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Abstract—Processing-in-cache (PiC) and Processing-in-
memory (PiM) architectures, especially those utilizing bit-line
computing, offer promising solutions to mitigate data movement
bottlenecks within the memory hierarchy. While previous
studies have explored the integration of compute units within
individual memory levels, the complexity and potential
overheads associated with these designs have often limited their
capabilities. This paper introduces a novel PiC/PiM architecture,
Concurrent Hierarchical In-Memory Processing (CHIME), which
strategically incorporates heterogeneous compute units across
multiple levels of the memory hierarchy. This design targets
the efficient execution of diverse, domain-specific workloads
by placing computations closest to the data where it optimizes
performance, energy consumption, data movement costs, and
area. CHIME employs STT-RAM due to its various advantages
in PiC/PiM computing, such as high density, low leakage, and
better resiliency to data corruption from activating multiple
word lines. We demonstrate that CHIME enhances concurrency
and improves compute unit utilization at each level of the
memory hierarchy. We present strategies for exploring the
design space, grouping, and placing the compute units across
the memory hierarchy. Experiments reveal that, compared to
the state-of-the-art bit-line computing approaches, CHIME
achieves significant speedup and energy savings of 57.95% and
78.23% for various domain-specific workloads, while reducing
the overheads associated with single-level compute designs.

Index Terms—Processing-in-cache (PiC), Processing-in-
memory (PiM), concurrency, hierarchical computing, STT-
RAMs, domain-specific computing.

I. INTRODUCTION

Data bottlenecks stemming from the memory hierar-
chy of contemporary computing systems remain a major
performance-limiting factor, hindering the full potential of
modern applications in von Neumann computing systems. This
bottleneck arises from the increasing gap between processor
speeds and the latency of data transfer across different memory
hierarchy levels. As a result, processors often spend significant
cycles idle, waiting for data, which hampers the performance
of data-intensive workloads across domains like artificial in-
telligence, scientific computing, and real-time analytics. To
address this issue, prior works have proposed the integration
of compute units within the memory to enable processing in
cache (PiC) and processing in memory (PiM) using bit-line
computing [1]–[3] to mitigate the overhead associated with
data transfers.

Bit-line computing is a computational approach that lever-
ages the bit lines of memory architectures. By directly modu-
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Fig. 1: A compute unit with logical, add, subtract, shift,
compare, and multiply operations adds significant overhead
to a traditional cache/memory.

lating the voltages or currents on these bit lines, computations
on data (e.g., AND, OR, XOR operations) that share the
same bit-line within a subarray can be achieved by activating
multiple word lines. Previous research has predominantly
focused on SRAM for Processing-in-Cache (PiC) and DRAM
for Processing-in-Memory (PiM), driven by the premise that
PiC and PiM may benefit different workloads in terms of
energy and performance [1], [3]. However, deploying bit-
line computing in SRAMs requires additional mechanisms
to avoid data corruption from multiple word-line activations,
increasing area overheads and memory access latencies [4].
DRAMs, meanwhile, require constant refreshing before bit-
line computing operations, leading to energy overheads [5].

STT-RAMs (Spin-Transfer Torque RAMs) have become an
attractive option for bit-line computing, supporting both PiC
and PiM operations. STT-RAMs have distinct read and write
currents, which help mitigate data corruption issues, and their
non-volatility eliminates the need for constant refreshing [2].
Previous work on bit-line computing with STT-RAMs primar-
ily assessed the performance of primary compute operations
at specific memory hierarchy levels [1], [2]. The simplicity
of these operations, mainly focusing on logical and addition
operations, limits their real-world applicability, which often
demands both simple and complex operations (e.g., multipli-
cation). However, incorporating complex compute units for a
broader range of operations in a single memory hierarchy level
is impractical due to high area and latency costs.

To demonstrate the challenges of deploying complex com-
pute units in a single memory level, we performed experiments
on L1 and L2 caches and main memory. These units featured
operations, such as logical operations, shifts, additions, sub-
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tractions, multiplications, and comparisons. Our experimental
setup is detailed in Section V. Our findings, illustrated in
Figure 1, show that these compute units increased the access
latency and area by 2.7x and 25% for the L1 cache, and 1.58x
and 35.71% for the L2. In the best case (with the lowest over-
head), the latency and area increased by 53.02% and 12.75%
for the main memory. These results highlight the substantial
overheads associated with integrating complex compute units
within traditional memory structures. This motivates us to
introduce a novel approach called Concurrent Hierarchical
In-Memory Processing (CHIME), which opportunistically dis-
tributes compute units across the memory hierarchy, enhancing
computational concurrency while reducing overhead. As such,
a broader range of operations can run in-cache or in-memory,
while mitigating the overheads of provisioning a single mem-
ory hierarchy level with all the needed compute units.

