
Open Research Online

Citation

Maia, Paulo; Vieira, Lucas; Chagas, Matheus; Yu, Yijun; Zisman, Andrea and Nuseibeh,
Bashar (2019). Cautious Adaptation of Defiant Components. In: The 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2019) (Lawall, Julia
and Marinov, Darko eds.), 11-15 Nov 2019, San Diego, California, USA, pp. 974–985.

URL

https://oro.open.ac.uk/66811/

License

(CC-BY-NC-ND 4.0) Creative Commons: Attribution-Noncommercial-No Derivative Works
4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Policy

This document has been downloaded from Open Research Online, The Open University's
repository of research publications. This version is being made available in accordance
with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/66811/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies
https://creativecommons.org/licenses/by-nc-nd/4.0/

Cautious Adaptation of Defiant Components
Paulo Henrique Maia∗, Lucas Vieira∗, Matheus Chagas∗, Yijun Yu†, Andrea Zisman†, and Bashar Nuseibeh†

∗State University of Ceará, Fortaleza, CE, Brazil
pauloh.maia@uece.br, {lucas.vieira, matheus.chagas}@aluno.uece.br

†The Open University, Milton Keynes, United Kingdom
{yijun.yu, andrea.zisman, bashar.nuseibeh}@open.ac.uk

Abstract—Systems-of-systems are formed by the composition
of independently created software components. These compo-
nents are designed to satisfy their individual requirements,
rather than the global requirements of the systems-of-systems.
We refer to components that cannot be adapted to meet both
individual and global requirements as “defiant” components. In
this paper, we propose a “cautious” adaptation approach which
supports changing the behaviour of such defiant components
under exceptional conditions to satisfy global requirements,
while continuing to guarantee the satisfaction of the compo-
nents’ individual requirements. The approach represents both
normal and exceptional conditions as scenarios; models the
behaviour of exceptional conditions as wrappers implemented
using an aspect-oriented technique; and deals with both single
and multiple instances of defiant components with different
precedence order at runtime. We evaluated an implementation
of the approach using drones and boats for an organ delivery
application conceived by our industrial partners, in which we
assess how the proposed approach helps achieve the system-
of-systems’ global requirements while accommodating increased
complexity of hybrid aspects such as multiplicity, precedence
ordering, openness, and heterogeneity.

Index Terms—Defiant Component, Adaptation, Scenarios, As-
pects

I. INTRODUCTION

It is now 10:00am in busy London. The kidney transplant
department in St Thomas’ Hospital (Hospital A) has been
informed that a matching kidney of a patient in Guy’s Hospital
(Hospital B) is now available for its patient waiting for
surgery. The organ transplant department of both hospitals
contact the SOSDronePayload company and make all the nec-
essary arrangements for the organ to be transferred by drone
from Hospital B to Hospital A. Drone DR1235 is selected by
SOSDronePayload to deliver the organ through its flying corri-
dor, over the River Thames, to avoid land traffic. At a certain
point during the journey the battery of Drone DR1235 re-
duces dramatically and when it reaches 10%, Drone DR1235
attempts to land before reaching its final destination (Hospital
A). However, at this point, Drone DR1235 was only 2 km away
from Hospital A and, given the favourable wind conditions at
the time, Drone DR1235 could have reached Hospital A with
its 10% battery capacity and delivered the critical organ.

In the scenario, Drone DR1235 was developed indepen-
dently of the payload organ delivery application, and was
not intended to change its behaviour during its execution,
regardless of the application in which it is used. The above
scenario is not unrealistic (in fact a custom-made drone

delivered a kidney in April 2019 to a woman in Maryland 1)
and is likely to become increasingly common.

Many applications are developed by the composition of in-
dependently created software components into a single system.
These systems are known as system-of-systems [1] (SoSs),
and they support the execution of certain functionalities that
cannot be achieved by individual participating components
on their own. In such situations, it is necessary to support
emergent behaviours that appear due to the combination of
existing components into new larger systems, or even due to
new requirements or contextual changes [2]. The participating
software components have been designed to satisfy predefined
requirements, which are called local requirements, following
predefined specifications. They are not necessarily intended to
change their behaviour during execution, nor to support some
global requirements, i.e. complex functionalities that cannot be
provided by individual participating components on their own,
and that arise with the constitution of the system-of-systems.
We refer to components that resist such changes, despite the
need, as defiant components.

