
HAL Id: cea-04228170
https://cea.hal.science/cea-04228170v1

Submitted on 4 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Get rid of inline assembly through verification-oriented
lifting

Frederic Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier,
Marie-Laure Potet

To cite this version:
Frederic Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier, Marie-Laure Potet. Get
rid of inline assembly through verification-oriented lifting. 34th IEEE/ACM International Con-
ference on Automated Software Engineering, Nov 2019, San Diego, United States. pp.577-589,
�10.1109/ASE.2019.00060�. �cea-04228170�

https://cea.hal.science/cea-04228170v1
https://hal.archives-ouvertes.fr

Get rid of inline assembly through
verification-oriented lifting

Frédéric Recoules∗, Sébastien Bardin∗, Richard Bonichon∗, Laurent Mounier† and Marie-Laure Potet†
∗CEA LIST, Paris-Saclay, France

firstname.lastname@cea.fr
†Univ. Grenoble Alpes. VERIMAG, Grenoble, France

firstname.lastname@univ-grenoble-alpes.fr

Abstract—Formal methods for software development have
made great strides in the last two decades, to the point that their
application in safety-critical embedded software is an undeniable
success. Their extension to non-critical software is one of the
notable forthcoming challenges. For example, C programmers
regularly use inline assembly for low-level optimizations and
system primitives. This usually results in rendering state-of-
the-art formal analyzers developed for C ineffective. We thus
propose TINA, the first automated, generic, verification-friendly
and trustworthy lifting technique turning inline assembly into
semantically equivalent C code amenable to verification, in order
to take advantage of existing C analyzers. Extensive experiments
on real-world code (including GMP and ffmpeg) show the
feasibility and benefits of TINA.

Index Terms—Inline assembly, software verification, lifting,
formal methods.

I. INTRODUCTION

Context. Formal methods for the development of high-safety
software have made tremendous progress over the last two
decades [1], [2], [3], [4], [5], [6], with notable success in
regulated safety-critical industrial areas such as avionics,
railway or energy. Yet, the application of formal methods
to more usual (non-regulated) software, for safety or security,
currently remains a scientific challenge. In particular, extending
the applicability from a world with strict coding guidelines and
disciplined mandatory validation processes to more liberal and
diverse development and coding practices is a difficult task.

Problem. We consider here the issue of analyzing “mixed
code”, focusing on the use of inline assembly in C/C++ code.
This feature allows to embed assembly instructions in C/C++

programs. It is supported by major C/C++ compilers like GCC,
clang or Visual Studio, and used quite regularly — usually for
optimization or to access system-level features hidden by the
host language. For example, we estimate that 11% of Debian
packages written in C/C++ directly or indirectly depends on
inline assembly, with chunks containing up to 500 instructions,
while 28% of the top rated C projects on GitHub contains
inline assembly according to Rigger et al. [7]. As a matter of
fact, inline assembly is a common engineering practice in key
areas such as cryptography, multimedia or drivers. However,
it is not supported by current state-of-the-art C/C++ program
analyzers, like KLEE [4] or Frama-C [1], possibly leading to
incorrect or incomplete results. This is a clear applicability
issue for advanced code analysis techniques.

Given that developing dedicated analyzers from scratch is
too costly, the usual way of dealing with assembly chunks is
to write either equivalent host code (e.g, C/C++) or equivalent
logical specification when available. But this task is handled
manually in both cases, precluding regular analysis of large
code bases: manual translation is indeed time-consuming and
error-prone. The bigger the assembly chunks are, the bigger
these problems loom.

Goal and challenges. We address the challenge of designing
and developing an automated and generic lifting technique
turning inline assembly into semantically equivalent C code
amenable to verification. The method should be:
Verification-friendly The produced code should allow good

enough analyses in practice (informally dubbed verifiabil-
ity), independently of the underlying analysis techniques
(e.g., symbolic execution [8], [9], deductive verification
[10], [11] or abstract interpretation [12]);

Widely applicable It should not be tied to a particular archi-
tecture, assembly dialect or compiler chain, and yet handle
a significant subset of assembly chunks found in the wild;

Trustworthy The translation process should be insertable in a
formal verification context without endangering soundness:
as such it should maintain exactly all behaviors of the
mixed code, and provide a way to show this property.

Verifiability alone is already challenging: indeed, straightfor-
ward lifting from assembly to C (keeping the untyped byte-level
view) does not ensure it as standard C analyzers are not well
equipped to deal with such low-level C code.

Scarce previous attempts do not fulfill all the objectives
above. Vx86 [13] is tied to both the x86 architecture and
deductive verification, while the recent work by Corteggiani
et al. [14] focuses on symbolic execution. None of them
addresses verifiability or trust. At first sight, decompilation
techniques [15], [16], [17] may seem to fit the bill. Yet, as
they mostly aim at helping reverse engineers, correctness is not
their main concern. Actually, “existing decompilers frequently
produce decompilation that fails to achieve full functional
equivalence with the original program” [18]. Some recent
works partially target this issue: Schwartz et al. [19] do not
demonstrate correctness (they instead measure a certain degree
of it via testing), while Schulte et al. [18] use a correct-by-
design but intractable (possibly non-terminating) search-based
method. Again, none of them study verifiability.

Proposal. We propose TINA (Taming Inline Assembly), the
first automated, generic, verification-friendly and trustworthy
lifting technique for inline assembly. The main insight behind
TINA is that by focusing on inline assembly rather than arbi-
trary decompilation, we tackle a problem both more restricted
(simple control-flow, smaller size) and better defined (interfaces
with C code, no dynamic jumps), paving the way to powerful
targeted methods. TINA relies on the following key principles:
• Recent binary-code lifters [20], [21], [22] translating

binary opcodes to generic low-level intermediate repre-
sentations (IR) provide minimalist architecture-agnostic
and well-tested IRs adapted to our goal;

• While direct byte-level lifting severely hinders current C
analyzers, verifiability is enhanced by dedicated trans-
formations refining the raw original IR with C-like
abstractions such as explicit variables, arithmetic data
manipulation, structured control-flow, etc.;

• Trust relies on translation validation [23] (validating each
translation), a more tractable option than full translator
validation, which reduces the trust base to a (usually
simpler) checker. Here, this checker requires to prove
program equivalence – a notoriously hard problem1.
We propose a dedicated equivalence checking algorithm
tailored to our processing chain.

Contributions. In summary, this paper makes the following
contributions:
• A new cooperating toolchain allowing formal verification

of programs mixing inline assembly and C, based on an
original combination of novel and existing components
(Sec. IV), addressing verifiability and trust issues;

• A new principled method lifting inline assembly to high-
level C amenable to further formal analysis built upon 4
simplification steps (Sec. V) countering clearly identified
threats to verifiability (Sec. II);

• The automated validation of said method to make the
lifter trustworthy, via a new dedicated program equivalence
checking algorithm taking advantage of our transformation
process to achieve both efficiency and high success rate,
with a limited trust base (Sec. VI) ;

• Thorough experiments (Sec. VII) of a prototype im-
plementation on real-world examples to show its wide
applicability (all Debian GNU/Linux 8.11 x86 assembly
chunks, some ARM, GCC and clang) and its substantial
impact on 3 different verification techniques on samples
from GMP, ffmpeg, ALSA and libyuv.

Discussion. This work targets assembly chunks as found in
real-world programs: we lift and validate 76% of all assembly
chunks from Linux Debian 8.11 (Table I) and benefit a range of
state-of-the-art verification tools and techniques (Sec. VII-B).
Still, system and floating-point instructions are currently
considered out-of-scope. Especially, floats are not tackled here

1Recall that general software verification problems, including program
equivalence, are undecidable. Yet, software verification tools do exist and have
been proven useful in practice.

since handling them well is a challenge in itself for the whole
toolchain (lifter, solver, verifier) — see the extended discussion
in Sec. VIII. Also, TINA’s implementation targets C since this
is the principal language used for low-level programs, but the
method itself would work unchanged on similar imperative
languages, like LLVM. Finally, though some prior work has
addressed code lifting for verification, it is worth noting that
verifiability has never been explicitly addressed so far.

II. CONTEXT AND MOTIVATION

Consider the code snippet of Fig. 1a extracted from UD-
PCast sources. It consists of the x86 assembly code itself
(here: "cld; rep stosl") together with a specification linking
C variables to registers and declaring inputs, outputs and
clobbers (i.e., registers or memory cells possibly modified
by the assembly chunk). The compiler, upon encounter of such
an (extended) assembly chunk, may use this specification – for
example during register allocation. However, it is fully blind to
the rest of the information (e.g., mnemonics) and will forward
the chunk as is until code emission.

Annotation. The code in Fig. 1a is suffixed by a specification,
written in a concise constraint language (GCC/clang syntax),
in zones separated by ’:’ (lines 16-23):
• It first describes allocation constraints for output variables:

"0". "=c" (__d0) specifies that variable __d0 should be
assigned to register ecx;

"1". "=D" (__d1) specifies that variable __d1 should be
assigned to register edi;

• Then, lines 20-22 detail inputs: "a" (eax) holds 0,
sizeof(fd_set) / sizeof(__fd_mask) is held in the register
described in "0" (ecx) and the one described in "1" (edi)
holds &((read_set)->__fds_bits)[0];

• Finally, the whole memory ("memory") can be assigned.
This basically tells the compiler to flush its memory cache
before entering the chunk.

Informal semantics. The code "cld; rep stosl" has the fol-
lowing informal semantics (Fig. 1b): put the direction flag
df to 0, then fill ecx double words from the edi pointer with
the value from eax. Intel’s manual [24] explains that df drives
the sign of the increment: when df is 0, the sign is positive.
TINA produces the code in Fig. 1c: the loop from the informal
semantics is there, but the lifter optimized away (see Sec. V)
elements like df, eax or edi.

Running the analyzers. If we try to run industrial-strength C
code analyzers on this code, we observe erratic behaviors:
KLEE [4] stops with an error message; Frama-C, on the
other hand, warns that ’Clobber list contains "memory" argument.
Assuming no side-effect beyond those mentioned in output operands’.
This message is clear but the behavior incorrect: the keyword
"memory" stipulates that all memory may be assigned but Frama-
C simply ignores it. This small example shows that a single
line of assembly may throw off these tools. Of course, one
may manually rewrite the chunks into semantically equivalent
C code, then use C analyzers, but this is error-prone and not

1 # 54 "/usr/include/i386-linux-gnu/sys/select.h"
2 typedef long int __fd_mask;
3

4 # 64 "/usr/include/i386-linux-gnu/sys/select.h"
5 typedef struct {
6 __fd_mask __fds_bits[1024 / (8 * sizeof(__fd_mask))];
7 } fd_set;
8

9 # 1074 "socklib.c"
10 int udpc_prepareForSelect
11 (int *socks, int nr, fd_set *read_set)
12 {
13 /* [...] */
14 int maxFd;
15 do {
16 int __d0, __d1;
17 __asm__ __volatile__
18 ("cld; rep; " "stosl"
19 : "=c" (__d0), "=D" (__d1)
20 : "a" (0),
21 "0" (sizeof(fd_set) / sizeof(__fd_mask)),
22 "1" (&((read_set)->__fds_bits)[0])
23 : "memory");
24 } while (0);
25 /* [...] */
26 return maxFd;
27 }

(a) Original version
in

eax← 0x00000000
ecx← sizeof(fd_set) / sizeof(__fd_mask)

edi← &((read_set)->__fds_bits)[0]

df← 0

if ecx = 0 then break

@[edi]4← eax
edi ← df ? edi − 4

: edi + 4
ecx ← ecx − 1

out

(b) Low-level semantics

1 # 1074 "socklib.c"
2 int udpc_prepareForSelect
3 (int *socks, int nr, fd_set *read_set)
4 {
5 /* [...] */
6 int maxFd;
7 {
8 int __d0;
9 int __d1;

10 __fd_mask *__tina_4;
11 unsigned int __tina_3;
12 __tina_3 = sizeof(fd_set) / sizeof(__fd_mask);
13 __tina_4 = & read_set->__fds_bits[0];
14 {
15 unsigned int __tina_ecx;
16 __TINA_BEGIN_1__: ;
17 __tina_ecx = __tina_3;
18 while (0U != __tina_ecx) {
19 *(__tina_4 + (__tina_3 - __tina_ecx)) = 0;
20 __tina_ecx --;
21 }
22 __TINA_END_1__: ;
23 }
24 }
25 /* [...] */
26 return maxFd;
27 }

(c) TINA-generated version
Figure 1: Running example

scalable. With TINA, we are able to automatically generate
the code of Fig. 1c, illustrative of our code transformations (see
Sec. V), and automatically validate it (trustworthy). We can then
formally show with Frama-C [1], using abstract interpretation
or deductive verification, that the code indeed verifies the
informal semantics laid out before (verification-friendly).