To realize CHIME, we explore design-space exploration
strategies for grouping compute units across memory hierar-
chy levels. Since compute units typically outnumber memory
levels, we propose a domain-specific approach that creates
compute groups with heterogeneous compute units to match
the memory levels, mitigating data transfer overheads across
a range of workloads. We also explore strategies for mapping
these compute groups to specific memory hierarchy levels and
demonstrate how CHIME enhances throughput by enabling
concurrent bit-line computing at multiple memory hierarchy
levels.

In summary, this paper makes the following important
contributions:

• We introduce CHIME, a novel approach to hierarchi-
cal computing that utilizes heterogeneous compute units
at various levels of the memory hierarchy tailored for
complex bit-line computing operations across a range of
operations in an application or domain.

• We propose pipelined hierarchical computing to enable
concurrency among compute units across different mem-
ory levels, facilitating faster program execution.

• We present domain-specific design space exploration
strategies for grouping and mapping diverse compute
units to different memory hierarchy levels, given a set
of workloads.

• Our experimental results demonstrate significant im-
provements in latency and energy, 81.16x and 20.13x,
respectively, compared to traditional CPU-based com-
puting. CHIME also outperforms prior in-memory com-
puting work, improving latency and energy by 57.95%
and 78.23%, respectively, without introducing significant
overheads.

II. BACKGROUND AND RELATED WORK

STT-RAMs are gaining prominence as a memory tech-
nology due to their attractive combination of non-volatility,
negligible leakage power, high density, endurance, and demon-
strated commercial viability [6]. At their core, STT-RAM cells
consist of a magnetic tunnel junction (MTJ) and an access
transistor. The MTJ comprises two ferromagnetic layers (a

free and a fixed layer) separated by an oxide layer [7]. Data
is stored by altering the magnetization direction of the free
layer relative to the fixed layer. However, this change in
magnetization through spin-transfer torque incurs a trade-off:
higher write latency and energy costs compared to traditional
volatile memory technologies [8].

A. Relaxed retention STT-RAM

To mitigate STT-RAM write overheads, Smullen et al. [8]
proposed relaxing how long an STT-RAM cell can maintain
its stored data (i.e., the retention time). This can be achieved
by altering the cell’s magnetization saturation or effectiveness
of the cell. We employ relaxed retention STT-RAM caches to
mitigate the high write latency and energy as described in [9].
Kuan et al. [10] explored STT-RAM caches in CPU-based
computing, finding that different retention times optimize
workloads based on their read-write ratios and cache block
lifetimes. However, Gajaria et al. [1] found that for bit-line
computing on relaxed retention time caches, a homogeneous
retention time can accommodate all workloads if the retention
time exceeds the time required to load each cache line from the
memory hierarchy’s lowest level. Building on these insights,
we use a homogeneous reduced retention time for our caches
and non-volatile STT-RAM for main memory.

B. Bit-line computing in STT-RAM

Bit-line computing excels within non-volatile memories
(NVMs) and SRAMs compared to DRAMs due to DRAM’s
inherent need for frequent refresh cycles [5]. This refresh
requirement disrupts the computations performed directly on
the bit-lines. To ensure reliable bit-line operations, a key
requirement is the full recharging of source operand bit-lines.
Previous studies have addressed this by explicitly refreshing
the source operands prior to computation [11]. This approach
ensures consistent voltage levels on the bit-lines, enabling
accurate in-memory calculations.

