The
behavior of the sending fraudster is to launch ML operations on
a regular time basis. To launch an ML operation, she chooses
several mules from the list, splits the amount of money to be
laundered, and sends the money to the chosen mules within a
short interval of time. On receiving the money, a mule transfers
it to the receiving fraudster within a day keeping a fee.

Configuration of the MMT simulator: We created 10,000
end-users, who have between 1 and 4 habits. Table I presents
the percentage of end-users with respect to the number of habits
they have. The table also shows, which habits are associated
with end-users depending on the number of their habits. For
example, the majority 63.17% of created end-users have only
1 habit and 26.30% have 2 habits. The AR habit is shown by
60.35% of the users with 2 habits. According to these figures,
end-users with 1 habit mostly conduct AR and few MD, while
those with two or more habits use much more MD and C2C.

From among these end-users, we created 10 fraud chains
made of a sending fraudster, a receiving fraudster, and several
mules. All these parties are chosen randomly among the end-
users. Each fraud chain has a different number of mules, and
a varying number of mules is used for ML operations. This
configuration is presented in Table II. For example, fraud chain
7 has 7 mules, but only 4 of them, randomly chosen, are used
for each ML operation. The fee rate is fixed randomly, but is

Table I
PARTITION OF END-USERS AND HABITS BY THE NUMBER OF HABITS

1 habit 2 habits 3 habits 4 habits
Part of end-users 63.17% 26.30% 8.67% 1.86%
MD 11.54% 82.37% 97.66% 98.91%
MW 2.76% 18.86% 46.73% 97.83%
MP 0.22% 2.46% 3.50% 6.52%
C2C 2.79% 35.95% 63.55% 100%
AR 82.69% 60.35% 88.55% 96.74%

Table II
PARTITION OF MULES NUMBER AMONG FRAUD CHAINS

Fraud chain 1 2 3 4 5 6 7 8 9 10
No. mules recruited 3 3 5 5 5 7 7 7 7 7
No. mules used 3 3 3 4 5 3 4 5 6 7

Table III
CONFUSION MATRIX

Predicted normal Predicted fraudulent
Actual normal True negative (TN) False positive(FP)
Actual fraudulent False negative (FN) True positive (TP)

the same for all mules from the same fraud chain. The sending
fraudster conducts an ML operation approximately each month.

Two databases were created. The first, database A, is used
for the training phase of machine learning algorithms. It covers
four months of data and contains 272,038 transactions, among
which 329 are fraudulent representing 38 ML operations. The
second, database B, used for the validation of ML detection
techniques, represents seven months and contains 466,359
transactions, with 611 fraudulent ones for 72 ML operations.

Fig. 7a shows when each fraud chain performed an ML
operation. Each cross on the figure represents an ML transac-
tion and each cluster of crosses represents an ML operation.
We can see that there is approximately a month between the
ML operations. The ML activity of each fraud chain lasts
throughout the seven months of the simulation.

B. Experiment Setup

The objective of the experiment is to compare the efficiency
of several machine learning algorithms and the proposed FCD
method for ML detection based on PSA@R, using the same
database generated by the simulator. To evaluate the applica-
bility of our model-based method for fraud chain detection we
implemented it as an AML plug-in to the process modeling
and verification tool PSA [18], [25]. For the machine learning
algorithms, we used the Weka toolbox [29]. As presented in
section III, we selected the PART decision table [30], the C4.5
decision tree [31] and the random forest algorithm [32].

The machine learning algorithms used a data format ag-
gregated from the original transaction logs. We added fields
computed over time to have more information on each trans-
action. We computed the minimum, maximum, mean, and the
total amount of transactions emitted by the sender within
a week, as well as the number of transactions, and the
number of transactions with the receiver. We did the same data
aggregation over a day and an hour. We also kept some original
fields, such as the type and amount of the transaction, the
sender’s and receiver’s category, and the date of the transaction.
This format was proved to be more efficient for machine
learning algorithms than the original one [24].

The machine learning algorithms are trained on database A
and tested on database B. The PSA is tested on database B.
The performance metrics for the evaluation are the precision
and the recall regarding fraudulent transactions. These metrics
are extracted from the confusion matrix presented in table III.