Identified threats to verifiability. Straightforward lifting from
assembly to C (keeping the untyped byte-level view) does
not ensure verifiability, as standard C analyzers are not well
equipped to deal with such low-level C code. For example we
cannot prove with Frama-C that a basic lifting of Fig. 1a meets
its specification (cf. Appendix A). We identify 3 main threats
to verifiability:
T1. Low-level data: explicit flags – including overflows or

carry, bitwise operations (masks), low-level comparisons,
byte-level memory;

T2. Implicit variables: variables in the untyped byte-level stack,
packing of separate logical variables inside large-enough
registers;

T3. Implicit loop counters/index: structures indexed by loop
counters at high-level are split into multiple low-level
computations where the link between the different logical
elements is lost.

Experiments in Sec. VII-B demonstrate that a straightforward
encoding (BASIC) fails to get the best of any analysis
– symbolic execution, abstract interpretation, or deductive
verification.

Properties of inline assembly. TINA exploits the following
properties, specific to inline assembly:
P1. The control flow structure is limited: only a handful

of conditionals and loops, hosting up to hundreds of
instructions;

P2. The interface of the chunk with the C code is usually
given: programmers annotate chunks with the description
of its inputs, outputs and clobbers with respect to its C
context;

P3. Furthermore, the chunk appears in a C context, where
the types, and possibly more, are known: this kind of
information is sought after in decompilers, using heuristics,
whereas we only need to propagate it here.

All in all, the above points show that lifting assembly chunks
is actually an interesting sub-problem of general decompilation,
both simpler and richer in information and thus significantly
more amenable to overall success.

III. BACKGROUND

A. Inline Assembly

We focus here on inline assembly in C/C++ code as supported
by GCC and clang. MASM (Microsoft Macro Assembler) has
a different syntax but works similarly.

Assembly chunks in the GAS syntax of GCC have two
flavors: basic and (recommended) extended (see Fig. 2). Basic
assembly (Fig. 2a) allows the insertion of assembly instructions
anywhere in the code. They will be emitted as is during

__asm__ volatile
("movdqa b, %xmm0\n\t"
"movdqa %xmm0, a\n\t");

(a) Basic version

__asm__
("movdqa %1, %%xmm0\n\t"
"movdqa %%xmm0, %0\n\t"
: "=m" (*a) : "m" (b)
: "xmm0");

(b) Extended version

Figure 2: Assembly chunks: basic & extended versions

the production of the assembly file. In this case, compilers
assume the chunk has no effect on its C scope, preventing safe
interactions between assembly and C code – yet that does not
stop developers from using it when the implicit context looks
safe. In Fig. 2a, it is implicitly assumed that no optimization
will occur on global variables a and b and that xmm registers
are not used by default.

Extended assembly. Extended assembly allows in addition
the description of the interactions with C through its inputs,
outputs and clobbers (i.e., registers or memory cells whose
value is rewritten by the chunk).

Such annotations work like a printf string format, as shown
in Fig. 2b: some assembly operands may be replaced by
placeholders referring to a list of C operands. The syntax
requires binding C operands to location constraints, as in
Fig. 1a and 2b. Constraints may also specify more than one
location, and let the compiler choose the best way to place
this operand. Common placement constraints include r to
bind to a general register; m to bind to a memory address;
i to an immediate value; and g which means "r, m or i".
Operands may be read-only (for inputs) or write-only (for
outputs) with the = modifier. A read-write operand is created
either by linking an input to the same location as an output
("0" (sizeof(fd_set) / sizeof(__fd_mask)) in Fig. 1a) or by
using the + modifier instead of =. Without special modifiers,
compilers assume read-only operands are consumed before
write-only operands are produced, so that these may share the
same locations. The clobber list may also contain keywords like
"memory" (arbitrary memory cells may be read and/or written)
and "cc" (conditional flags will be changed).

The specification of inputs, outputs and clobbers stands as
a contract between the chunk and the compiler. Compilers are
totally blind to what actually happens inside the chunk, relying
on the contract, and will not warn about mistakes inside the
chunk. Forgetting to list an input or a clobber is an easy mistake
that can result in code which does not behave as expected.

Adoption. The use of inline assembly is pretty widespread –
we estimate that 11% of Debian packages written in C/C++
directly or indirectly depends on inline assembly. It includes
major projects like GMP and ffmpeg — Rigger et al. [7]
actually reports that 28% of the top rated C projects on GitHub
uses inline assembly. We further estimate that 75% of the
chunks found in Debian Jessie 8.11 (used in Sec. VII-A) serve
an optimizing purpose, with an average size of approximately
10 instructions, and up to 341. Inline assembly is often used

in conjunction with C macros or inlineable functions to be
specialized by the compiler at each location.

B. Binary-code lifters

Binary-code lifters are the cornerstones of modern binary-
level analyzers. They are used to abstract the different binary
Instruction Set Architectures (ISA) and formats into a single
intermediate representation (IR) [20], [21], [22]. We rely on
the IR of BINSEC [25], called DBA — other IRs are similar.
Its syntax is shown in Fig. 3.

inst := lv← e | goto e | if e then goto e else goto e
lv := var | @[e]n
e := cst | lv | unop e | binop e e | e ? e : e

unop := ¬ | − | uextn | sextn | extracti..j
binop := arith | bitwise | cmp | concat
arith := + | − | × | udiv | urem | sdiv | srem

bitwise := ∧ | ∨ | ⊕ | shl | shr | sar
cmp := = | 6= | >u | <u | >s | <s

Figure 3: Low-level IR for binary code

DBA is a minimalist language, comprising only two types of
elements (bitvector values and memory) and three instructions:
assignments, jumps and conditionals. Yet, this is enough to
encode the functional semantics of major ISAs – including
x86 and ARM.

Binary lifters provide specialized decoders for supported
architectures, in the same spirit that a compiler has one code
emitter per supported architecture. Lifters are then used in
disassembly algorithms to (try to) recover the semantics of
the binary program. We use them to disclose the semantics of
compiled assembly chunks.

IV. TAMING INLINE ASSEMBLY: AN OVERVIEW

TINA lifts inline assembly to semantically equivalent C
taking advantage of properties P1–P3. This original process
consists mainly of two (new) phases: verification-friendly lifting
and validation, detailed respectively in Sec. V and VI. First,
let us discuss the overall approach, as schematized in Fig. 4.

Compilation. We compile the source code for the target
architecture with debug information. Since we control code
compilation, we also include all contextual data that can help
to reconstruct C code, e.g., variable names and types.

Initial low-level IR lifting [genericity]. We now start the
translation per se, by lifting the code back to the IR level. The
use of binary code may seem gratuitous at first sight. This
is however the best place to start working, since assembly
chunks are totally instantiated and embedded in their context
— register names and memory locations have been resolved
by the compiler. Debug information here allows to locate the
assembly chunk in the compiled code.

Transformation into high-level C [verifiability]. We then lift
the IR back to C, through a combination of dedicated passes
aiming at refining the low-level IR with high-level information
(Sec. V). The end result is a C-only code where assembly
chunks have been substituted by a lifted C code amenable to
verification. This step is original.

C + ASM Object code IR

TRANSFORMATIONS

C

Object code

IR

COMPILATION

+ DEBUG

IR LIFTING

IR

INSERTION

COMPILATION

+ DEBUG

IR LIFTING

EQUIVALENCE

Ë/ é?

LIFTING

VALIDATION
Highlighted elements discussed in
Sec. VI about the trust base.

Figure 4: Overview of TINA

Validation [trust]. The validation phase starts by recompiling
the pure C code, without optimization in order to preserve
the code structure — our validation technique depends on it.
We locate the binary code corresponding to the lifted code
once more, and get back its IR representation. We now possess
two distinct IR pieces: this one and the one from the first
compilation. We will aim to prove their semantic equivalence
in Sec. VI. This step is original.

We have implemented a prototype of TINA leveraging exist-
ing tools: Frama-C [1] for C source code manipulation (parsing,
localization, C injection), BINSEC [25], [26] (IR lifting [21],
SMT solvers integration [27]), and the DWARF [28] debug
format to pass information to binaries with the compiler.

V. FROM LOW-LEVEL IR TO HIGH-LEVEL C

The goal of this lifting phase is to recover verifiable C code
preserving the semantics of the original assembly chunk. The
transformations at IR level mitigate the identified threats to
verifiability (Sec. II), and reinforce each other (Sec. VII).

Type verification & propagation. To lift assembly code back
to C, chunk operations on bitvectors and memory need to be
mapped to C operations on integers (signed/unsigned) and
pointers. To this end, we propagate types from the interface
into the IR operations. IR types can either be addresses (typed
pointers) or values (signed or unsigned, with an associated
size). Type information is further synthesized using forward
propagation and constraints imposed on operands by low-level
operations. This step also guarantees that inputs’ and outputs’
types are respected. The lifter gives concrete C types using the
type size information from DWARF.

High-level predicate recovery (threat T1). Low-level
conditionals use flags — zero (zf), sign (sf), carry (cf)
or overflow (of) — set by previous instructions. In most
situations, they have little meaning on their own and the
way they are computed hampers understanding the purpose
of the condition. This pass applies Djoudi et al.’s recent
technique [29] based on semantic equivalence proved by
SMT solvers. It substitutes the low-level condition, built on
flags, by a more readable arithmetic comparison. For example,

this phase recovers if (ecx + 1 > 1) goto label; instead of
if (zf == 0 && sf == of) goto label; from the assembly snip-
pet "decl ecx; jg label;".

Register unpacking (threat T2). Assembly chunks often
contain optimizations exploiting data level parallelism in order
to use the full capacity of the hardware by packing multiple
value inside a bigger one fitting inside a machine register.
For instance, loading 4 (byte) characters inside an integer is
more efficient than doing four smaller loads. The concept
has been exacerbated with Single Instruction Multiple Data
extensions, providing vectorized registers up to 512-bits. The
issue here is that such packed code has very low-level semantics
(masks, shifts, etc.). Our novel register unpacking method
uncovers the independent variables stored in a container, thus
preventing packed arithmetic from destroying the abstractions
of the analyzers. The method amounts to splitting registers into
independent variables, whose size depends on the uncovered
usage, rewrite the code accordingly and then clean up unused
variables and code, and rebuild higher-level chunks through
dedicated simplifications. The principle is the following: if a
subpart of a variable is read in the code (e.g., extract0..15 eax),
then this subpart is likely to correspond to a logical entity.
So we generate a fresh variable for this entity, receiving the
restricted value, and replace each such extraction by this new
variable. To avoid the need for a fixpoint until every variable
extraction is replaced, we perform the replacement eagerly, in
3 steps:

1) A forward pass where each assignment of 8 × 2k bits
is split into multiple fresh assignments of 8 × 2i bits
where i ≤ k (for instance, eax will be split into {{al, ah,
eax_16_23, eax_24_31}, {ax, eax_16_31}, {eax}};

2) At the same time, each variable restriction extracti..j var

corresponding to one of the newly generated variables is
replaced by this new variable;

3) A final pass of dead code elimination removes each unused
freshly generated variable.