Unlike DRAMs, however, NVMs do not require constant
data refreshes. Several prior studies have explored processing-
in-memory (PiM) using NVMs [2], [12]. For instance, Jain
et al. [2] proposed using bit-line computing with STT-RAM
memories, featuring a compute unit that supports operations
such as AND, OR, NOR, NAND, NOT, XOR, and ADD.
Although Processing-in-Cache (PiC) has received relatively
less attention than PiM, prior research [3], [13] has demon-
strated its potential to mitigate data transfer overheads in
specific workloads where PiM might not be as advantageous.
Most related to our work, Gajaria et al. [1] investigated STT-
RAM-based bit-line computing at different memory hierarchy
levels. Their findings suggest that the optimal placement for
such computations depends on the workload characteristics.
However, their work only focused on logical and add opera-
tions and did not cover other operations like multiplication,
shift, comparator, etc. As such, operations not covered by
the compute units were performed on the CPU, leading
to a significant (up to 14x) reduction in the potential per-
formance and energy optimization. Furthermore, while they
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Fig. 2: High-level overview of the proposed hierarchical in-
memory processing approach, illustrating the flow of data and
computation between low latency reduced retention STT-RAM
caches (PiC) and non-volatile STT-RAM main memory (PiM).

only examined scenarios where all the compute units reside
entirely within a single memory level, our work explores the
benefits of opportunistically distributing a wide range of bit-
line computing operations throughout different levels of the
memory hierarchy.

III. CHIME ARCHITECTURE

While provisioning the main memory with all the in-
memory compute units offers benefits, distributing compute
units strategically across the memory hierarchy provides fur-
ther advantages. Apart from enabling a higher throughput
through concurrent hierarchical computing, this design recog-
nizes the heterogeneous nature of workloads and their diverse
computational requirements. This strategic placement not only
balances performance with cost considerations but also sig-
nificantly improves energy efficiency. Additionally, CHIME’s
distributed processing capabilities can exploit the transient na-
ture of data blocks in some workloads. As data moves around
the memory hierarchy, computations can be performed closer
to the data’s current location, further optimizing performance
and energy consumption.

Figure 2 presents the CHIME system model, where the
memory hierarchy levels (L1, L2, and main memory) contain
different compute unit groups, catering to diverse compute de-
mands. Unlike prior work, where unhandled complex compu-
tations are sent to the CPU, triggering significant performance
loss and unnecessary data transfer [1], CHIME optimizes
computations using bit-line computing across the memory
hierarchy. Importantly, CHIME’s hierarchical bit-line comput-
ing offers low access latencies (thanks to reduced retention
caches) and high throughput, which helps offset the overheads
associated with transferring data from main memory to the
appropriate compute level (L2 or L1) when necessary. These
benefits are reflected in our experimental results (Section VI).
Computations are only delegated to the CPU if the operation
is unsupported within the compute units or the computation’s
characteristics (like highly sequential operations) would not
gain significant performance advantages from in-memory or
in-cache execution. This section briefly describes our bit-line
computing architecture, compute unit designs, and strategy for
enhancing concurrency throughout the memory hierarchy.

A. Bit-line computing architecture

Figure 3 illustrates the bit-line computing architecture where
multiple word lines within a subarray are activated simul-
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Fig. 3: Illustrations of (a) modified sense amplifiers for bit-
line computing, (b) STT-RAM cache subarray of MTJ cells
with compute units after sense amplifiers, (c) components of
a cache block with (d) a 2-bit cache monitor counter.

taneously. The resulting bit-line charges (Ibl) are sensed by
a specialized sense amplifier capable of performing logical
operations, such as AND, OR, NAND, and NOR, directly
on these signals. As shown in Figure 3a, the second input to
these computations is provided by reference currents (Iref ),
such as Iand and Ior, which are generated by dedicated
circuits within the sense amplifier peripheral circuitry. These
reference currents are programmed to specific values based on
the desired logic operation and the expected bit-line current
range. The output of the sense amplifier is a voltage signal
(e.g., Oor, Onor, Oand, or Onand in Figure 3a) that reflects
the result of the computation. The sense amplifier architecture
is designed to compare the magnitudes of Ibl and Iref to
determine the output voltage levels (Oor, Onor, Oand, or
Onand). For example, Iand is set higher than the expected
Ibl when ‘0’ is stored in any of the activated cells, ensuring
the output (Oand) is low in that case. Conversely, Ior is set
lower than the expected Ibl when a ‘1’ is stored in any of the
activated cells, ensuring the output (Oor) is high.