Table IV
ML DETECTION RESULTS FOR MACHINE LEARNING ALGORITHMS

PART C4.5 Random Forest
N F N F N F

Actual normal 465,721 27 465,741 7 465,740 8
Actual fraud 397 214 381 230 385 226
Precision 88.79% 97.04% 96.58%
Recall 35.02% 37.64% 36.98%

The precision, computed as TP
TP+FP , should be possibly high

in order to avoid false alarms that would require time to
investigate and might block legitimate end-users in real MMT
systems. The recall, computed as TP

TP+FN , should also be high,
as it means that a fraud chain is discovered faster.

C. Results

We present results of the three selected machine learning
algorithms in Table IV. The figures reveal that the C4.5
decision tree and the random forest work better than the PART
decision table. The C4.5 decision tree and the random forest
show roughly the same results, with the precision around 97%
and the recall around 37%. However, the C4.5 decision tree has
slightly better performance. Even though the precision is good,
the recall is quite low for all three algorithms. A closer look
at this result suggests that for all ML operations at least one
transaction is labeled as fraudulent. Fig. 7b depicts the result
of the PART decision table algorithm. Each cross corresponds
to a true positive, and circle to a false positive. False negatives
are not presented for readability reasons.

Comparison of Fig. 7a and Fig. 7b shows that all 72
ML operations have been detected, but not all transactions
from an ML operation were labeled. In general, the first
two transactions from the sending fraudster to mules are not
classified as fraud, neither the transactions from mules to the
receiving fraudster. This explains the recall of 35%. Thus, it
would require additional efforts to detect the complete fraud
chains. Results for C4.5 detection tree algorithm are presented
in Fig. 7c. Similarly, each ML operation can be detected with
some investigation. Results of the random forest,not pictured
here, are very close to those of the C4.5 algorithm.

Table V shows results for the FCD acquired with the detec-
tion threshold of 3. The precision and recall are, respectively,
of 99.8% and 90.1%, which is a way better than in case of
machine learning algorithms. In Fig. 7d, presenting the result
for PSA@R, the crosses denote positively labeled transactions.
Thus, the cross on the FP line is a false positive, while the
others are true positives. The circle corresponds to the negative
detection, so the circles on each fraud chain line are false

Table V
ML DETECTION RESULTS FOR THE FCD

Normal Fraudulent
Actual normal 465,747 1
Actual fraudulent 60 551
Precision 99.81%
Recall 90.18%

negatives. We can see that with the detection threshold of 3
the FCD can miss ML operations (chains 1, 2, 3 and 6) if the
fraud chain length is lower than this threshold (< 3).

Notice that once a fraud chain is detected, all subsequent
transactions are correctly detected as fraudulent. In Fig. 7d
a time interval before fraud chain is detected and fraudulent
transactions can be identified is denoted as tpsa. This interval
depends on the chosen detection threshold and can be shortened
by lowering its value. We suppose that in this case there might
be a trade-off between detection delay and false positive rates,
but we could not prove this consideration on our testing data.

We also have investigated the effect of using a sliding time
window on the FCD detection capabilities. As the number of
end-users in an MMT service is usually high, we addressed
a scenario, when the proposed method meets its performance
limits. One of possible solutions in such situation is to restrict
the number of monitored ML processes to a sliding window,
and discard candidates that are outside this window (see
Section IV-C). We have made tests with sliding windows of
sizes from one to six months (see Fig. 6). In all cases, the FCD
was able to correctly detect fraud chains. At that, the smaller
the size of the sliding window, the more fraud chains are
detected. The reason is that for the same pair of fraudsters all
mules involved in transactions over a longer observation period
are ascribed to the same chain, while for a smaller sliding
window a new chain is created. Thus, the number of detected
chains is larger, while the chains themselves are shorter.

D. Discussion

We have shown that both machine learning algorithms and
the proposed FCD method enable fraud chains detection related
to ML activity. The precision is quite good in both cases,
and only few false positives appear, even though simulated
ML operations had parameters very close to regular transfers.
However, we see several advantages of the new chain detection
method based on PSA@R. Firstly, according to the overview of
existing techniques for fraud detection presented in Section III,
for operational reasons, semi-supervised or unsupervised ap-
proaches are to be preferred. This holds in case of PSA@R,
in contrast to supervised machine learning algorithms which
require a training database to work. In this sense, the proposed
method is autonomous, depending only on specifications of
processes, whose security compliance needs to be verified.