Dealing with defiant components in a system-of-systems
is challenging since (i) one may not have access to the
components’ source code in order to change their behaviour,
and (ii) the adaptation should occur only in exceptional situa-
tions, i.e, situations that are temporary and may be influenced
by transitory environmental conditions, in order to meet the
global requirements of the SoS. Existing requirement conflict
resolution and adaptation approaches have not considered such
defiant components [3]–[9].

In this paper we suggest a novel approach that considers
the existence of different types of defiant components. We
present a cautious adaptation approach which guarantees that
changes in the behaviour of the components will not interfere
with their original functionality, i.e., the local requirements of
the participating components during their normal use, and will
only be triggered in exceptional situations. For example, in the
above scenario, the drone is considered a defiant component
since it has been developed with a specification in which it
should make a safe landing when its battery decreases to 10%.
However, from the perspective of the payload organ delivery
application, it should be possible to force the drone to continue
flying, given the exceptional and favourable wind conditions,
which will allow the drone to complete its journey.

1https://www.nytimes.com/2019/04/30/health/drone-delivers-kidney.html

The approach relies on the use of scenarios to model and
identify exceptional situations, since the high abstraction level
provided by scenarios facilitates identification and understand-
ing of requirements, involvement of different stakeholders,
and analysis of future events of an application. The use of
scenarios has been demonstrated successfully in the literature
to support behavioural model checking and to help with
decision-making [10] [11] [12]. Furthermore, we assume that
the source code of the components are not available and,
therefore, we propose the use of wrappers, implemented using
an aspect-oriented programming (AOP) technique [13], to
support exceptional conditions formalised with behavioural
semantics using LTS [14]. In our approach, exceptional sit-
uations are represented by joinpoints of scenario-based aspect
weaving [15], given that they can handle exceptions.

Aspect-oriented programming (AOP) provides wrappers to
allow for the introduction of changes into defiant components
without requiring consent from the designer of the compo-
nents, or access to the source code of the components, as in
the case of our approach. AOP avoids the need to redesign
a component to satisfy emergent behaviours, as in the case
when using dependency injection techniques [16] or plugin-
based approaches [17]. On the other hand, the use of AOP
techniques can be risky, since changes introduced by the use
of aspects may violate the original (local) requirements of the
components. With the help of model checking, our work uses
AOP in a way that guarantees the original requirements of the
components under normal execution conditions.

The remainder of the paper is structured as follows. Section
II describes an overview and a formalisation of the approach
to support cautious adaptation of defiant components. Section
III presents the detailed process of the cautious adaptation
approach. Section IV describes the implementation and the
evaluation of the work in a payload organ delivery application.
Section V discusses related work. Section VI concludes the
paper and discusses future work.

II. APPROACH OVERVIEW

Figure 1 presents an overview of the cautious adaptation
approach. As shown in the figure, the process is divided into
three phases, namely: (i) defiant component identification, (ii)
wrapper design and implementation, and (iii) runtime cautious
adaptation. The first two phases occur at design time, while
the last phase occurs at run time.

The identification of defiant components (phase 1) is sup-
ported by the use of scenarios to model the system and to
formally verify defiant behaviour of components. Scenarios
can be used to represent both exceptional and normal situations
of a system, and have been widely used for modelling what-if
situations [18]. In general, scenarios assume the use of off-
the-shelf software components, with predefined requirements
and specifications. Our approach uses Message Sequence
Chart [19] (MSC) specifications, a standard International
Telecommunication Union (ITU) notation for describing the
interaction between communicating processes, and to model
both ordinary and exceptional scenarios.

The wrapper design and implementation (phase 2) addresses
the defiant behaviour of one or more components identified in
phase 1, and uses aspect-oriented programming (AOP) [13]
to implement wrappers. The use of wrappers is to support
changes in the behaviour of the defiant components while
keeping the satisfaction of the global system requirements.
Exceptional situations identified from the scenarios in phase
1, indicate where changes in the system should occur. We
call these places joinpoints and the identified joinpoints are
represented as regular expressions as pointcuts. In this case,
a replacement of the behaviour of a defiant component after
joinpoints can be done through an aspect in terms of ad-
vices2. Advices handle exceptions by either invoking existing
functionalities of the defiant components or introducing new
functionalities and conditions to be executed. To be used
correctly, the approach must enforce certain precedence order
among the wrappers when more than one wrapper exists for
the same exceptional condition.