Figure 3b illustrates bit-line computing in a memory sub-
array. The subarray contains STT-RAM cells and the sense
amplifier that provides inputs to the compute units (detailed
in Section III-C). Figure 3c depicts a memory block containing
a tag and counter. We employ a counter (Figure 3d) in relaxed
retention caches to prevent data loss when the retention time
elapses. The counter resets on each cache block write, and
upon expiration, it invalidates the cache block and sends it to
the lower memory level (if dirty), ensuring data preservation.
The counter can be adjusted based on the retention time. For
example, assuming an N -bit counter, where N = 2 with 4
states, and the retention time is 75µs, the counter clock is set
to 18.75µs. In the caches, these counters have only a 0.75%
per-block area overhead. Counters are not used for non-volatile
STT-RAM (the main memory) where data does not expire.

While CHIME’s architecture has a natural synergy with
STT-RAMs, we note its potential compatibility with SRAMs
after certain modifications. These modifications would address
potential data corruption in SRAMs due to simultaneous word-
line activation, likely involving low-voltage word lines [2], [3],
[14]. Additionally, SRAM-based CHIME would eliminate the
need for retention counters (Fig 3d) used in the STT-RAM



TABLE I: Target workloads in our implementations

Category Kernel Input size
Neural network Binarized neural network (bnn) 1024*1024
Image processing Image grayscale (img-grayscale) 1024*1024
Image processing Image thresholding (img-thresholding) 1024*1024
Neural network Multiply accumulate (mac) 1024*1024
Signal Processing Matrix addition (mat add) 1024*1024
Signal Processing Matrix multiplication (mat mult) 1024*1024
Signal Processing Root mean square error (rmse) 100000
Text Processing String word count (wordcount) 20000

version. However, an evaluation of SRAM-based CHIME is
outside the scope of this paper. For the focus of this paper, we
concentrate on CHIME’s implementation and benefits within
STT-RAM-based systems.

B. Target workloads

The choice of supported compute operations and design
space exploration in CHIME is fundamentally domain-specific
and tailored to the characteristics of the target workloads. Un-
derstanding these workloads is crucial for effective customiza-
tion. Therefore, we introduce our workloads here and use them
as examples in the rest of the discussion. Similar to prior works
[1]–[3], we focus on bit-aligned array processing workloads.
These workloads often exhibit abundant parallelism, allowing
CHIME to fully leverage its distributed compute units. In ad-
dition, many core operations in these domains naturally align
with bit-line computing, making implementation efficient. The
workloads considered herein span signal processing, image
processing, neural networks, and text processing—all areas
where in-memory computing holds significant potential for
acceleration. Table I presents our workloads and their respec-
tive input sizes. The diversity in the workloads highlights the
potential for CHIME’s domain-specific customization across
a range of important applications.

C. Designing various compute units

We augmented the sense amplifier to support a range of
operations, including AND, NAND, OR, NOR, and XOR
(implemented using a combination of the basic gates). Multi-
plexers controlled by the cache control signals ensure flexible
computation. The bitline logic block in Figure 3b features
additional compute units based on the workload needs. For
instance, given the prevalence of comparisons in many of our
target workloads, we incorporated a comparator for less than,
greater than, and equal to operations. Additionally, a shift unit
enables shift and rotate instructions, common in signal and
image processing. For addition and subtraction, we opted for
a ripple-carry design [15] due to its reliability and suitabil-
ity for our bit-line computing approach. For the multiplier,
we chose a shift-and-add [16] multiplication design, among
several options explored, to prioritize minimizing area and
complexity. We used a 16-bit multiplier with 32-bit outputs,
which provided sufficient precision for our target applications.
All other compute units are designed to handle computations
up to 32 bits, aligning with our workload data.

Without pipelining

L1 Memory
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L2 L1 MemoryL2
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Fig. 4: Program execution for hierarchical computing without
and with pipelining.

D. Pipelined program execution

To enhance concurrency, CHIME employs an in-order
pipelined execution flow for bit-line computing. Figure 4
illustrates this concept, with the ADD compute units in the
L1 cache, MULTIPLY units in the L2 cache, and SHIFT
units in the main memory. Given a data flow from ADD to
MULTIPLY operations, for example, rather than waiting for
all ADD operations to finish, the completed results are moved
to the L2 cache for concurrent execution with MULTIPLY
operations, similar to vector chaining in SIMD computers.
Besides enabling concurrency, this approach reduces latency
by improving compute unit utilization. It also hides the data
transfer latency across different levels of memory hierarchy
since computations can happen within the memory while the
data is being transferred. Since the target workloads exhibit
data parallelism, the in-order execution ensures data readiness
before executing the next instruction, thereby reducing stalls
from data dependencies. Moreover, if pipelined operations
in different levels access the same data simultaneously, the
compiler ensures the data are available as needed. Compiler
knowledge of the system enables workload profiling, operation
scheduling, and data management, thereby obviating the need
for runtime decision-making [17]. While this limits our design
to known systems, it is a realistic assumption for in-memory
computing applications [18].