Note that subparts may overlap with each other (for instance,
al, ax and eax share common parts) but we found that most of

the time, only one of them survives the final step. Thus, the
size of the produced code does not increase much in the end.

Finally, we also rely on the fact that expression propagations
together with concatenation-extraction simplification will auto-
matically reconstruct bigger sized variables from concatenation
of smaller sized ones (e.g., ax half-word from al and ah bytes).

In Fig. 5, the chunk loads two char in a register before
adding them, using the h and l prefixes to access them. Without
register unpacking, the lifter uses bitmasking (Fig. 5c), making
the code more complex than its clear initial intent (Fig. 5b).

extern const
unsigned char src[2];
unsigned char sum;
__asm__
("movzxw %1, %k0\n\t"
"addb %h0, %b0\n\t"
: "=&Q" (sum)
: "m" (src));

(a) Source

unsigned char __tina_ah;
unsigned char __tina_al0;
unsigned char __tina_al1;
__TINA_BEGIN_0__: ;
__tina_al0 = *src;
__tina_ah = *(src + 1);
__tina_al1 =

__tina_ah + __tina_al0;
sum = __tina_al1;
__TINA_END_0__: ;

(b) Lifting with unpackingunsigned int __tina_eax0;
unsigned int __tina_eax1;
__TINA_BEGIN_0__: ;
__tina_eax0 = (*src) | (*(src + 1) << 8);
__tina_eax1 = (0xffffff00 & __tina_eax0) | (0xff &

((0xff & (__tina_eax0 >> 8)) + (0xff & __tina_eax0)));
sum = 0xff & __tina_eax1;
__TINA_END_0__: ;

(c) Lifting without unpacking

Figure 5: Register unpacking

Expression propagation (threats T1 and T2). We draw
inspiration from compiler optimization techniques to devise a
novel dedicated simplification mechanism geared toward our
needs. In particular, we can afford very aggressive simplifica-
tions (small code size w.r.t. standard compilation setting) but
we have to address particular kinds of low-level instructions
(coming from IR translation). Our method originally combines
eager expression propagation coupled with dedicated (low-
level) simplifications and a posteriori control to revert fruitless
propagations – when no simplification rule has been triggered.

Eager expression propagation relies on the idea that more
expression propagation raises more opportunity for further
simplifications by dedicated rules. Yet, systematic propagation
can yield an exponential blowup of the code under analysis
rather than the desired simplifications. To mitigate this problem
we propose eager propagation coupled with a posteriori control
to revert fruitless propagation. The algorithm works as follows:

• As a preliminary step, a data flow analysis collects all
symbolic values (terms) associated to each pair (name,
program point) used in the IR code;

• First, we unconditionally propagate symbolic values in
a first pass but save a reverse map for each propagated
expression (in case the propagation is not fruitful);

• Second, we expect simplification rules (described below)
to simplify the whole expression;

• Third, we identify expressions not yet simplified (by
syntactically comparing the terms before and after sim-

plification) and revert back the propagation on such case
thanks to the reverse map (a posteriori control);

• Finally, we cleanup the code by filtering out unused
variables, dead branches and dead code.

Regarding simplification rules, we use a mixture of standard
and dedicated simplification rules – standard for typical integer-
level properties and dedicated for more low-level aspects. Here
is a representative (incomplete) subset of these rules – see
Appendix E for a complete set – where |x| denotes the size
of the expression x, � any binary operator, C a condition
(|C| = 1), k is a constant.

• associativity-commutativity re-ordering:
x+ 1 + a ↪→ a+ x+ 1

• constant propagation (modular arithmetic):
10 + 5 ↪→ 15, 10× 2 ↪→ 20

• standard algebraic simplifications (identity, neutral, ab-
sorbing and inverse elements, etc.):
x+ 0 ↪→ x, x× 1 ↪→ x, x× 0 ↪→ 0, x− x ↪→ 0

x ∨ 0 ↪→ x, x ∧ 1 ↪→ x, x ∧ x ↪→ x, x⊕ x ↪→ 0

• ternary expression simplification:
C ? x : x ↪→ x, ¬C ? x : y ↪→ C ? y : x

true ? x : y ↪→ x, false ? x : y ↪→ y

C ? true : false ↪→ C, C ? false : true ↪→ ¬C
• ternary expression development:

x � (C ? y : z) ↪→ C ? x � y : x � z
(C ? w : x) � (C ? y : z) ↪→ C ? w � y : x � z

• two-complement arithmetic abstraction:
¬x+ 1 ↪→ −x

extract|x|−1(x) ↪→ x <s 0

uextn(C)− 1 ↪→ C ? − 1n : 0n

sextn(C) ↪→ C ? − 1n : 0n
• concatenation:

uext|x|+|y|(x) ∨ concat(y, 0|x|) ↪→ concat(y, x)
uext|x|+k(x) shl k ↪→ concat(x, 0k)

concat(0k, x) ↪→ uextk+|x|(x)
• extraction-concatenation simplification:

extract0..|x|−1(x) ↪→ x

concat(extracti..j(x), extractj+1..k(x)) ↪→ extracti..k(x)
extracti..j(concat(x, y)) when j<|y| ↪→ extracti..j(y)
extracti..j(concat(x, y)) when |y|≤i ↪→ extracti−|y|..j−|y|(x)

Fig. 6 shows how the addition of rewrite rules exposes the
intended semantics of a branchless absolute value computation.

Loop normalization (threat T3). This pass aims at high-
lighting the relations between the current iteration of the
loop and the variable values. We especially look for affine
relations of the form a × x + b where x is the loop it-
eration counter. We indeed found out that tools much pre-
fer to analyze for (int i = 0; i < N; i++) T[i] = C; instead
of for (char *t = T; t < T + N; t++) *t = C;. Assembly code,
though, is more likely to have the second form.

cltd # sign extend eax in edx
xor %edx, %eax # 1-complement eax if eax < 0
sub %edx, %eax # add one to eax if eax < 0

(a) Branchless absolute value implementation

tmp64 ← sext64 eax0
edx0 ← extract32..63 tmp64 ↪→ edx0 ← eax0 <s 0 ? 0xffffffff : 0
eax1 ← eax0 ⊕ edx0 ↪→ eax1 ← eax0 <s 0 ? ¬eax0 : eax0
eax2 ← eax1 − edx0 ↪→ eax2 ← eax0 <s 0 ? -eax0 : eax0

(b) IR transformations

Figure 6: Expression propagation

We thus transform each self-incrementing (-decrementing)
variables of the form v = I; while (...) { ...; v = v + k; }

in order to get code more amenable to analysis. The transfor-
mation is done in (up to) 3 steps:

1) rebasing replaces the initial value I by 0 and each
occurrence of the variable v by I + v;

2) rescaling replaces the increment k by 1 and each occur-
rence of the variable v by k * v;

3) merging unifies the transformed variables with the loop
iteration counter.

For example, in Fig. 1c, the byte-level affine relation between
the counter ecx, lifted as __tina_ecx, and the moving pointer edi,
based at __tina_4, is edi ≡ __tina_4 + 4 * (__tina_3 - ecx) —
the code is lifted as __tina_4 + (__tina_3 - __tina_ecx) to take
pointer arithmetic into account (__tina_4 is an int *, pointing
to 4 bytes long values in x86).

VI. VALIDATION

For our translation to be trustworthy, we use a two-pronged
approach: 1) We try to prove the semantic equivalence of the
code prior to lifting with the lifted C code; 2) If this fails, we
rely on intensive random testing (fuzzing) to increase the level
of trust in the lifted C code.

Block-based semantic equivalence. The lifting process
of Sec. V strives to preserve the isomorphism of the control-
flow graphs based on basic blocks between the initial assembly
chunk and its lifted C representation over their DBA IR
representation. This property allows us to tackle the equivalence
proof at basic block level. The proof of equivalence proceeds
as follows:

S1. We check the isomorphism of the control-flow graphs
extracted from the two lifted programs. Since we deal with
deterministic labeled directed graphs, this check is immediate
— and usually succeeds. TINA is actually very careful during
simplifications and recompilation to preserve the control-flow
structure (see details below). For the isomorphism check, we
track the relation between the heads of IR basic blocks and the
corresponding emitted C code thanks to C labels and debug
line information. If the check succeeds, we go to S2, otherwise
we [fallback] on fuzzing — in practice (Sec. VII-A), the latter
has never happened.

S2. Once we know the two control-flow graphs are iso-
morphic, we try to demonstrate the pairwise equivalence of

corresponding vertices. This allows to avoid directly dealing
with loops. Each pairing of basic blocks is translated to
logical formulas for which we ask SMT solvers: if inputs
are identical, can outputs be different? If all queries are
unsatisfiable then equivalence is proven [success], otherwise
we use our [fallback].

Taming simplifications. In order to help the equivalence proof
succeed, TINA passes were designed to preserve the control-
flow graph structure and to be traceable. For the first goal,
simplifications never modify jump instruction, except for trivial
dead branch elimination and the lifter avoids inserting branches
with lazy constructions such as &&, || or ternary operators. For
the second goal, when a simplification changes the input-output
relation of a basic block, it records the changes w.r.t the old
ones and these properties will be added to the assumptions of
S2. For instance, in Fig. 1, the expression propagation records
that eax holds the value 0 for the entire chunk. It will then be
used during S2 to prove the equivalence of the loop body where
the register no longer exists in the generated part (Fig. 1c).

What could go wrong? While TINA uses simplifications
and lifting passes tailored to make the block-based semantic
equivalence algorithm possible, the recompilation step is blind
to this requirement and may therefore threaten it.

The S1 check may fail if the compiler modifies the control
flow graph, for example if some elements outside of the
assembly chunk render a branch dead or a loop unrollable. In
Fig. 1c, since sizeof is known at compile time, clang -O1
unrolls the loop, making the isomorphism check fail.

The S2 query may fail if the compiler moves parts of
the computation across basic blocks, changing the relation
between inputs and outputs. It may happen during code motions,
like loop-invariant code motions. In this case, the graph
isomorphism still holds but the relation between basic blocks
is lost. GCC -funroll-loops partially unrolls (8 times) the loop
body in Fig. 1c leading to a failed equivalence query.

To avoid such problems, we recompile the code without any
optimization (-O0).

Note that SMT checks never time out in our experiments
(Sec. VII), probably due to the naturally small size of block-
based queries. However, we can imagine that code showing
hard-to-reverse behaviors, such as cryptographic hash functions,
could make the S2 query fail.

Trust base. Validation allows to increase the confidence in
the lifting process, using 3 components as the trust base:
the binary-code lifter, the compiler and the solver. All are
well tested software and the last two are part of the trust
base of (most) modern source-level verification tools anyway.
Furthermore, while we trust the compiler debug information, we
argue that the compilation process itself is not part of the trusted
base: assembly chunks are untouched by it and validation will
very likely catch errors during re-compilation. Besides, further
mitigation includes systematic testing of assembly chunks vs.
their IR representation, and using multiple compilers and/or
solvers.