The runtime cautious adaptation (phase 3) weaves the sys-
tem with wrappers and executes the respective functionalities.
This phase is based on the MAPE-K loop approach [20]. In
this phase, monitors are used to observe contextual variables
that characterise the surroundings of the system based on
data collected from the environment (e.g., wind condition) or
from sensors (e.g., Global Positioning Systems, accelerometer,
battery level). The approach analyses the exceptional situations
defined in phase 2. When exceptional situations exist, the
wrapper is invoked and the exceptional functionalities, as
implemented by the aspect advices, are executed.

The general problem being tackled can be formalised using
the semantics of Problem Frames [21], as follows.

At the design time of a component (c), given its world con-
text (Wc), its specification (Sc) must satisfy its requirements
(Rc), i.e., Wc, Sc |= Rc. Suppose that component c is being
used as part of a system-of-systems (s). Based on the analysis
of exceptional scenarios concerning a specific context of the
system (Ws), which satisfies the condition Ws =⇒ Wc,
component c cannot satisfy global requirements of s. In other
words, Ws, Ss 6|= Rs, where Ss contains Sc.

To verify that the wrapper executes its purpose, we formalise
three conditions to be checked as follows:

Ws, Ss 6|= Rs ∧Ws =⇒ Wc (defiant component identification)
Ws, Ss|c→w(c) |= Rs (defiant behaviour removal)
Wc \Ws, Sw(c) |= Rc (safety assurance)

• Defiant component identification checks whether the
component’s behaviour satisfies the global requirements.

• Defiant behaviour removal checks that after wrapping
up the component with a new behaviour, the global
requirement can be restored in exceptional situations.

• Safety assurance checks that after wrapping up the defiant
component with a new behaviour, the local requirements
are still satisfied in normal situations.

2In AOP, joinpoints are points of control where it is possible to add
additional behaviour, while pointcuts refer to predicates that match joinpoints
and advices are methods associated with pointcuts.

Fig. 1. Overview of the cautious adaptation approach in a workflow diagram

The introduction of a wrapper w(c) changes the defiant
behaviour of the component c, i.e. Ws, Sw(c) 6|= Rc, retaining
the essential satisfaction of global requirements when c is
substituted with w(c): Ws, S

′
s |= Rs where S′s = Ss|c→w(c).

Furthermore, the adaptation is cautious because other than
the exceptional situation Ws, the wrapped component should
behave like the originally designed component, i.e., (Wc \
Ws), Sw(c) |= Rc.

III. THE DETAILED PROCESS OF CAUTIOUS ADAPTATION

In this section we describe each phase of the approach
(Figure 1) in details. We use the payload organ delivery
example presented in Section I to illustrate the approach.
Suppose two global requirements for the system as:
• GR1: the drone must take the payload organ from the

sender hospital to the receiver hospital.
• GR2: in the case when the payload cannot be delivered,

the drone should not lose it (e.g., by landing on the water).

A. Defiant Component Identification

As shown in Figure 1, the defiant component identification
phase is composed of five steps. The first two steps consist
of modelling normal and exceptional scenarios of a system-
of-systems. The approach advocates the use of scenarios to
model core functional requirements of the system-of-systems
and local requirements for each component participating in
the system. We assume that software engineers participating
in these modelling activities are able of identifying exceptional
scenarios regardless of the requirement elicitation techniques
that are used during the process (see Section V).

Scenarios are described using Message Sequence Chart
specification through two main syntactic components: basic
MSC (bMSC) and high-level MSC (hMSC). A bMSC rep-
resents a set of asynchronous processes (or instances) with

their exchanged messages. An hMSC consists of a graph of
connected bMSCs representing parallel, sequential, iterating,
and non-deterministic executions. In an hMSC graph the nodes
refer to bMSCs and the edges represent execution sequences.

Figure 2 shows the hMSC specification of the payload organ
delivery scenario. Each box in the hMSC corresponds to one
bMSC, while the arrows represent the execution flow. The
guard conditions in the bMSC transitions have to be satisfied
in order to execute the functionalities represented in the next
bMSC. Figure 3 shows parts of the scenarios of the bMSCs
in Figure 2.