We augment the compiler with simple instructions
like Instruction(Blocka1, Blocka2, Blockdest).
Here, Instruction can be any supported operations
(ADD,SUB,OR, etc.), and the addresses indicate
where bit-line computations are performed. To
control the data movement of specific cache blocks,
Move(Data,Hierarchysource, Hierarchydest) specifies
the block address and the source and destination in the
memory hierarchy. Additionally, Copy(Data,Blockdest) and
Invalidate(Data,Blocka) will help create and invalidate
copies of variables when necessary. These instructions guide
the cache/memory controller in managing blocks for efficient
bit-line computing.

For our exploration in this work, we assume CHIME is
employed within a single-core system. This focus allows us
to simplify the design by avoiding the complexities of a
cache coherency protocol specifically tailored to CHIME’s
distributed in-memory compute model. Additionally, since
CHIME leverages significant parallelism within the caches and



Algorithm 1: Compute unit grouping
Data : List of workloads W = [w1, w2, ....wn]
List of bit-line computing instructions for each workload
T = [t1, t2, ..., tn]
m = number of levels of the memory hierarchy.
Result: Compute unit groups

1 PairCount = []
2 for workload in workloadlist do
3 CreateInstructionPair(T,workload)
4 for instructionpair in workload do
5 if instructionpair not in PairCount then
6 PairCount.append(instructionpair)

7 PairCount[instructionpair]+ = 1

8 ComputeGroups = []
9 group = 0

10 for SortedPair in Sort(PairCount, descending) do
11 ComputeGroup[group].append(SortedPair)

group+ = 1
12 if group > m then
13 group = 0

memory, we observe significant performance gains even within
a single-core context. In future work, we plan to extend and
investigate the use of CHIME within multi-core systems.

We note that the slowest memory hierarchy level will
constrict the overall speed of CHIME’s pipelined execution.
This bottleneck is influenced by the latency of individual
compute units and the available parallelism within that level.
Therefore, to optimize performance, strategic grouping and
mapping of compute units across the hierarchy are crucial. In
the next section, we discuss these considerations in detail.

IV. DESIGN SPACE EXPLORATION

Efficiently allocating compute units across the memory
hierarchy is challenging. This involves grouping operations
into compute units and mapping them to specific memory
levels. With domain-specific workload awareness, efficient
grouping and mapping can minimize data movement, enhance
concurrency, and optimize the throughput of bit-line com-
puting. Factors like memory level characteristics—such as
L1 cache’s lower latency but smaller capacity for compute
units compared to larger, slower memory levels—must also be
considered. Similarly, more complex operations with a ripple-
carry design like addition, subtraction, and multiplication, as
discussed in Section III-C, would be slower than others. In
this section, we explore various compute unit grouping and
mapping strategies.

A. Compute unit grouping

We focus on grouping strategies that minimize data transfer
overheads. These overheads occur when the compute unit
needed by an operation is in a different memory level than
its prior operation. Consequently, data read/write operations
at different memory levels could increase computation-to-
communication overheads and energy consumption.

Our grouping strategy, shown in Algorithm 1, starts by
breaking down target workloads into their individual oper-
ations. The goal is to count the unique instruction pairs—
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Fig. 5: Frequency of compute groups for each workload.

a set of two consecutive dependent instructions—across the
workloads (lines 1-3) for compute group allocation. If an
instruction pair appears for the first time, the algorithm creates
a PairCount entry (line 6) and increments it for subsequent
occurrences (line 7). Lines 3-7 are repeated for each workload
to track the instruction pair frequency. After processing all
workloads, the algorithm sorts the final pair count in descend-
ing order (line 10), prioritizing frequently occurring pairs for
compute group formation (line 11). Based on pair frequency,
sorted instruction pairs are assigned to a unique compute
group (lines 11-12). If compute groups exceed the number of
memory hierarchy levels, they are reset to the initial compute
group and assigned accordingly (lines 12-13). This strategy
prioritizes frequent dependent instruction pairs in a unique
group, thereby reducing data transfer overheads, mitigating
the latency impact of the compute units, and improving
concurrency. For our workloads (Section III-B), the algorithm
formed log-sub (logical & subtraction operations), add-comp
(addition & comparisons), and mult-shift (multiplication &
shift/rotate). While different grouping strategies can be used
as per design needs, our focus here is on minimizing data
transfer overheads.