0

10

20

30

40

50

60

1m 2m 3m 4m 5m 6m

N
um

be
ro

fc
ha

in
s

Sliding window, months

Figure 6. Effect of sliding time window on the FCD fraud chain detection.

The FCD also demonstrates better precision and recall than
for machine learning algorithms. At that, machine learning
algorithms can only label individual transactions leaving the
task of fraud chain detection to an analyst, while the FCD
singles out fraud chains immediately. This leads to much less
effort during the investigation of alarms raised by a fraud
detection tool. Such system would then show better usability
and be more economic for a bank or an MMT service provider.

We see a potential advantage of machine learning algorithms
in that suspicious activity can be detected earlier, although
with additional investigation overhead. The comparison of ML
detection results for both approaches presented in Fig. 7 shows
that in case of the FCD there is a delay between the beginning
of ML activity and its recognition. During this time span
the respective fraud detection tool would not give any “hints”
about the conducted fraud. This delay could be minimized
by selecting a proper detection threshold. In this respect, we
analyzed the influence of the fraud chain length. We have
found that when there are few mules in the chain, it might
be more complicated to detect the chain, and lower detection
thresholds should be set. However, the higher the amount of
money a fraudster wants to transfer, the higher the chain length
will be. Thus, a critical ML activity can be detected already
with the first ML operation.

The computational performance of both approaches is
satisfying, with analysis of all 466,359 transactions (10,000
end-users) of database B done within minutes on a standard
computer. Nevertheless, considering that modern MMT ser-
vices such as M-PESA number millions of users, we have
experimented with time sliding windows as a means to solve
performance issues that might occur when the FCD is deployed
in a real MMT environment. The experiment proved that
using a sliding window in order to reduce the number of
simultaneously monitored processes could provide a plausible
solution, since it does not affect the recognition performance.

As no public data on ML is available, we evaluated both
machine learning algorithms and the FCD method on simulated
transaction logs. At that, the use of a simulated database
might introduce a detection bias. Indeed, even though we
reproduce the normal behavior correctly according to a real-
world database, the fraudulent behavior is defined based
on the modeled fraud scenario. Such a bias could help to
detect the fraudulent cases. However, as all methods used in
the comparative study can exploit this bias, the comparison
between algorithms is reasonable. An experiment with actual
real-world data might present different results, but the order
of algorithms regarding their performance should be the same.

We designed the FCD method bearing in mind the MMT use
case. What makes ML techniques such as smurfing possible
in MMT systems is the availability and ease-of-use of the
MD, C2C and MW operations. These operations are not always
available, as with traditional e-banking, in particular, the C2C.
However, in case such operations are available, for example,
in bitcoin transactions, the proposed detection method could
be also applied provided it is tuned for the use case. Indeed, as
users of a different service may behave differently compared to

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

01/07 01/08 01/09 01/10 01/11 01/12

F
ra

u
d
 c

h
a
in

s

Time

(a) Ground truth: simulated ML transactions.

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
FP

01/07 09:00:00 01/08 19:00:00 01/09 06:00:00 01/10 16:00:00 01/11 03:00:00 01/12 13:00:00

Fr
au

d
ch

ai
ns

Time

(b) Detection of ML transactions with PART decision table [30]: crosses denote true positives and circles – false positives.

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
FP

01/07 09:00:00 01/08 19:00:00 01/09 06:00:00 01/10 16:00:00 01/11 03:00:00 01/12 13:00:00

Fr
au

d
ch

ai
ns

Time

(c) Detection of ML transactions with C4.5 decision tree [31]: crosses denote true positives and circles – false positives.

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
FP

01/07 09:00:00 01/08 19:00:00 01/09 06:00:00 01/10 16:00:00 01/11 03:00:00 01/12 13:00:00

Fr
au

d
ch

ai
ns

Time

tpsa

(d) Fraud chain detection with the FCD method: crosses denote positively labeled transactions, while circles – negatively labeled; tpsa – detection delay.

Figure 7. Comparison of ML detection results obtained with different detection approaches.

the MMT service subscribers, the transactions database might
present different characteristics.