Table I: Applicability on Debian 8.11 Jessie distribution (GCC 5.4)

x86 ARM

TOTAL BIG 100 ALSA ffmpeg GMP libyuv ALSA ffmpeg GMP libyuv

Assembly chunks 3039 100 25 103 237 4 0 85 308 1

Trivial 126 0 0 6 13 0 – 1 28 0
Out-of-scope 449 40 0 17 0 3 – 2 0 0
Rejected 138 11 0 12 1 0 – 12 2 0

Relevant 2326 76% 49 49% 25 100% 68 66% 223 94% 1 25% – 70 82% 278 90% 1 100%

Lifted 2326 100% 49 100% 25 100% 68 100% 223 100% 1 100% – 70 100% 278 100% 1 100%

Validated 2326 100% 49 100% 25 100% 68 100% 223 100% 1 100% – 70 100% 278 100% 1 100%

Average (Max) size 8 (341) 104 (341) 50 (70) 5 (10) 6 (31) 31 (31) – 5 (16) 5 (10) 29 (29)
Lifting time (s) 121 98 2 63 2 < 1 – < 1 4 < 1
Validation time (s) 1527 36 17 255 110 < 1 – 48 187 < 1

VII. EXPERIMENTAL EVALUATION

We evaluate our implementation of TINA on 3 research
questions: RQ1) How applicable is it on assembly chunks
found in the wild? RQ2) How do off-the-shelf program
analyzers behave on lifted code? RQ3) What is the impact of
each optimization?

A. Wide applicability (RQ1)
We run our prototype on all assembly chunks found in the

Linux Debian 8.11 distribution (for x86), i.e. ≈ 3000 chunks
distributed over 200 packages and 1000 functions. As chunk
distribution is not smooth, we also fix 2 subsets of samples:
one with the 100 biggest chunks, and another with all chunks
from 4 key major projects exploiting low-level optimizations:
GMP, ffmpeg, ALSA and libyuv. Table I sums up the results
of lifting with TINA.

Table II: Applicability by compiler (x86)

GCC 5.4 GCC 4.7 clang 3.8

Assembly chunks 3039 2955 2852

Relevant 2326 76% 2326 78% 1970 69%

Lifted 2326 100% 2326 100% 1970 100%

Validated 2326 100% 2326 100% 1970 100%

We exclude trivial (empty or unused), out-of-scope and
rejected chunks. Out-of-scope chunks include those with
floating point operations, OS-level hardware instructions or
hardware-based crypto-primitives, like AES. Rejected chunks
are those deemed unsafe because they do not respect their
interface. Yet, we activate options in our tool to specifically
regard accessing flags, xmm registers or memory as safe –
allowing to consider 150 extra chunks as relevant, notably in
ffmpeg. The statistics of Table I report on the tool’s behavior
with these settings.

On in-scope chunks, TINA performs extremely well, with
100% chunks lifted and fully validated (no resort to testing)
— this amounts to 76% of all chunks found — for a negligible
cost (0.7s per chunk on average). The biggest 100 chunks are a
little less successful as they have a fair amount of (unhandled)
floating-point instructions. TINA works equally well on major
projects for ARM or x86, and with GCC or clang on x86
(Table II), confirming its genericity.

B. Adequacy to formal verification tools (RQ2, RQ3)
We select 3 tools representing popular formal techniques

currently used in the industry: KLEE [4] for symbolic execution
[9] (bug finding), and Frama-C [1] with its EVA plug-in [30] for
abstract interpretation [12], [31] (runtime error verification) and
WP plug-in [32] for deductive verification [10], [11] (functional
correctness).

Experiments on both symbolic execution and abstract in-
terpretation use 58 functions (out of 366) from the 4 key
projects in Sec. VII-A, selected due to the ease of automatically
generating the initial contexts for both analyses. For all 3
tools, we also report the observed differences using a basic
lifter and different optimization levels: O1 (high-level predicate
recovery), O2 (O1 + register unpacking), O3 (O2 + expression
propagation) and O4 (O3 + loop normalization). Note that O4
is TINA.

Table III: Impact of TINA & lifting strategies on KLEE

LIFTING

NONE BASIC O1 O2 O3 O4

Functions analyzed w/o
blocking

3 58 58 58 58 58

Functions 100% covered é 25 25 25 25 25
Aggregate time N/A 115s 115s 110s 103s 105s

paths (all functions) 1.4M 1.5M 1.8M 4.6M 6.6M 6.6M

Symbolic execution. We perform our experiments with
KLEE [4] which at present does not handle inline assembly
chunks and stops upon meeting one – except for a very few
simple cases such as assembly-level rotations. This fact can
sometimes prevent the adoption of symbolic execution [33].

Table III summarizes our findings. (RQ2) First, KLEE alone
can analyze only few functions (3/58) as (almost any block
of) assembly stops the analysis, and none of them is fully
path-covered. Adding lifting allows to analyze all considered
functions (58/58), to completely path-cover 43% of them
(25/58) and to explore significantly more paths within the
same analysis budget (×4.7).

The lifting strategy (RQ3) does not impact the functions that
KLEE can fully cover, but TINA optimizations considerably
speed up code exploration, enabling to cover significantly
more paths (×4) than basic lifting in the same amount of

time. This is explained by TINA-produced code being higher-
level, with fewer instructions and local variables, thereby
accelerating SMT-solving. Note that control-flow structure,
and thus total number of paths, does not change. Moreover,
each optimization step brings some degree of improvement.
The major improvement gaps here are brought by register
unpacking (O2) and expression propagation (O3). As expected,
loop normalization (O4) has no impact as symbolic execution
simply unrolls loops. Additional experiments (Supplementary
material, Table VII) demonstrates that high-level recovery (O1)
has also a substantial impact on the analysis (removing it leads
to 5.4M explored paths, vs 6.6M in full TINA).

Abstract interpretation. We use the Frama-C EVA [30] plug-
in. Frama-C has limited support for inline assembly based on
interfaces, translating them into logical assigns annotations
for modified variables – safely interpreted in EVA (and WP)
as non-deterministic assignments.

Table IV sums up the results for RQ2. Lifting the assembly
code with TINA almost always reduces the number of alarms
in the common C code (23/27). This follows from the better
precision of the analysis since modified variables in the lifted
code are now accessible. In half the cases (11/20), we observe a
precision gain on function return values. Most functions (31/34)
with return values or initial C alarms show such improvements.

Table IV: Impact of TINA on EVA

Function with ALSA ffmpeg GMP libyuv TOTAL

Returns (non void) 0 9 10 1 20
Better return values – 9 1 1 11 55%

Initial C alarms 2 8 16 1 27
Alarm reduction in C 2 8 12 1 23 85%

New memory alarms 12 2 3 0 17 26%

Positive impact 14 17 13 1 45 77%

The lifted C code also contains new alarms (17/58) which
we could not detect before and should be taken into account
(usually out-of-bounds or other memory accesses). We also
found some possibly buggy behaviors (Sec. VII-D).

For short, we observe positive impact from TINA w.r.t. non-
lifted code on 77% (45/58) of the functions (more precision,
reducing alarms from over-approximations of inline assembly,
or new memory alarms in lifted code) .

Table V: Impact of lifting strategies on EVA

LIFTING

Functions NONE BASIC O1 O2 O3 O4

without any alarms é 12 12 14 14 19
with ASM memory

alarms N/A 29 29 29 21 17
errors é 1 1 1 2 2

emitted C alarms 231 184 184 177 177 177
emitted ASM alarms N/A 316 244 199 165 128
total alarms 231 500 428 376 342 305

Table V additionally shows the impact of the lifting strategy
(RQ3). Compared with basic lifting, each additional optimiza-
tion increases the quality of the lifted code (fewer ASM and

total alarms) and the precision of the analysis (more functions
without alarms, fewer memory alarms, more errors) – including
loop normalization which allows finer approximations of loop
fixpoints (widening). TINA (O4) thus significantly improves
all these aspects. Moreover, the produced alarms are more
precise: possible buffer overflows (such as a ffmpeg -1 index
access – see Appendix D) are now recognized as errors and not
mere alarms. Additional experiments (Supplementary material,
Table VII) demonstrates that removing any of the optimization
steps leads us quite far from the whole chain result.

Table VI: Impact of TINA & lifting strategies on WP

LIFTING

FUNCTION NONE BASIC O1 O2 O3 O4

saturated_sub é Ë Ë Ë Ë Ë
saturated_add é é Ë Ë Ë Ë
log2 é é é é Ë Ë
mid_pred é é Ë Ë Ë Ë
strcmpeq é é é é Ë Ë
strnlen é é é é Ë Ë
memset é é é é Ë Ë
count é é é é Ë Ë
max_element é é Ë Ë Ë Ë
cmp_array é é é é Ë Ë
sum_array é é é é Ë Ë
SumSquareError é é é é Ë Ë

Weakest precondition calculus. We use the deductive verifi-
cation Frama-C plug-in WP [34], [32]. We take 12 assembly-
optimized functions (see details in Supplementary, Table IX): 6
excerpts from ffmpeg, GMP, libyuv, libgcrypt and UDPCast,
2 others adapted from optimized assembly snippets and 4
translated examples from ACSL by example [35]. Functional
specifications and loop invariants are manually inserted before
verification, as usual for WP-based methods – we do not
insert any other annotation. Moreover, recall that without
lifting, assembly chunks are correctly over-approximated by
non-deterministic assignments to the modified C variables.

Table VI details our results. The unlifted code does not
require invariants (no C-level loops), while lifted codes all
require identical invariants as they share the same control-
flow structure. A quick glance at Table VI shows that (RQ2)
while WP without lifting never succeeds and basic lifting
is far from enough (1/12), TINA does allow to prove the
functional correctness of all functions (12/12). The simple
over-approximations of assembly chunks provided by Frama-C
without lifting are not sufficient to prove properties as strong
as functional correctness.

Regarding optimization steps (RQ3), it turns out that loop
normalization (O4) has no direct impact since the user must
provide manual loop invariants. On the other hand, all other
steps are complementary (Table VI) and crucial: removing only
one of them yields at best a 6/12 success rate (Supplementary
material, Table VII).

C. Conclusion

Experiments show that our code lifting method is highly
practical (100% Debian 8.11 in-scope blocks are lifted and

validated), that it has a positive and significant impact on
all 3 formal verification tools considered – allowing them to
effectively handle code with inline assembly, and, finally, that
full TINA (O4) is needed to facilitate further code analyses –
as less refined lifting yields poorer analyses.

Interestingly, all analyses do not behave the same w.r.t the
optimization chain: symbolic execution mostly takes advantage
of register unpacking and expression simplifications, abstract
interpretation is sensitive to the 4 optimization steps and
weakest precondition calculus strongly requires all of them but
loop normalization – which is already granted by user-supplied
loop invariants.

D. Epilogue: post-analysis considerations

We found 567 compliance issues during our experiments.
Most have no impact with current compilers but may induce
bugs out of compiler changes, maintenance or code reuse.

While evaluating verifiability, we ran into 6 potential buffer
overflows hidden in assembly chunks. For example, a ffmpeg
function accesses index -1 of its input buffer – this is actually
reported in the comments (see details in Appendix D). All
errors initially reported by Frama-C EVA were also reproduced
with KLEE. After determining and adding relevant logical
preconditions, we were able to show the absence of runtime
errors in the reported “corrected” functions. Besides, we were
able to prove (with Frama-C WP) the functional correctness of
6 functions from the Debian distribution code base, including
SumSquareError (24 assembly instructions).