In Figure 2, the predefined scenarios are represented by full
rectangles and are part of the normal specification of a drone.
We assume that, with a controller, the pilot can control the
drone to take off (bMSC Take Off). During a flight, a drone
periodically checks the status (bMSC Check Status) of its
internal devices and sensors such as battery level and distance
from the destination, represented by b and d, respectively, in
the guard conditions over the transitions. In the example, if
the battery level is above the expected threshold θ = 10%,
and the drone is not yet at its destination, the pilot can keep
manoeuvring the drone (bMSC Flying). When a drone arrives
at its destination, the pilot sends a landing command to the
drone (bMSC Landing), which is acknowledged when the
drone lands on the ground, and after it shuts down (bMSC
Shut Down). If the battery is below the expected threshold,
the drone performs a safe landing (bMSC Safe Landing) in
accordance to its specification, and shuts down. The above
scenario corresponds to the original behaviour of a drone, and
represents its local requirements.

In order to model exceptional scenarios, the MSC specifica-
tions are amended with interception points. These interception
points represent points in which conditions are analysed in

Fig. 2. hMSC for the drone payload delivery example

Fig. 3. bMSCs for the drone payload delivery example

order to decide whether the original expected scenario is
executed or an introduced exceptional scenario has to take
place. Several exceptional situations can be intercepted in the
same point, indicating other possible behaviours according to
alternative contexts. If there is no exceptional scenario in an
interception point, the expected default scenario is performed.
It may also be necessary to identify new contextual variables
and conditions to be used in the transitions.

Exceptional scenarios are represented as dashed bMSCs in
Figure 2. In our example, the exceptional scenarios added on
the interception point state that if the distance to the expected
destination is less than 2km and the wind is strong (condition
strongWind==true), then the pilot can keep the drone flying
(bMSC Keep Flying), even in a low-level battery situation, and
land afterwards. In this case, the drone is able to complete
its overall goal of delivering the organ payload successfully
(global requirements GR1, above). In the case when the battery
level is low, the drone is flying over the river (condition
onWater==true), but it is more than 2km away or the wind is
not strong, then the action is to move the drone aside (bMSC
Move Aside) in order to land it safely on the ground and,
therefore, satisfy the global requirement GR2.

After the normal and exceptional scenarios are modelled,
the next step consists of automatically transforming the MSC
specifications into a parameterised Labelled Transition Sys-
tem (pLTS). This is to allow for correctness checks of the
model before and after adaptation, and to support the lack
of knowledge of the ranges of values of contextual variables

Fig. 4. Parameterised LTS illustrates the behaviours when the contextual
variables are parameters bound to user specified constants.

Fig. 5. LTS of Landing: the partial behaviour of landing bMSC, where the
unnamed transitions are the transitions between different bMSCs; Through an
ε-reduction, these transitions will be removed.

at this stage. The conditions on the transitions in the MSC
specification are represented as guards on the state transitions.
The approach uses an adaptation of the algorithm to generate
LTS from MSC specifications proposed in [18], with the
addition of the scenario transition guards in the resulting LTS.
Figure 4 depicts the pLTS for the example of Figure 2.

After the parameterized LTS is generated, the values of
the contextual variables can be instantiated by the developer,
and a context-specific LTS representing the system behavior
for those values is generated. Figure 5 illustrates the specific
LTS generated when the developer sets the variables b ==
12%, d==2 km, strongWind==true, and onWater==true. The
variable values, in that order, are shown as parameters in
the transitions in Figure 5. We assume that, after each drone
movement, both battery level and distance are decreased by
one unit. Steps one to four above were implemented as
extensions of Lotus [7].

The context-specific LTS can be exported to LTSA [22]
in order to check both local and global requirements spec-
ified in terms of properties. A model checker is applied
to verify whether the participating components can satisfy
global requirements of the system-of-systems, for which it
was not initially designed. In the case when the component
satisfies the requirements, it can be used as-is in the system-of-
systems. However, when the component cannot satisfy global
requirements (i.e., the case of a defiant component), a wrapper
is specified in order to weave exceptional situations into the
component specification in LTS, and it is verified by the
LTSA model checker against the properties. The adaptation is
considered cautious only when all properties (local and global)
are satisfied by the component within the system-of-systems
context. If the verification is considered successful through

model checking, the defiant behaviours need to be addressed
further by design-time simulation.

B. Wrapper Design and Implementation

The wrapper design and implementation phase is composed
of four steps, as shown in Figure 1. The first step consists
of identifying monitorable contextual variables for analysing
global requirements. In the payload organ delivery example,
the monitorable contextual variables are: battery level, distance
to destination, position of drones in relation to water, and
wind condition. The contextual variables can be monitored
by using either sensors on the environment of the system and
on its participating components or external services such as a
weather information web services.