B. Mapping compute groups to memory levels

Given the compute groups as determined by Algorithm 1,
we analyzed how frequently each compute group, comprising
a set of dependent instruction pairs, is used with different
workloads. Priority was given to the most frequently used
compute groups. Figure 5 illustrates the frequency of the
different compute groups for our workloads. Compute group
add-comp has the highest average frequency among all the
workloads, followed by mult-shift and then log-sub. Therefore,
this frequency dictates their mapping priority.

We explored three mapping strategies for assigning compute
groups to different memory hierarchy levels. The first strategy
assigns the most frequently used groups to memory levels with
the least resource constraints. The main memory has the least
constraints and the L1 cache has the most due to their sizes.
This strategy allows more compute units for frequently used
groups, boosting their parallelism.



As outlined in Section III-D, CHIME’s pipelined execu-
tion faces a throughput bottleneck at the memory hierarchy
with the lowest performance. Therefore, our second mapping
strategy prioritizes optimizing bit-line computing throughput
throughout the hierarchy. To achieve this, we first recalculate
the compute latency for each compute group (obtained from
Algorithm 1). Next, we add the subarray access latency
(subarrayread + write) for the relevant memory hierarchy level
to determine the total compute unit latency (Latencytotal) as
shown in Equation 1. The throughput for each group is
then calculated by dividing the number of compute units by
(Latencytotal), as shown in Equation 2. This strategy explicitly
considers the trade-off between the higher latency and the
greater abundance of compute units in lower memory lev-
els. Our analysis found that this strategy yields the highest
throughput in the L2 cache, followed by main memory, with
the L1 cache having the lowest throughput.

Latencytotal = Latency(computegroup + subarrayread + write)
(1)

Throughput =
Number of compute units

Latencytotal
(2)

Our third mapping strategy specifically addresses the impact
of ripple-carry operations on throughput. Recognizing that a
simple 1-bit compute latency is insufficient for ADD, SUB,
and MULTIPLY operations, we take ripple-carry propagation
into account (Equation 1, showing propagation delay for each
operation as poperation). First, we calculate the total carry
propagation delay by multiplying the carry delay (Delaycarry)
with the propagation distance (number of bits). Next, we
determine the total ripple-carry latency (Latencyripple-carry)
by adding the total compute unit latency (Latencytotal), as
shown in Equation 4. Finally, ripple-carry-aware throughput
(Throughputripple-carry) is calculated by dividing the number
of compute units by the total ripple-carry operation latency
(Equation 5). This approach seeks a balance between the
number of compute units and their effective latency. Table
II presents the results of these three mapping strategies, each
offering unique solutions, which are evaluated in the following
section.

Delaycarry =


padd, if ADD,
psub, SUBTRACT, or
pmult, MULTIPLY
0, otherwise

(3)

Latencyripple-carry = (Delaycarry ∗ number of bits)+

Latencytotal
(4)

Throughputripple-carry =
Number of compute units

Latencyripple-carry
(5)

TABLE II: Compute group mapping

Strategy L1 L2 Memory
Number of compute units log-sub mult-shift add-comp
Throughput mult-shift add-comp log-sub
Ripple-carry-aware throughput log-sub add-comp mult-shift

TABLE III: Cache and memory configurations
Memory hierarchy L1 32kB-64B-4 L2 1MB-64B-8 Memory 8GB size

Retention time 75µs 10ms 5years
Total read latency 1 2 154
Total write latency 2 4 110

Subarray read latency 1 2 4
Subarray write latency 2 4 5

Read energy per-bit (pJ) 0.26 0.88 25.59
Write energy per-bit (pJ) 3.30 6.13 6.42

Leakage power (mW) 15.93 281.63 808.07

V. EXPERIMENTAL SETUP

We compared CHIME with traditional CPU-based comput-
ing and the most recent related work in STT-RAM bit-line
computing with all the compute units deployed on one memory
level [1], [2]. We used a modified version of gem5 to simulate
CPU-based computing and model the caches, employing a
2GHz ARM Cortex A72 CPU. We used the McPAT simulator
[19] to assess CPU power and energy consumption. SPICE
simulations were used for compute units, and their outputs
were passed to a modified NVSIM simulator [20] to model
STT-RAM caches and memory with in-cache/memory com-
pute units. Table III shows our cache configurations, latencies,
and energies for read-write and bit-line computing operations.
Lower memory levels require much larger subarrays, thereby
increasing the energy and latency. Informed by workload
analysis, we set retention times to 75µs for the L1 cache and
10ms for the L2 cache to minimize miss rates.