VIII. DISCUSSION

A. Threats to validity

Benchmark representativeness. The considered code base is
quantitatively and qualitatively representative of the use of
inline assembly: it is extensive and comprises highly popular
and respected projects. We mainly experiment on GCC and
x86, but our experiments on ARM and clang show our
results also hold in these settings. Still, we obviously miss
closed-source software and code which relies on Microsoft’s
C compiler (different assembly syntax). Yet, there is no reason
to believe it would behave differently.

Verification methods. We consider three of the most popular
verification techniques (symbolic execution, abstract interpreta-
tion, deductive verification), representative of the major classes
of analysis, both in terms of goal (bug finding, runtime error
checking and proving functional correctness) and underlying
core technologies (domain propagation, constraint solving &
path exploration, first-order reasoning). Also, we rely on well-
established verification tools, each applied in several successful
industrial case studies. Thus, we reckon that our experiments
support our claim regarding the general verifiability of the
codes TINA produces.

B. Limitations

Our lifting has two main limitations: hardware-related
instructions and floating-point operations.

Since we aim to lift assembly chunks back to C, the support
of hardware related instructions cannot be achieved outside of
modeling hardware in C as well — for example, neither DBA
IR nor C can make direct reference to hardware interrupts. Here
we probably cannot do better than having two (approximated)
C models of hardware instructions, one for over- and one
for under-approximations. While not necessarily that difficult
for reasonable analysis precision, this is clearly a manpower-
intensive task.

The float limitation is primarily due to the lack of support
in BINSEC. Adding such support is also manpower-intensive,
but not that hard. Yet, the real issue is that efficient reasoning
over floats is still ongoing scientific work in both program
analysis and automated solvers (e.g., theory support is new
in SMT-LIB [36], only 2 solvers in the relevant category of
SMT-COMP 2018). As such, it threatens our validation part,
and most program analyzers would not be able to correctly
handle these lifted floats anyway. Despite these limits, we still
lift and validate 76% of assembly chunks of a standard Linux
distribution.

Finally, our technique is amenable, to a certain extent, to
standalone assembly code or even binary code decompilation.
However, this case can quickly deteriorate to the usual difficult
problem of lifting an arbitrary program. Especially, dynamic
jumps or large-size complicated CFG would probably yield
serious issues.

IX. RELATED WORK

Though some prior work has addressed code lifting for
verification, it is worth noting that verifiability has never been
explicitly addressed so far. We hereafter review approaches
(partly) related to our method.

Assembly code lifting and verification. Maus [13], [37]
proposes a generic method simulating the behavior of assembly
instructions in a virtual machine written in C. This work was
used by the Verisoft project to verify the code of an hypervisor
consisting of mixed low-level code. Maus’ technique relies on
VCC [38] to write and prove verification conditions regarding
the state of its machine. While we strive to produced high-level
code, Maus’ virtual code contains all low-level code details,
including flags.

Further work by Schmaltz and Shadrin [39] aims (only) at
proving the ABI compliance of the assembly chunks. This
method is however restricted to MASM and the Windows oper-
ating system. TINA, here applied to GCC inline assembly, is
independent of the assembly dialect by leveraging binary level
analyzers and is applicable to a wider range of architectures.

Fehnker et al. [40] tackle the analysis of inline assembly
for ARM architecture, using a model-checking based syntactic
analysis to integrate C/C++ analyses with inline assembly. This
solution is however limited by its purely syntactic basis: first,
it is restricted to one single inline assembly dialect; second it
loses the soundness properties we target. Losing soundness may
be an appropriate practical trade-off but not when targeting
sound formal analyses.

Corteggiani et al. [14] also use code lifting within their
framework. However, their end goal is to perform dynamic
symbolic analyses on the produced lifted code. Sec. VII-B
shows that such very targeted lifting may not be enough for
other formal analyses. Moreover, correctness of the translation
is not addressed.

Myreen et al. [41] targets verification of pure assembly code.
The translation corresponds to our basic lifter, yet the approach
proves the initial lifted IR is semantically equivalent to a
very detailed ISA model. This paper then targets verification
at the level of assembly code but requires code annotations
and interactive proving. Our proposal targets the lifting of
inline assembly within C for (general) verification purposes, is
geared at ensuring the verifiability of the produced code, and its
validation establishes the correctness of the IR transformations
producing the final extracted C code.

Decompilation. Decompilation [15], [16], [17] tackles the
challenge of recovering the original source code (or a similar
one) from an executable. This goal is very difficult and requires
hard work to find back the information lost during compilation
[42]. Despite significant recent progress [19], decompilation
remains an open challenge. Still, it is used to enhance program
understanding, e.g., during reverse engineering. As such,
correctness is not the main concern — for example it does not
always need produce compilable source code.

Soundness is addressed by two recent works. Schulte et
al. [18] use search-based techniques to generate source-code
producing byte-equivalent binaries to the original executable.
This technique, when it succeeds, ensures soundness by design
but it is only applied to small examples, with limited success.
Brumley et al. [19] on the other hand use testing to increase
trust in their lifted code.

We do draw inspiration from some decompilation techniques
for type reconstruction [43], [44]. Even though we do not
construct types that are not derived from inputs, it helps in
strengthening our type system.

Recovering the instructions and CFG of the code under analy-
sis is a big challenge in decompilation [45], [46], especially for
adversarial codes like malware. The regularity and patterns of
managed codes allow a very good recovery in practice [43] by
unsound methods, yet without any guarantee. Inline assembly
chunks have more limited behaviors (clear control-flow, no
dynamic jumps) and the fact that we control compilation makes
it a non-issue for us.

Binary-level program analysis. For more than a decade now,
the program analysis community has spent significant efforts on
binary-level codes [47], either to analyze source-less programs
(malware, COTS) or to check the code that is really running.
The efforts have mainly been concerned with safe high-level
abstraction recovery [48], [49], [50], [29], [51] and invariant
computation.

Several generic binary lifters have been produced [20], [21],
[22], reducing complex ISAs to a small set of semantically
well-defined primitives. Though well tested [22], more trust

could be achieved if lifters were automatically derived from
something akin to ARM’s formal specifications [52].

Mixed code problems. Morrisett et al. [53] have proposed
Typed Assembly Language to ensure memory and control
flow integrity in low-level assembly. Patterson et al. [54]
have exploited the idea to mix low-level code with functional
languages. We borrow some elements to propagate types
between C and inline assembly.

Translation validation and code equivalence. In order to
achieve safe lifting, we use translation validation [55], [23],
[56], a technique also used in CompCert register allocation
[57]. Our formal needs thus rely on well-established and tested
tools (here SMT solvers), usable as blackboxes, instead of a
full formal proof of the whole lifting chain.

Program equivalence checking is considered a challenging
verification task. Dedicated approaches start to emerge, like
relational weakest precondition calculus [58] (for proof) or
relational symbolic execution [59] (for bug finding).

X. CONCLUSION

We have presented TINA, a method enabling the analysis of
C/C++ code mixed with inline assembly, by lifting the assembly
chunks to equivalent C code. This method is the first to
generate well-structured C code amenable to formal analysis
through a dedicated principled succession of transformations
geared at improving the verifiability of the produced code.
To boot, translation validation builds trust into the lifting
process. Thorough experiments on real-world code show that
TINA is widely applicable (100% of in-scope chunks from
Linux Debian Jessie 8.11 are validated) and that its semantic
transformations positively (and significantly) impact popular
verification techniques.

REFERENCES

[1] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-c: A software analysis perspective,” Formal Asp. Comput., vol. 27,
no. 3, pp. 573–609, 2015.

[2] D. Delmas and J. Souyris, “Astrée: From research to industry,” in
Static Analysis, 14th International Symposium, SAS 2007, Kongens
Lyngby, Denmark, August 22-24, 2007, Proceedings, ser. Lecture Notes in
Computer Science, H. R. Nielson and G. Filé, Eds., vol. 4634. Springer,
2007, pp. 437–451.

[3] P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: whitebox fuzzing
for security testing,” Commun. ACM, vol. 55, no. 3, pp. 40–44, 2012.

[4] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in 8th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, December 8-10, 2008, San Diego, California, USA, Pro-
ceedings, R. Draves and R. van Renesse, Eds. USENIX Association,
2008, pp. 209–224.

[5] P. W. O’Hearn, “From categorical logic to facebook engineering,” in
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2015, Kyoto, Japan, July 6-10, 2015. IEEE Computer Society, 2015,
pp. 17–20.

[6] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg, “The
static driver verifier research platform,” in Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings, ser. Lecture Notes in Computer Science, T. Touili,
B. Cook, and P. B. Jackson, Eds., vol. 6174. Springer, 2010, pp.
119–122.

[7] M. Rigger, S. Marr, S. Kell, D. Leopoldseder, and H. Mössenböck, “An
analysis of x86-64 inline assembly in c programs,” in Proceedings of
the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’18. New York, NY, USA: ACM,
2018, pp. 84–99.

[8] J. C. King, “Symbolic Execution and Program Testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[9] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.

[10] R. W. Floyd, “Assigning meanings to programs,” in Mathematical Aspects
of Computer Science, Proceedings of Symposia in Applied Mathematics
19, J. T. Schwartz, Ed. Providence: American Mathematical Society,
1967, pp. 19–32.

[11] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[12] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California, USA,
January 1977, R. M. Graham, M. A. Harrison, and R. Sethi, Eds. ACM,
1977, pp. 238–252.

[13] S. Maus, M. Moskal, and W. Schulte, Vx86: x86 Assembler Simulated
in C Powered by Automated Theorem Proving. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 284–298.

[14] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-
wide security testing of real-world embedded systems software,” in 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018., W. Enck and A. P. Felt, Eds. USENIX
Association, 2018, pp. 309–326.

[15] C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly to High-Level
Language Translation,” in 1998 International Conference on Software
Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19,
1998. IEEE Computer Society, 1998, pp. 228–237.

[16] C. Cifuentes, “Interprocedural data flow decompilation,” J. Prog. Lang.,
vol. 4, no. 2, pp. 77–99, 1996.

[17] C. Cifuentes and K. J. Gough, “Decompilation of Binary Programs,”
Softw., Pract. Exper., vol. 25, no. 7, pp. 811–829, 1995.

[18] E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Logino, “Evolving
exact decompilation,” in BAR 2018, Workshop on Binary Analysis
Research, San Diego, California, USA, February 18, 2018, 2018.

[19] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo, “Native x86
decompilation using semantics-preserving structural analysis and iterative
control-flow structuring,” in Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16, 2013, S. T. King, Ed.
USENIX Association, 2013, pp. 353–368.

[20] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, BAP: A Binary
Analysis Platform. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 463–469.

[21] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The BINCOA framework for binary code analysis,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, ser. Lecture Notes in Computer
Science, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer,
2011, pp. 165–170.

[22] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, G. Rosu, M. D. Penta, and T. N. Nguyen, Eds. IEEE Computer
Society, 2017, pp. 353–364.

[23] G. C. Necula, “Translation validation for an optimizing compiler,” in
Proceedings of the 2000 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Vancouver, Britith
Columbia, Canada, June 18-21, 2000, M. S. Lam, Ed. ACM, 2000, pp.
83–94.

[24] Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer’s
Manual, September 2016.

[25] A. Djoudi and S. Bardin, BINSEC: Binary Code Analysis with Low-Level
Regions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp.
212–217.

[26] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M. Potet, and
J. Marion, “BINSEC/SE: A dynamic symbolic execution toolkit for
binary-level analysis,” in IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,

Japan, March 14-18, 2016 - Volume 1. IEEE Computer Society, 2016,
pp. 653–656.

[27] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of
Model Checking., E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem,
Eds. Springer, 2018, pp. 305–343.