VI. CONCLUSION

The rapid expansion of MMT services is an incentive for
fraudsters, and the detection of ML activities is compulsory for
MNOs providing these services. Therefore, detection tools are
quite important: they must be efficient in terms of detection
and easy to use. Semi-supervised or unsupervised detection
tools seem to be the way to go, as they do not need a
training database that might be difficult to obtain. Thus,

classical supervised machine learning tools, even though they
demonstrate quite good detection rates, in some application
scenarios might not be as efficient as other techniques.

In this paper we proposed an alternative, model-based ML
detection method that is able not only to identify individual
fraudulent transactions, but detect complete fraud chains, i.e.,
end-users of an MMT service acting as fraudsters and money
mules (or smurfs). This method extends an approach for event-
driven process security analysis PSA@R [16] and enables its
application to detection of fraud chains in ML scenarios. In
order to prove the efficiency of our method we compared

it with several classical machine learning algorithms using a
synthetic database produced with an MMT system simulator.
The recognition performance shown by the FCD method is
better compared both to machine learning algorithms and
business process analysis from [25], with precision and recall
of 99.8% and 90.1% correspondingly.

Though with the fraud chain detection deployed an MNO
would be able to identify and potentially block phone numbers
used by fraudsters, the prosecution would be possible only if
the owner of this number can be found, which is often not the
case [7]. For the future work, we plan to further extend this
approach to detect other types of fraud conducted in MMT
services, for example, agent frauds, such as split deposits and
split withdrawals [5]. We also look into questions related to
the integration of the proposed fraud chain detection method
with an account management system or an AML system. This
includes definition of interfaces and elaboration of models and
alert formats, so that the target system could “understand” the
received alerts and provide adequate response. Beside that we
investigate possibilities to verify our ML detection results in
a field study with an MMT service provider.

ACKNOWLEDGMENT

The presented work was developed in context of the project
MASSIF (ID 257475) co-funded by the European Commission
and ACCEPT (ID 01BY1206D) funded by the German Federal
Ministry of Education and Research.

REFERENCES

[1] S. Shen, “Forecast: Mobile Payment, Worldwide, 2013 Update.
G00248364,” http://www.gartner.com/doc/2484915, Gartner, Tech. Rep.,
2013, last visit on 18/06/2014.

[2] C. Pénicaud, “State of the industry: Results from the 2012 global mobile
money adoption survey,” http://www.gsma.com/mobilefordevelopment/
state-of-the-industry-2012, GSMA, Tech. Rep., 2013, last visit on
18/06/2014.

[3] K. Banks, “The invisible bank: How kenya has beaten the world in
mobile money,” http://newswatch.nationalgeographic.com/2012/07/04/
the-invisible-bank-how-kenya-has-beaten-the-world-in-mobile-money/,
July 2012, last visit on 18/06/2014.

[4] Orange, “Orange money,” http://www.orange.com/en/press/press-
releases/press-releases-2012/Orange-Money-reaches-4-million-
customers-and-launches-in-Jordan-and-Mauritius, June 2012, last
visit on 18/06/2014.

[5] J. L. Mudiri, “Fraud in Mobile Financial Services,” http://www.microsave.
net/resource/fraud_in_mobile_financial_services, MicroSave, Tech. Rep.,
2012, last visit on 18/06/2014.

[6] National Drug Intelligence Center, “Money Laundering in Digital
Currencies. No.2008-R0709-003,” http://www.justice.gov/archive/ndic/
pubs28/28675/, U.S. Department of Justice, Tech. Rep., 2008, last visit
on 18/06/2014.

[7] P. Chatain, A. Zerzan, W. Noor, N. Dannaoui, and L. de Koker,
Protecting Mobile Money against Financial Crimes: Global Policy
Challenges and Solutions, ser. Directions in Development. World Bank
Publications, 2011. [Online]. Available: http://books.google.de/books?
id=jvi9BwJr6TkC

[8] Australian Transaction Reports and Analysis Centre (AUSTRAC),
“Money Laundering in Australia 2011,” http://www.austrac.gov.au/
money_laundering_in_australia_2011.html, Tech. Rep., 2011, last visit
on 18/06/2014.

[9] D. Birk, S. Gajek, F. Grobert, and A. Sadeghi, “Phishing phishers -
observing and tracing organized cybercrime,” in Internet Monitoring
and Protection, 2007. ICIMP 2007. Second International Conference on,
2007, pp. 3–3.

[10] R. Bolton and D. Hand, “Statistical fraud detection: A review,” Statistical
Science, pp. 235–249, 2002.