VI. RESULTS

In this section, we begin by comparing the three com-
pute group mapping strategies described in Section IV-B to
highlight the trade-offs and advantages of each approach.
Subsequently, we compare CHIME with prior in-memory
computing solutions to provide insights into CHIME’s gains.
Finally, we analyze the overheads associated with CHIME’s
implementation. To ensure a robust comparison, we imple-
mented two variants of prior work ( [1]), with all the compute
units in the L2 cache (STT-CiM L2) or main memory (STT-
CiM mem). For CPU-based computing, the applications run
on a single Cortex A72 CPU with energy-efficient STT-RAM
caches enabling a rigorous comparison to CHIME. To ensure
a fair comparison between CPU and bit-line computing, we
only record statistics during the computation operations of the
workloads and disregard input and output activities. In bit-line
computing, data initially resides in the main memory, and data
transfer overheads from main memory to caches are factored
into our results.

A. CHIME vs. CPU-based computing

We compare the CPU to the three mapping strategies
(Section IV-B), i.e., based on the number of compute units



(Compute), throughput (Throughput), and ripple-carry-aware
throughput (RC-throughput).

1) Latency: Figure 6a shows the speedup of different map-
ping strategies compared to the base CPU. Compute, Through-
put, and RC-throughput achieved average speedups of 45.75x,
37.41x, and 81.16x, respectively. The highest speedup was
achieved for wordcount at 95x, 295.2x, and 295.2x. CHIME’s
use of multiple compute units, reduced CPU dependency, and
the parallelism achieved using bit-line computing contributed
to this significant speedup. Among the mapping strategies, RC-
throughput had the highest improvement, outperforming Com-
pute and Throughput by 43.62% and 53.90%, respectively.

RC-throughput achieved significant improvements for mac,
mat add, mat mult, and rmse, as these workloads are dom-
inated by ripple-carry ADD, SUBTRACT, and MULTIPLY
operations. This shows the effectiveness of the RC-throughput
in arranging the compute groups to achieve the best set of
compute operations. Our compute grouping strategy success-
fully mitigated data transfer latencies, except in bnn, where a
data transfer latency overhead of 4.36% was incurred. BNN
had low data reuse, performed only bitwise xor computations,
and thus did not experience significant computation latency.

2) Energy: Figure 6b shows the significant energy sav-
ings of different mapping strategies compared to the base
CPU. On average, Compute, Throughput, and RC-throughput
achieved energy savings of 16.92x, 15.13x, and 20.13x, re-
spectively, with wordcount having the highest savings of
40.43x, 60.32x, and 60.32x. RC-throughput outperformed
Compute and Throughput by 15.93% and 24.82%, respec-
tively. Due to our grouping strategies’ focus on reducing
data transfer overheads, we observed that compute and static
energies dominated the total energy consumption.

Although RC-throughput had the highest amount of data
transfer energy (14.75% of the total), it averaged 33.05% and
52.2% for static and compute energies, respectively. The data
transfer energy for Compute and Throughput was at an average
of 8.04% and 8.23%. However, Compute and Throughput
had much higher static energy than RC-throughput, averaging
49.36% and 55.63%, respectively, due to lower performance.
This shows the significant energy benefits of hiding the data
transfer overheads behind the compute latency.

B. Comparison to the state-of-the-art

To compare CHIME with the two variants (STT-CiM mem
and STT-CiM L2) of prior work [1], we used RC-throughput
as our mapping strategy, as it achieved the highest latency
and energy optimizations. The compute unit for STT-CiM
is complex, accommodating all compute operations within a
single compute unit. Additionally, STT-CiM mem has a PiM-
only architecture, similar to what is seen in [2], while STT-
CiM L2 has a PiC-only architecture, as seen in [3].