[28] DWARF Debugging Information Format Committee, DWARF Debugging
Information Format 5, 2017.

[29] A. Djoudi, S. Bardin, and É. Goubault, Recovering High-Level Conditions
from Binary Programs. Cham: Springer International Publishing, 2016,
pp. 235–253.

[30] D. Bühler, “Structuring an abstract interpreter through value and
state abstractions:eva, an evolved value analysis for frama-c,” Ph.D.
dissertation, University of Rennes 1, France, 2017.

[31] P. Cousot and R. Cousot, “Abstract interpretation: past, present and future,”
in Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, T. A. Henzinger and D. Miller, Eds. ACM,
2014, pp. 2:1–2:10.

[32] P. Baudin, F. Bobot, L. Correnson, and Z. Dargaye, WP Manual, Frama-C
Argon-20181129 ed., 2018.

[33] M. Zmyslowski, “Feeding the Fuzzers with KLEE,” 2018.
[34] N. Carvalho, C. da Silva Sousa, J. S. Pinto, and A. Tomb, “Formal

verification of klibc with the WP frama-c plug-in,” in NASA Formal
Methods - 6th International Symposium, NFM 2014, Houston, TX, USA,
April 29 - May 1, 2014. Proceedings, ser. Lecture Notes in Computer
Science, J. M. Badger and K. Y. Rozier, Eds., vol. 8430. Springer,
2014, pp. 343–358.

[35] J. Burghardt, J. Gerlach, and T. Lapawczyk, ACSL By Example 17.2.0,
Fraunhofer FOKUS.

[36] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories
Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[37] S. Maus, “Verification of hypervisor subroutines written in assembler =
verifikation von hypervisorunterrutinen, geschrieben in assembler,” Ph.D.
dissertation, University of Freiburg, Germany, 2011.

[38] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, VCC: A Practical System for
Verifying Concurrent C. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 23–42.

[39] S. Schmaltz and A. Shadrin, Integrated Semantics of Intermediate-
Language C and Macro-Assembler for Pervasive Formal Verification of
Operating Systems and Hypervisors from VerisoftXT. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 18–33.

[40] A. Fehnker, R. Huuck, F. Rauch, and S. Seefried, “Some assembly
required - program analysis of embedded system code,” in 2008 Eighth
IEEE International Working Conference on Source Code Analysis and
Manipulation, Sept 2008, pp. 15–24.

[41] M. O. Myreen, M. J. C. Gordon, and K. Slind, “Machine-code verification
for multiple architectures - an application of decompilation into logic,”
in 2008 Formal Methods in Computer-Aided Design, Nov 2008, pp. 1–8.

[42] B.-Y. E. Chang, M. Harren, and G. C. Necula, Analysis of Low-Level
Code Using Cooperating Decompilers. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 318–335.

[43] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering
of types in binary programs,” in NDSS, 2011.

[44] E. Robbins, A. King, and T. Schrijvers, “From minx to minc: Semantics-
driven decompilation of recursive datatypes,” in Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’16. New York, NY, USA: ACM,
2016, pp. 191–203.

[45] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An
in-depth analysis of disassembly on full-scale x86/x64 binaries,” in 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., T. Holz and S. Savage, Eds. USENIX Association,
2016, pp. 583–600.

[46] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016, A. Zeller and
A. Roychoudhury, Eds. ACM, 2016, pp. 24–35.

[47] G. Balakrishnan and T. W. Reps, “WYSINWYX: what you see is not
what you execute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6, pp.
23:1–23:84, 2010.

[48] S. Bardin, P. Herrmann, and F. Védrine, “Refinement-Based CFG
Reconstruction from Unstructured Programs,” in Verification, Model

Checking, and Abstract Interpretation - 12th International Conference,
VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings, ser.
Lecture Notes in Computer Science, R. Jhala and D. A. Schmidt, Eds.,
vol. 6538. Springer, 2011, pp. 54–69.

[49] J. Kinder and D. Kravchenko, “Alternating Control Flow Reconstruction,”
in Verification, Model Checking, and Abstract Interpretation - 13th
International Conference, VMCAI 2012, Philadelphia, PA, USA, January
22-24, 2012. Proceedings, ser. Lecture Notes in Computer Science,
V. Kuncak and A. Rybalchenko, Eds., vol. 7148. Springer, 2012, pp.
267–282.

[50] T. Reinbacher and J. Brauer, “Precise control flow reconstruction using
boolean logic,” in Proceedings of the 11th International Conference on
Embedded Software, EMSOFT 2011, part of the Seventh Embedded
Systems Week, ESWeek 2011, Taipei, Taiwan, October 9-14, 2011,
S. Chakraborty, A. Jerraya, S. K. Baruah, and S. Fischmeister, Eds.
ACM, 2011, pp. 117–126.

[51] A. Sepp, B. Mihaila, and A. Simon, “Precise Static Analysis of Binaries
by Extracting Relational Information,” in 18th Working Conference on
Reverse Engineering, WCRE 2011, Limerick, Ireland, October 17-20,
2011, M. Pinzger, D. Poshyvanyk, and J. Buckley, Eds. IEEE Computer
Society, 2011, pp. 357–366.

[52] A. Reid, “Trustworthy specifications of ARM® v8-A and v8-M system
level architecture,” in 2016 Formal Methods in Computer-Aided Design,
FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016, R. Piskac
and M. Talupur, Eds. IEEE, 2016, pp. 161–168.

[53] J. G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F
to typed assembly language,” in POPL ’98, Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, CA, USA, January 19-21, 1998, D. B. MacQueen
and L. Cardelli, Eds. ACM, 1998, pp. 85–97.

[54] D. Patterson, J. Perconti, C. Dimoulas, and A. Ahmed, “Funtal: Reason-
ably mixing a functional language with assembly,” in Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 495–509.

[55] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Translation validation for
a verified OS kernel,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013, H. Boehm and C. Flanagan, Eds. ACM, 2013, pp.
471–482.

[56] X. Rival, “Certification of compiled assembly code by invariant transla-
tion,” STTT, vol. 6, no. 1, pp. 15–37, 2004.

[57] S. Blazy, B. Robillard, and A. W. Appel, “Formal verification of coalesc-
ing graph-coloring register allocation,” in Programming Languages and
Systems, 19th European Symposium on Programming, ESOP 2010, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
ser. Lecture Notes in Computer Science, A. D. Gordon, Ed., vol. 6012.
Springer, 2010, pp. 145–164.

[58] N. Benton, “Simple relational correctness proofs for static analyses and
program transformations,” in Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, N. D. Jones and X. Leroy, Eds.
ACM, 2004, pp. 14–25.

[59] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a doubt: testing
for divergences between software versions,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016. ACM, 2016.

Get rid of inline assembly through
verification-oriented lifting

Supplementary material

Frédéric Recoules∗, Sébastien Bardin∗, Richard Bonichon∗, Laurent Mounier† and Marie-Laure Potet†
∗CEA LIST, Paris-Saclay, France

firstname.lastname@cea.fr
†Univ. Grenoble Alpes. VERIMAG, Grenoble, France

firstname.lastname@univ-grenoble-alpes.fr

APPENDIX A
MOTIVATING EXAMPLE

In Sec. II, Fig. 1c shows the code produced by TINA. Both
Frama-C plugins EVA and WP were able to prove the absence
of buffer overflow.

The BASIC lifter on the code from Fig. 1a produces the
code shown in Fig. 7. Even if the code remains small, the
absence of simplifications adds a lot of unwanted complexity.
Here, __tina_df is not propagated, thus the __tina_edi pointer
is computed by a (extraneous) cast following bitwise operations.
These operations actually destroys the analyzer’s abstractions.
On this very example, none of the Frama-C plugins was able
to prove the absence of error.

APPENDIX B
ADDITIONAL EXPERIMENTS: COMPLEMENTARITY OF

OPTIMIZATION STEPS

Tables III, V and VI demonstrated the positive impact of
stacking optimizations (levels O1 to O4) on common analyzers
– recall that TINA is O4. What happens, now, if we remove
any of the 3 initial optimizations from TINA? Here, we extend
previous experiments with a new set of optimization levels:
• O1 : O4 - high-level predicate recovery;
• O2 : O4 - register unpacking;
• O3 : O4 - expression propagation.

Note that O4 (i.e., O4 - loop normalization) is actually O3,
hence this case is not discussed.

Symbolic execution. Table VII extends the results of Table III.
We can observe that deactivating high-level predicate recovery
or expression propagation leads to a drop in the number of
paths explored equivalent to what their activation had gained.

Abstract interpretation. Table VIII extends the results of
Table V. High-level predicate recovery is very important for
abstract interpretation as common domains do not accurately
handle flag computations. Any imprecision occurring at a loop
exit point will generate a lot of alarms in the loop body and
this is what we observe here. Register unpacking, in the other
hand, has less impact in our experiments because imprecision

1074 "socklib.c"
int udpc_prepareForSelect
(int *socks, int nr, fd_set *read_set)
{
/* [...] */
int maxFd;
{

int __d0;
int __d1;
__fd_mask *__tina_4;
unsigned int __tina_3;
__tina_3 = sizeof(fd_set) / sizeof(__fd_mask);
__tina_4 = & read_set->__fds_bits[0];
{
unsigned int __tina_ecx;
unsigned int __tina_ebx;
unsigned int __tina_edx_7;
int __tina_df;
__fd_mask *__tina_edi;
__fd_mask *__tina_eax_12;
__fd_mask *__tina_edx;
unsigned int __tina_eax;

__TINA_BEGIN_1__: ;
__tina_ebx = 0;
__tina_edx_7 = __tina_3;
__tina_eax_12 = __tina_4;
__tina_ecx = __tina_edx_7;
__tina_edx = __tina_eax_12;
__tina_edi = __tina_edx;
__tina_eax = __tina_ebx;
__tina_df = 0;
while (! (0U == __tina_ecx)) {

*__tina_edi = __tina_eax;
__tina_edi = (__fd_mask *)
((!__tina_df - 1) & (unsigned int)(__tina_edi - 1)
|
(__tina_df - 1) & (unsigned int)(__tina_edi + 1));

__tina_ecx --;
}

__TINA_END_1__: ;
}

}
/* [...] */
return maxFd;

}

Figure 7: C code generated by BASIC lifter

Table VII: Impact of lifting strategies on KLEE (extended)

LIFTING

NONE BASIC O1 O2 O3 O4 O1 O2 O3

Functions 100% covered é 25 25 25 25 25 25 25 25
Aggregate time N/A 115s 115s 110s 103s 105s 105s 105s 110s

paths (all functions) 1.41M 1.50M 1.83M 4.59M 6.64M 6.62M 5.42M 4.57M 4.59M
+6% +22% +150% +45% ∼ -19% -30% -30%

on data do not affect the analysis as much as imprecision on
the control flow.

Weakest precondition calculus. First, Table IX details the 12
functions under test for Frama-C in Sec. VII. Second, Table X
extends the results of Table VI and shows that WP is sensitive
to all optimizations outside of loop normalization. Removing
any of the 3 other optimizations affects between 50% and 66%
of the programs under study, rendering them non-provable.

Conclusion. Extended experiments show that the 4 optimiza-
tions are complementary and necessary to obtain the best of
the analyzers. Register unpacking has the greatest impact on
KLEE while high-level predicate recovery is necessary for
the integer abstractions used in Frama-C EVA. Removing any
optimization outside of loop normalization actually kills the
effectiveness of Frama-C WP.