In the next two steps the approach maps exceptional
situations to corresponding concepts in the aspect-oriented
paradigm (AOP) [13]. The main goal of the second step is
to analyse exceptional situations and identify when they are
triggered in the MSC specification in order to associate them
with joinpoints.

The interception points in the MSC specifications represent
the point in which exceptional situations should be analysed
and they are mapped to joinpoints in AOP. For instance,
considering our drone example, the only interception point is
the one between the bMSCs Check Status and Safe Landing,
when it is checked whether the battery level decreased to 10%.
Subsequently, we have to identify joinpoints and define the
respective pointcuts in which the code will be intercepted. For
our example, we defined that method safeLanding() needs to
be intercepted when it is called, in order to analyse exceptional
situations.

In the third step, exceptions are addressed by planning
adaptation actions as advices in the components. Using exist-
ing functionalities (e.g., maneuvering), while disabling certain
functionalities (e.g., safe landing), it is possible to switch to a
different solution through adaptation. These adaptions actions
are implemented as advices in aspect-oriented programming
language, with a type (before, after or around) dependant on
the control flow of the exceptional situations.

The following code shows an excerpt of the DroneAspect
implemented to wrap one defiant behaviour of the drone. We
defined pointcut checkExceptionalConditions() that intercepts
the call of the drone’s original safeLanding() method (when
the battery level reaches 10%).

1 public aspect DroneAspect {
2

3 pointcut checkExceptionalConditions():
4 call (void safeLanding());
5

6 void before(): checkExceptionalConditions() {
7 if (isOverWater()
8 && (getDistanceTargetHospital() >=2
9 || !isStrongWind()))

10 getDrone().moveAside();
11 }
12

13 void around(): checkExceptionalConditions() {
14 if (isOverWater()
15 && getDistanceTargetHospital() <=2

16 && isStrongWind())
17 getDrone().manoeuvre();
18 }
19 }

The above code shows two kinds of syntactic advices: before
and around. The before clause (Line 6) is executed when the
drone is over the water, and either the distance to the target
hospital is no less than 2km or the wind is not strong (Lines
7-9). In this case, the drone executes a modeAside() method
(Line 10), which moves the drone to fly over the ground and
to execute the original safeLanding() method.

On the other hand, the around clause (Line 13) is executed
when the drone is no more than 2km away from the destina-
tion, is flying over the water, and the wind is strong (Lines
14-16). Unlike the previous before() clause, new behaviour
manoeuvre() (Line 17) replaces the safeLanding() method,
which is no longer executed. When the drone reached the
destination it performs the original Landing() method.

The implemented wrappers are deployed in the system so
they can be used at runtime to adapt the behaviour of defiant
components. This is done by weaving the wrapper aspects
with the bytecode of the simulated system using the aspectJ
compiler. If the defiant component is implemented in other
programming languages, the wrapper aspects will need to be
written in corresponding AOP languages [13].

C. Runtime Cautious Adaptation

The last phase encompasses the execution of the recently
weaved system which, due to our wrapper solution, becomes
a self-adaptive system. The steps of this phase are derived
from the activities of the MAPE-K [20] control loop.

During its execution, the system keeps monitoring con-
textual variables by either checking internal resource levels
or receiving environmental data provided by sensors. It may
be necessary to execute some calculations in order to obtain
the real value of the monitorable contextual variables. For
instance, the value of variable distance from the target (d)
is calculated by the difference between the GPS positions of
the target hospital and current drone location.

After reading context information, the wrapper analyses the
exception situations by intercepting the system execution in
the defined pointcuts. In the example, this happens after the
interception of checkExceptionalConditions() pointcut.

The last step corresponds to both Planning and Execution
activities of the MAPE-K loop. When an exceptional condition
is satisfied, the wrapper applies the behaviour adaptation
by executing the exceptional scenario according to the rules
implemented in the advices. The process continues to be
executed until the system finishes its execution.

IV. IMPLEMENTATION AND EVALUATION

In order to evaluate our approach, we developed a prototype
tool to simulate an extension of the payload organ delivery
drone application described in Section I. We evaluated our
approach for both single and multiple heterogeneous defiant
components. In this section we present the evaluation setup

with its research questions and the simulator, and discuss the
results of the evaluation and some threats to validity.