[11] C. Phua, V. Lee, K. Smith-Miles, and R. Gayler, “A comprehensive sur-
vey of data mining-based fraud detection research,” Artificial Intelligence
Review, 2005.

[12] A. Sudjianto, S. Nair, M. Yuan, A. Zhang, D. Kern, and F. Cela-Díaz,
“Statistical methods for fighting financial crimes,” Technometrics, vol. 52,
no. 1, 2010.

[13] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, 2011.

[14] VISA, “Security and trust at every level,” http://www.visaeurope.com/
en/about_us/security.aspx, last visit on 22/03/2013.

[15] Neural technologies, “MinotaurTM Fraud Detection Software - Finance
Sector,” http://www.neuralt.com/fraud_detection_software.html, last vis-
ited on 18/06/2014.

[16] R. Rieke, J. Repp, M. Zhdanova, and J. Eichler, “Monitoring security
compliance of critical processes,” in Parallel, Distributed and Network-
Based Processing (PDP), 2014 22th Euromicro International Conference
on, 2014.

[17] C. Gaber, B. Hemery, M. Achemlal, M. Pasquet, and P. Urien, “Synthetic
logs generator for fraud detection in mobile transfer services,” in
International Conference on Collaboration Technologies and Systems,
2013.

[18] P. Verissimo et al., “MASSIF Architecture Document,”
http://www.massif-project.eu/sites/default/files/deliverables/MASSIF_
Architecturedocument_v15_final.zip, April 2012.

[19] W. Jack, S. Tavneet, and R. Townsend, “Monetary theory and electronic
money: Reflections on the kenyan experience,” Economic Quarterly,
no. 96, First Quarter 2010 2010.

[20] Y. Sahin and E. Duman, “Detecting credit card fraud by decision
trees and support vector machines,” in International MultiConference of
Engineers and Computer Scientists, 2011.

[21] E. Lundin, H. Kvarnström, and E. Jonsson, “A synthetic fraud data
generation methodology,” in Information and Communications Security,
ser. Lecture Notes in Computer Science, R. Deng, F. Bao, J. Zhou, and
S. Qing, Eds. Springer Berlin Heidelberg, 2002, vol. 2513, pp. 265–277.

[22] E. Barse, H. Kvarnström, and E. Jonsson, “Synthesizing test data for
fraud detection systems,” in Computer Security Applications Conference,
2003. Proceedings. 19th Annual, 2003, pp. 384 – 394.

[23] E. Lopez-Rojas and S. Axelsson, “Multi agent based simulation (mabs)
of financial transactions for anti money laundering (aml),” in Nordic
Conference on Secure IT Systems. Blekinge Institute of Technology,
2012.

[24] C. Gaber, “Sécurisation d’un système de transactions sur terminaux
mobiles,” Ph.D. dissertation, Université de Caen Basse-Normandie,
October 2013.

[25] R. Rieke, M. Zhdanova, J. Repp, R. Giot, and C. Gaber, “Fraud detection
in mobile payment utilizing process behavior analysis,” in International
Conference on Availability, Reliability and Security, ARES 2013. IEEE
Computer Society, 2013, pp. 662–669.

[26] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche, “The
sh-verification tool – abstraction-based verification of co-operating
systems,” Formal Aspects of Computing, The International Journal
of Formal Method, vol. 10, pp. 381–404, 1998. [Online]. Available:
http://sit.sit.fraunhofer.de/smv/publications/download/FormAsp.ps

[27] M. Aston, S. McCombie, B. Reardon, and P. Watters, “A preliminary
profiling of internet money mules: An australian perspective,” in Ubiqui-
tous, Autonomic and Trusted Computing, 2009. UIC-ATC’09. Symposia
and Workshops on, July 2009, pp. 482–487.

[28] M. Llanes, E. Prieto, R. Diaz, , L. Coppolino, A. Sergio, R. Cristaldi,
M. Achemlal, S. Gharout, C. Gaber, A. Hutchison, and K. Dennie,
“Scenario requirements (public version),” FP7-257475 MASSIF European
project, Tech. Rep., April 2011.

[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[30] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” 1998.

[31] J. R. Quinlan, C4. 5: programs for machine learning. Morgan kaufmann,
1993, vol. 1.

[32] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