Table VIII: Impact of lifting strategies on EVA (extended)

LIFTING

Functions NONE BASIC O1 O2 O3 O4 O1 O2 O3

without any alarms é 12 12 14 14 19 14 14 14
with ASM memory

alarms N/A 29 29 29 21 17 21 21 29
errors é 1 1 1 2 2 2 2 1

Aggregate of #

emitted C alarms 231 184 184 177 177 177 177 184 177
emitted ASM alarms N/A 316 244 199 165 128 253 171 199

Table IX: Functions under test for WP

FUNCTION # INST. # INV. DESCRIPTION ORIGIN

saturated_sub 2 0 Maximum between 0 and big integer subtraction ffmpeg, GMP
saturated_add 2 0 Minimum between MAX_UINT and big integer addition ffmpeg, GMP
log2 1 5 Biggest power of 2 of an integer libgcrypt
mid_pred 7 0 Median of 3 inputs ffmpeg

strcmpeq 9 6 String equality testing ASM snippet
strnlen 16 6 String length (or buffer length if no ’\0’) ASM snippet

memset 9 5 Set array contents to input UDPCast
count 8 4 Count occurrences of inputs in array ACSL by example [35]
max_element 10 7 First index of max element of the array ACSL by example
cmp_array 10 6 Array equality testing (SIMD) ACSL by example
sum_array 20 7 Sum of array elements (SIMD) ACSL by example
SumSquareError 24 69 Sum of square differences between two arrays (SIMD) libyuv

Table X: Impact of lifting strategies on WP (extended).
LIFTING

FUNCTION NONE BASIC O1 O2 O3 O4 O1 O2 O3

saturated_sub é Ë Ë Ë Ë Ë Ë Ë Ë
saturated_add é é Ë Ë Ë Ë Ë Ë Ë
log2 é é é é Ë Ë Ë Ë é
mid_pred é é Ë Ë Ë Ë é Ë Ë
strcmpeq é é é é Ë Ë Ë é é
strnlen é é é é Ë Ë é é é
memset é é é é Ë Ë Ë é é
count é é é é Ë Ë é Ë é
max_element é é Ë Ë Ë Ë é Ë Ë
cmp_array é é é é Ë Ë é é é
sum_array é é é é Ë Ë é é é
SumSquareError é é é é Ë Ë é é é

http://www.alfredklomp.com/programming/sse-strings/
https://www.strchr.com/optimized_strlen_function

APPENDIX C
ADDITIONAL EXPERIMENTS: SIZE OF PRODUCED CODE

The size of the generated code w.r.t the size of the assembly
chunk is indicative of what one can expect of the code produced
by TINA. Since the size of the C code is also correlated with
the quality of subsequent analyses when produced by TINA,
this information becomes more notable. Broadly speaking, the
smaller the code, the easier it will be to analyze and the better
the analysis will be.

Table XI: Ratio between C statements and assembly instructions
w.r.t lifting strategies (all chunks, x86).

LIFTING

BASIC O1 O2 O3 O4 O1 O2 O3

Min 0.36 0.36 0.55 0.23 0.23 0.23 0.23 0.55
Average 2.87 2.86 6.03 0.98 0.98 0.98 1.06 6.03
Max 11.54 11.54 55.58 19.35 19.35 19.35 11.08 55.58

Table XI shows the ratio between the number of generated
C statements and the number of assembly instructions. As
expected, two optimizations significantly change the ratio. First,
register unpacking increases the number of generated statements
as it splits single assignments into many smaller assignments of
independent values. On the other hand, expression propagation
greatly reduces the number of statements: on average, this
number decreases by a factor of 6 when it comes from
register unpacking and by a factor of 2.5 in other cases. In the
end, TINA roughly generates one C statement per assembly
instruction for the chunks of the Debian distribution.

APPENDIX D
ffmpeg BUG EXAMPLE

25 "libavcodec/lossless_videoencdsp.h"
typedef struct LLVidEncDSPContext {
/* [...] */

/**
* Subtract HuffYUV's variant of median prediction.
* Note, this might read from src1[-1], src2[-1].
*/

void (*sub_median_pred)(uint8_t *dst, const uint8_t *src1,
const uint8_t *src2, intptr_t w,
int *left, int *left_top);

/* [...] */
} LLVidEncDSPContext;

(a) Function API

1 # 44 "libavcodec/x86/lossless_videoencdsp_init.c"
2 void sub_median_pred_mmxext(uint8_t *dst, const uint8_t *src1,
3 const uint8_t *src2, intptr_t w,
4 int *left, int *left_top)
5 {
6 x86_reg i = 0;
7 uint8_t l, lt;
8

9 __asm__ volatile (
10 "movq (%1, %0), %%mm0 \n\t" // LT
11 "psllq $8, %%mm0 \n\t"
12 "1: \n\t"
13 "movq (%1, %0), %%mm1 \n\t" // T
14 "movq -1(%2, %0), %%mm2 \n\t" // L
15 "movq (%2, %0), %%mm3 \n\t" // X
16 "movq %%mm2, %%mm4 \n\t" // L
17 "psubb %%mm0, %%mm2 \n\t"
18 "paddb %%mm1, %%mm2 \n\t" // L + T - LT
19 "movq %%mm4, %%mm5 \n\t" // L
20 "pmaxub %%mm1, %%mm4 \n\t" // max(T, L)
21 "pminub %%mm5, %%mm1 \n\t" // min(T, L)
22 "pminub %%mm2, %%mm4 \n\t"
23 "pmaxub %%mm1, %%mm4 \n\t"
24 "psubb %%mm4, %%mm3 \n\t" // dst - pred
25 "movq %%mm3, (%3, %0) \n\t"
26 "add $8, %0 \n\t"
27 "movq -1(%1, %0), %%mm0 \n\t" // LT
28 "cmp %4, %0 \n\t"
29 " jb 1b \n\t"
30 : "+r" (i)
31 : "r" (src1), "r" (src2),
32 "r" (dst), "r" ((x86_reg) w));
33

34 l = *left;
35 lt = *left_top;
36

37 dst[0] = src2[0] -
38 mid_pred(l, src1[0], (l + src1[0] - lt) & 0xFF);
39

40 *left_top = src1[w - 1];
41 *left = src2[w - 1];
42 }

(b) Original version

Sec. VII-D refers to a ffmpeg function accessing index
-1 of its input buffer. It is part of the lossless video encryp-
tion provided by ffmpeg. More specifically, it is a field of
struct LLVidEncDSPContext (Fig. 8a) which is initialized dynami-
cally, depending on the hardware capabilities. Comments show

that the developers know of this behavior. Fig. 8b and 8c
show the original and generated version respectively of the
function implementation using mmxext extensions. The latter
has been sliced for readability reasons and the ellipsis stands
for repetitive patterns. (each MMX instruction is translated to
8 independent C statements) The -1 access occurs during the
first iteration of the loop, when %0 (eax) is 0, at line 14 (Fig. 8b)
in the assembly chunk. This bug is consequently found at line
27 in the lifted C version (Fig. 8c).

Since the situation is acknowledged in the code documen-
tation, it is arguably not a bug sensu stricto. However, the
function is exported (not static), does not contain defensive
programming to avoid the bad behavior, and the documentation
is not directly on the function itself but in a record containing
a possible function pointer to this function. Thus, we consider
this a serious programming flaw that could lead to issues
down the line in several situations: code maintenance and
refactoring, code reuse (in other projects), compiler upgrades
(taking advantages of potential undefined behaviors to trigger
more aggressive code optimizations), etc.

Compliance issues. Moreover, the chunk interface (Fig. 8b,
lines 30-32) misses information about clobbering the mm

registers 0 to 5 and accessing memory from src1, src2 and
dst. It is actually not an issue here as caller functions assumes
(according to the Application Binary Interface) that memory
and mm registers are clobbered. However, it is not easy to know
in advance how compilers will handle function inlining in
terms of memory write barriers and register clobbering. The
missing information at the interface of the chunk for clobbered
entities could thus lead to serious issues when compiling in a
different environment. Similar concerns arise in the cases of
code reuse, especially in another project.

1 void sub_median_pred_mmxext(uint8_t *dst, uint8_t const *src1,
2 uint8_t const *src2, intptr_t w, int *left,
3 int *left_top)
4 {
5 uint8_t l;
6 uint8_t lt;
7 int tmp;
8 x86_reg i = 0;
9 {

10 unsigned int __atoc_eax;
11 uint8_t __atoc_mm0_0_7 /* , __atoc_mm0_8_15, ..., __atoc_mm0_56_63 */;
12 uint8_t __atoc_mm1_0_7 /* , __atoc_mm1_8_15, ..., __atoc_mm1_56_63 */;
13 uint8_t __atoc_mm2_0_7 /* , __atoc_mm2_8_15, ..., __atoc_mm2_56_63 */;
14 /* uint8_t __atoc_mm3_56_63; */
15 uint8_t __atoc_tmp44, __atoc_tmp52, __atoc_tmp60, __atoc_tmp68 /* ... */;
16 __ATOC_BEGIN_2__: ;
17 __atoc_eax = i;
18 __atoc_mm0_0_7 = 0;
19 /* __atoc_mm0_8_15 = *(src1 + i); */
20 /* [...] */
21 /* __atoc_mm0_56_63 = *((src1 + i) + 6); */
22 while (1) {
23 __atoc_mm1_0_7 = *(src1 + __atoc_eax);
24 /* __atoc_mm1_8_15 = *((src1 + __atoc_eax) + 1); */
25 /* [...] */
26 /* __atoc_mm1_56_63 = *((src1 + __atoc_eax) + 7); */
27 __atoc_mm2_0_7 = *((src2 + __atoc_eax) - 1);
28 __atoc_mm2_8_15 = *(src2 + __atoc_eax);
29 /* [...] */
30 /* __atoc_mm2_56_63 = *((src2 + __atoc_eax) + 6); */
31 /* __atoc_mm3_56_63 = *((src2 + __atoc_eax) + 7); */
32 /* if ((int)__atoc_mm2_56_63 > (int)__atoc_mm1_56_63) __atoc_tmp.. = __atoc_mm2_56_63; */
33 /* else __atoc_tmp.. = __atoc_mm1_56_63; */
34 /* [...] */
35 if ((int)__atoc_mm2_0_7 > (int)__atoc_mm1_0_7) __atoc_tmp52 = __atoc_mm2_0_7;
36 else __atoc_tmp52 = __atoc_mm1_0_7;
37 /* if ((int)__atoc_mm1_56_63 < (int)__atoc_mm2_56_63) __atoc_tmp.. = __atoc_mm1_56_63; */
38 /* else __atoc_tmp.. = __atoc_mm2_56_63; */
39 /* [...] */
40 if ((int)__atoc_mm1_0_7 < (int)__atoc_mm2_0_7) __atoc_tmp44 = __atoc_mm1_0_7;
41 else __atoc_tmp44 = __atoc_mm2_0_7;
42 /* if ((int).. < ((int)__atoc_mm2_56_63 - (int)__atoc_mm0_56_63) + (int)__atoc_mm1_56_63) */
43 /* __atoc_tmp.. = __atoc_tmp..; */
44 /* else __atoc_tmp.. = ((int)__atoc_mm2_56_63 - (int)__atoc_mm0_56_63) + (int)__atoc_mm1_56_63; */
45 /* [...] */
46 if ((int)__atoc_tmp52 < ((int)__atoc_mm2_0_7 - (int)__atoc_mm0_0_7) + (int)__atoc_mm1_0_7)
47 __atoc_tmp68 = __atoc_tmp52;
48 else __atoc_tmp68 = ((int)__atoc_mm2_0_7 - (int)__atoc_mm0_0_7) + (int)__atoc_mm1_0_7;
49 /* if ((int)__atoc_tmp.. > (int)__atoc_tmp..) __atoc_tmp.. = __atoc_tmp..; */
50 /* else __atoc_tmp.. = __atoc_tmp..; */
51 /* [...] */
52 if ((int)__atoc_tmp68 > (int)__atoc_tmp44) __atoc_tmp60 = __atoc_tmp68;
53 else __atoc_tmp60 = __atoc_tmp44;
54 *(dst + __atoc_eax) = (int)__atoc_mm2_8_15 - (int)__atoc_tmp60;
55 /* *((dst + __atoc_eax) + 1) = (int)__atoc_mm2_16_23 - (int)__atoc_tmp..; */
56 /* [...] */
57 /* *((dst + __atoc_eax) + 6) = (int)__atoc_mm2_56_63 - (int)__atoc_tmp..; */
58 /* *((dst + __atoc_eax) + 7) = (int)__atoc_mm3_56_63 - (int)__atoc_tmp.. */
59 __atoc_eax += 8U;
60 __atoc_mm0_0_7 = *((src1 + __atoc_eax) - 1);
61 /* __atoc_mm0_8_15 = *(src1 + __atoc_eax); */
62 /* [...] */
63 /* __atoc_mm0_56_63 = *((src1 + __atoc_eax) + 6); */
64 if (__atoc_eax >= (unsigned int)w) break;
65 }
66 __ATOC_END_2__: ;
67 }
68 l = (unsigned char)*left;
69 lt = (unsigned char)*left_top;
70 tmp = mid_pred((int)l,(int)*(src1 + 0),
71 (((int)l + (int)*(src1 + 0)) - (int)lt) & 0xFF);
72 *(dst + 0) = (unsigned char)((int)*(src2 + 0) - tmp);
73 *left_top = (int)*(src1 + (w - 1));
74 *left = (int)*(src2 + (w - 1));
75 return;
76 }