1) Latency: Figure 7a presents the latency results for
CHIME, STT-CiM mem, and STT-CiM L2 compared to the
base CPU. CHIME outperformed the CPU with an 81.16x
improvement, followed by STT-CiM mem and STT-CiM L2
with improvements of 35.68x and 34.12x, respectively. All
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Fig. 6: Speedup and energy savings for different mapping
strategies compared to CPU-based computing.

our mapping strategies consistently outperform STT-CiM due
to better concurrency afforded by CHIME. STT-CiM L2 only
outperformed CHIME for bnn (by 23.87%) due to domi-
nant data transfer latencies. However, on average, CHIME
outperformed STT-CiM mem and STT-CiM L2 by 56.04%
and 57.95%, respectively. STT-CiM mem had no data transfer
overheads for all the applications, whereas STT-CiM L2 and
CHIME could hide the data transfer overheads for all the
applications except for bnn. CHIME had better compute
performance than STT-CiM due to better throughput through
CHIME’s pipelined execution and efficient grouping and map-
ping strategies. Moreover, the high compute unit complexity
in STT-CiM significantly increased cache and memory access
latencies, affecting CPU operations.

2) Energy: Figure 7b shows that CHIME similarly outper-
formed STT-CiM mem and STT-CiM L2 in energy savings
compared to the base CPU. CHIME achieved a 20.12x energy
improvement vs. STT-CiM mem and STT-CiM L2, which
achieved improvements of 7.98x and 4.38x, respectively.
Similarly to latency, CHIME achieved the highest energy
savings for wordcount (60.317x vs. 17.92x and 10.31x for
STT-CiM mem and STT-CiM L2, respectively). On average,
CHIME outperformed STT-CiM mem and STT-CiM L2 in
energy savings by 60.35% and 78.23%, respectively.

STT-CiM mem did not incur any data transfer energy costs,
whereas the data transfer energy in STT-CiM L2 and CHIME
were 5.11% and 14.75% of the total energy, respectively.
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Fig. 7: Speedup and energy savings of CHIME and prior work
(STT-CiM mem and STT-CiM L2) compared to CPU.

However, the static energy for CHIME, STT-CiM mem, and
STT-CiM L2 were respectively 52.20%, 76.11%, and 76.11%
of the total energy. This is because the pipelined execution of
CHIME was more efficient than the STT-CiM mem and STT-
CiM L2, which had to wait for compute elements to be idle
to perform different computations, resulting in higher energy
benefits in CHIME. Overall, all CHIME mapping strategies
outperformed STT-CiM, as STT-CiM’s complex compute units
incurred higher subarray overheads, increasing bit-line com-
puting costs and exacerbating read-write operation overheads.

C. Overhead (critical path and area)

For brevity, we report compute unit group overheads with
respect to a 512*512 memory array. The compute groups’
critical paths were 294ps, 265ps, and 452ps for log-sub, add-
comp, and mult-shift, respectively. These groups increased the
static power by negligible amounts at 0.17%, 0.20%, and
0.21%, respectively. CHIME introduced area overheads due
to complex compute units and routing overheads, with log-
sub at 14.7%, add-comp at 17.12%, and mult-shift at 17.45%.
These overheads are far less than prior work STT-CiM’s 25%
area overhead and 692ps critical path, demonstrating CHIME’s
effectiveness at achieving superior latency and energy despite
lower overheads. Importantly, by facilitating bit-line comput-
ing for a wider variety of operations, CHIME prevents the
optimization degradation because of CPU dependencies, as is
the case in previous work [1].

VII. CONCLUSION

This paper introduced CHIME, a novel bit-line comput-
ing system model that distributes compute units across the
memory hierarchy and enables concurrency to mitigate the
effects of data transfer. The paper explored strategies for
grouping compute units and efficiently mapping them to
memory hierarchy levels. CHIME outperformed CPU-based
computing with an 81.15x speedup and 20.12x energy savings,
and surpassed the state-of-the-art by 57.95% and 78.23% in
latency and energy savings. For future work, we aim to further
investigate practical implementation strategies for a variety
of real-world applications, specifically exploring the use of
techniques like graph partitioning techniques to optimally
group operations within the memory array. Additionally, we
will develop intelligent mapping strategies to efficiently assign
these operations to specific memory hierarchy levels to further
minimize area overheads and improve overall throughput.
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