A. Evaluation setup

We evaluated the approach with respect to the correctness of
the implementation of wrappers for identified defiant compo-
nents to support satisfaction of global and local requirements.
This is necessary since, although the properties of the wrappers
have been model checked, it is still possible to introduce
errors during the implementation of the scenario models.
We also evaluated the approach with respect to the use of
different wrappers against sources of exceptions generated by
complex and uncertain environment. This evaluation includes
variations in the multiplicity and precedence order, openness,
and heterogeneity of defiant components in a system. For these
evaluations we considered two research questions, namely:
• RQ1. Can the approach be used to achieve global require-

ments of a system-of-systems?
• RQ2: How does the approach behave with the increase of

complexity in terms of multiplicity and precedence order,
openness, and heterogeneity of defiant components?

We used the organ payload delivery application described
in Section I and with the global requirements GR1 and GR2
described in Section III. For RQ1, we used the scenario shown
in Figure 2. For RQ2, we used an extension of this scenario
described in Figure 6. As shown in Figure 6, the extended
scenario has three new functionalities, namely Return to Home,
Glide, and Call Rescue Boat.

Fig. 6. Extended scenario (hMSCs)

The Return to Home functionality in a drone is executed
when a drone bypasses a bad connection area and loses
connection with the pilot. This is a common safety procedure
present in the majority of existing drones. In order to simulate
this situation, we introduced communication antennas in the
scenario that emit periodical noise signals causing bad con-
nection in congested areas. The exceptional scenario for this
case consists of allowing the drone to Glide while waiting for

the connection to return, maximising the chances of delivery.
As shown in the figure, bMSC Return to Home happens when
the contextual variable bc==1 (bad connection) is true and the
battery level is above 10% (b>10). When the drone arrives at
the depart point (contextual variable ds == 0), it lands as
usual. The exceptional scenario is represented by the bMSC
Glide, which is performed when a bad connection is detected,
the distance from the target (contextual variable dt) is less
than the distance from the source hospital (contextual variable
ds), and the battery level is greater than 10% (b ≥ 10). In
this case the drone Glides while waiting for a connection to
be reestablished instead of automatically returning to home.
The Call Rescue Boat functionality is due to an expansion of
the application that supports the use of rescue boats to avoid
drones landing on water. The Call Rescue Boat situation is
triggered when the distance of the nearest boat to the drone
(variable db) is less or equal to 1km. This case is described
in Subsection IV-C for the Openness complexity.

For each experiment we used 100 executions with an
original drone and a wrapped drone departing from the same
place and with the same level of battery. The reason to choose
100 executions is to reach convergence and to get stable results
in spite of the randomness of the executions. In fact, we
observed that after 70 executions the results were already very
stable, with less than ±1% perturbations. We also considered
the same environmental conditions when performing the 100
executions.

In order to identify the level of battery for the drones to be
evaluated, we considered nine intervals of batteries namely:
100%-91%, 90%-81%,...,20%-11% (a drone cannot take off
with 10% or less battery, otherwise it will do a safe landing)
and, for each interval, we run 100 drones with batteries in
these intervals. We observed that drones with battery levels
ranging from 61% to 80% were best suited to be used in the
evaluation since most of the drones with battery level with
more than 81% reached the destination, while most of the
drones with battery level with less than 61% landed on water.

B. The simulator

We developed an open source drone simulator called Drag-
onfly [23] to implement both normal and exceptional situations
of drones. Through its graphical user interface, the simulator
allows the user to configure one or several drones, determine
the source and target hospital locations; specify a river flowing
between the hospitals; and set contextual variables such as
initial battery level, battery consumption rate, wind strength,
and drone above water. The simulator also offers an API to
create programs to configure the environment, and plan and
execute the journey of one or a fleet of drones. A snapshot of
the simulator is depicted in Figure 7.

In the simulator, the user can manoeuvre the drones either
manually or using an automatic pilot control, in which the
drones try to reach the destination by executing a minimal
distance routing algorithm. Moreover, the simulator supports
the modelling of physical environment entities such as wind
and rain, and uses heuristics of drone movements by taking

into account battery consumption, sensors, and the current
status of the environment (e.g., the level of wind against a
drone direction which may cause the drone to move slowly).