(c) TINA-generated version

Figure 8: ffmpeg function accessing src2[-1]

APPENDIX E
TECHNICAL FOCUS ON SIMPLIFICATION RULES

We use a mixture of standard and dedicated simplification
rules – standard for typical integer-level properties and dedi-
cated for more low-level aspects. In the rules below, we use
the following notations |x| is the size of the expression x, �
any binary operator, C a condition (|C| = 1), k is a constant.
~1|x| denotes a bitvector of size |x| with all bits set to 1.

• standard “lightweight” term normalization in order to ease
further other simplifications, including common subex-
pression elimination (a.k.a. sharing), unused variables
elimination, associativity-commutativity re-ordering.

• constant propagation (modular arithmetic)
• neutral elements:

x+ 0 ↪→ x

x− 0 ↪→ x

x× 1 ↪→ x

x udiv 1 ↪→ x

x sdiv 1 ↪→ x

x urem 2|x| ↪→ x

x ∧~1|x| ↪→ x

x ∨ 0 ↪→ x

x⊕ 0 ↪→ x

x shl 0 ↪→ x

x shr 0 ↪→ x

x sar 0 ↪→ x

• idempotence:

x ∧ x ↪→ x

x ∨ x ↪→ x

uext|x|(x) ↪→ x

sext|x|(x) ↪→ x

extract0..|x|−1(x) ↪→ x

• absorbing(-like) elements:

x× 0 ↪→ 0

x ∧ 0 ↪→ 0

x ∨ 1 ↪→ 1

x urem 1 ↪→ 0

x srem 1 ↪→ 0

• inverse elements:

x− x ↪→ 0

x udiv x ↪→ 1

x shl k
|x|≤k
↪→ 0

x⊕ x ↪→ 0

x sdiv x ↪→ 1

x shr k
|x|≤k
↪→ 0

• involutivity:

¬(¬x) ↪→ x −(−x) ↪→ x

• double shift simplifications:
(x shl y) shl z ↪→ x shl (y + z)

(x shr y) shr z ↪→ x shr (y + z)

(x sar y) sar z ↪→ x sar (y + z)

• remainder / extension subsumption:

(x urem k) urem k′
k≤k′

↪→ x urem k

(x urem k) urem k′
k>k′

↪→ x urem k′

sextk(uextk′(x))
k′>|x|
↪→ uextk(x)

uextk(uextk′(x)) ↪→ uextk(x)
• condition simplifications

C = 1 ↪→ C

C 6= 0 ↪→ C

C > 0 ↪→ C

x = x ↪→ 1

x 6= x ↪→ 0

x >u x ↪→ 0

x <u x ↪→ 0

x >s x ↪→ 0

x <s x ↪→ 0

• (extended) De Morgan simplifications

¬(C ∧ C ′) ↪→ ¬C ∨ ¬C ′

¬(C ∨ C ′) ↪→ ¬C ∧ ¬C ′

x⊕~1|x| ↪→ ¬x
¬(x = y) ↪→ x 6= y

¬(x 6= y) ↪→ x = y

¬(x <u y) ↪→ y ≤u x

¬(x ≤u y) ↪→ y <u x

¬(x >u y) ↪→ y ≥u x

¬(x ≥u y) ↪→ y >u x

¬(x <s y) ↪→ y ≤s x

¬(x ≤s y) ↪→ y <s x

¬(x >s y) ↪→ y ≥s x

¬(x ≥s y) ↪→ y >s x

• ternary expression simplification:
C ? false : true ↪→ ¬C

¬C ? x : y ↪→ C ? y : x

C ? true : false ↪→ C

C ? x : x ↪→ x

x � (C ? y : z) ↪→ C ? x � y : x � z
(C ? w : x) � (C ? y : z) ↪→ C ? w � y : x � z

• split elements:
k = concat(x, y) ↪→ (extract|y|..|x|+|y|−1(k) = x)

∧ (extract0..|y|−1(k) = y)

k 6= concat(x, y) ↪→ (extract|y|..|x|+|y|−1(k) 6= x)

∨ (extract0..|y|−1(k) 6= y)

• concatenation abstraction:
uext|x|+|y|(x) ∨ concat(y, 0|x|) ↪→ concat(y, x)

uext|x|+k(x) shl k ↪→ concat(x, 0k)
concat(0k, x) ↪→ uextk+|x|(x)

• extraction simplification:
extracti..j(extractk..l(x)) ↪→ extracti+k..j+k(x)

concat(extracti..j(x), extractj+1..k(x)) ↪→ extracti..k(x)

extracti..j(uextk(x))
|x|≤i
↪→ 0

extract0..|x|−1(x) ↪→ x

extracti..j(concat(x, y))
j<|y|
↪→ extracti..j(y)

extracti..j(concat(x, y))
|y|≤i
↪→ extracti−|y|..j−|y|(x)

extract0..j(uextk(x))
|x|≤j
↪→ uextj(x)

extracti..j(uextk(x))
j<|x|
↪→ extracti..j(x)

extract0..j(sextk(x))
|x|≤j
↪→ sextj(x)

extracti..j(sextk(x))
j<|x|
↪→ extracti..j(x)

• two-complement arithmetic abstraction:
¬x+ 1 ↪→ −x

(uextk(x)⊕ 2|x|−1)− 2|x|−1 ↪→ sextk(x)
extract|x|−1(x) ↪→ x <s 0

uextn(C)− 1 ↪→ C ? 0 : ~1n

sextn(C) ↪→ C ? ~1n : 0

APPENDIX F
LOOP NORMALIZATION EXAMPLE

Fig. 9b to 9e illustrate the 3 steps on the motivating example.
The ecx register stands as the loop counter, the edi register
is rebased, rescaled and unified with ecx. Before merging edi

with ecx, the following relation is recorded: edi ≡ __tina_4

+ 4 × (__tina_3 - ecx).

APPENDIX G
VALIDATION EXAMPLE

Fig. 10 shows the translation validation of the running
example (Fig. 1). Codes before and after lifting have the same
form (S1), as shown in Fig. 10a. Original blocks B0, B1 and B2

have been paired respectively with their lifted counterparts B′0,
B′1 and B′2 for S2. Let us focus here on the equivalence check
between B2 and B′2 (Fig. 10b). The two blocks are obviously
syntactically different, due to simplification and recompilation.
Compilation splits complex expressions using general registers
as temporary variables while the ones from B2 have been lifted
to C variables with a close but different name. For instance
__tina_ecx is equal to ecx whereas eax is used differently in B2

and B′2. Due to simplification passes, the two blocks no more
have the same number of inputs or outputs, because lifting
inferred some constraints and removed unused variables. Thus,
eax and df are actually 0 upon entering B2. As pointer edi

is incremented by 4 while ecx is decremented by 1, the two
variables are linked by the linear relation edi = tina_4 + 4

× (tina_3 − ecx). The formula is built to take into account
these differences by adding logical assertions for each inferred
constraint. In the end, the equivalence query is then discharged

in

ecx← __tina_3
edi← __tina_4

if ecx = 0 then break
@[edi]4← 0x00000000

edi ← edi + 4
ecx ← ecx − 1

out

(a) Post O3
in

ecx← __tina_3
edi← 0

if ecx = 0 then break
@[__tina_4 + edi]4← 0x00000000

edi ← edi + 4
ecx ← ecx − 1

out

(b) Step 1: rebasing
in

ecx← __tina_3
edi← 0

if ecx = 0 then break
@[__tina_4 + 4 × edi]4← 0x00000000

edi ← edi + 1
ecx ← ecx − 1

out

(c) Step 2: rescaling
in

ecx← __tina_3
edi← __tina_3 − ecx

if ecx = 0 then break
@[__tina_4 + 4 × edi]4← 0x00000000

edi ← __tina_3 − ecx + 1
ecx ← ecx − 1

out

(d) Step 3: pre-merging
in

ecx← __tina_3

if ecx = 0 then break @[__tina_4 + 4 × (__tina_3 − ecx)]4← 0x00000000
ecx ← ecx − 1

out

(e) Step 3: post-merging

Figure 9: Loop normalization

by a SMT solver. An (expected) unsat answer shows that
there is no model such that the observable behaviors of the
two basic blocks can differ.

in in

eax← 0x00000000
ecx← tina_3
edi← tina_4
df← 0

B0
eax← tina_3

__tina_ecx← eaxB′0

if ecx = 0 then breakB1
zf← __tina_ecx = 0

if zf then breakB′1

eax← tina_3
eax← eax − __tina_ecx
edx← 4 × eax
eax← tina_4
eax← eax + edx

@[eax]4← 0x00000000
__tina_ecx← __tina_ecx − 1

B′2

@[edi]4← eax
edi← df ? edi − 4

: edi + 4
ecx← ecx − 1

B2

out out

(a) Control flow graphs
; B2 instructions sequence

memoryout = store4 memoryin ediin eaxin
ediout = if dfin then ediin − 4 else ediin + 4
ecxout = ecxin + 1

; B′
2 instructions sequence

eax’0 = tina_3in
eax’1 = eax’0 − __tina_ecxin
edx’0 = 4 × eax’1
eax’2 = tina_4in
eax’3 = eax’2 + edx’0

memory’out = store4 memoryin eax’3 0x00000000
__tina_ecxout = __tina_ecxin − 1

; inputs restrictions
eaxin = 0x00000000

dfin = false
ediin = tina_4in + 4 × (tina_3in − ecxin)
ecxin = __tina_ecxin

; outputs restrictions
ecx’out = __tina_ecxout
edi’out = tina_4in + 4 × (tina_3in − ecx’out)

; outputs assertion
memoryout 6= memory’out ∨ ecxout 6= ecx’out ∨ ediout 6= edi’out

(b) Logical formula for the equivalence between B2 and B′
2

Figure 10: Basic block equivalence