With the simulator, it is possible to track each drone by
checking a panel that shows output traces of the drones in
terms of performed scenarios, in accordance with the ones
modelled in the hMSC. The panel also shows updates of the
battery levels of the drones. It is also possible to change the
wrapper implementation by a customised one and to reuse the
same environment.

Fig. 7. A screenshot of the Dragonfly simulator

C. Experiments and results

In the following we present the experimental results to
evaluate the two research questions.

RQ1. Can the approach be used to achieve global require-
ments of system-of-systems?

For this experiment we used the hMSC in Figure 2. We
considered drones with only one defiant component concern-
ing Safe Landing functionality when battery level is less or
equal to 10%. We implemented a wrapper W1 representing
the exceptional scenarios KeepFlying and MoveAside.

We executed three experiments for different wind strengths.
We varied the frequency of the environmental variable strong-
Wind, with respect to the chance of a strong wind happening.
More specifically, we considered 10% (experiment E1), 50%
(experiment E2), and 100% (experiment E3), respectively,
for each second of time. In experiment E1, drones may
benefit from strong winds to perform exceptional scenario
KeepFlying only 10% of the time, while in E3 the wind is
strong constantly. We modelled the scenario such that when a
strong wind gust happens, it lasts for 2 seconds. Our objective
with those experiments is to check if, as the strong wind turns
more frequent, our approach generates better results for GR1.

Figure 8 shows the results for experiments E1, E2 and E3.
For drones without wrappers (original drones) in which wind

conditions and the distance to the hospital are not relevant, the
percentage of drones that arrived at the destination (GR1) was
60% for E1 and E2, and 52% for E3. For global requirement
(GR2), only 2%, 9%, and 5% of the original drones performed
a safe landing on the ground (did not land on water) in
experiments E1, E2 and E3, respectively. A high rate of
drones landed on the water in the three experiments, ranging
from 31% to 43% of drones. In these experiments the factors
influencing the success of GR1 and GR2 are concerned with
the amount of battery left in a drone to reach the destination
and the place where the drones land in the case of safe landing,
respectively.

The results in Figure 8 show that the cautious adaptation
approach (the use of wrapper W1) improved the success rate,
as the chance of strong winds increases. In the case of E1,
for which the chance of a wind gust is low (only 10%), there
was no change in the results for GR1: drones that reached the
battery threshold less than 2km away of the target hospital
performed a safe landing when there was no strong wind. On
the other hand, our approach allowed 38 drones to land on
the ground by performing the exceptional scenario MoveAside.
This caused the results of succeeding with GR2 to increase
from 2% to 40%. No drones landed on the water.

In experiment E2, seven drones were able to perform the
exceptional scenario KeepFlying, which contributed to the rise
of the success rate of GR1 from 60% to 67%, compared to
E1. These numbers are even better for experiment E3, allowing
23 droned to perform KeepFlying and increasing the GR1 rate
from 52% to 75%. Because of this, we note that less drones
needed to perform MoveAside scenario when comparing the
results for E1, E2 and E3. This explains the decrease of
the success of GR2 rate from 40% (E1) to 33% (E2) and
35% (E3). Similarly to E1, no drone landed on the water in
experiments E2 and E3. Our approach definitely supports the
achievement of global requirements GR1 and GR2.

RQ2. How does the approach behave with the increase of
complexity in terms of multiplicity and precedence order,
openness, and heterogeneity of defiant components?

For this experiment we used the scenario in Figure 6.
In order to evaluate RQ2, we considered three situations
related to different complexity in the scenarios. We considered
scenarios in which we varied the multiplicity and precedence
order, openness, and heterogeneity of the defiant components
in the drones, as discussed below.

Multiplicity and Precedence Order. In this case, we con-
sidered drones with two defiant functionalities, namely Safe
Landing and Return to Home. We implemented a new wrapper
W2 that extends wrapper W1 to deal with the new situation
of Return to Home. For this case, the monitored environment
variables are bc (bad connection), dt (distance from the target)
and ds (distance from the source), and the Glide functionality
is implemented as an around advice of the Return to Home
functionality.

We executed experiment E4 with the same environment
used in experiments E1 to E3, but with the addition of two

Fig. 8. Results for the experiments for RQ1

communication antennas that give noise signals, causing bad
connection to the drones. A new version of an original drone
with the Return to Home functionality and a drone with
wrapper W2 were used in E4. In E4, we considered strong
wind condition with 50% of chance.

Figure 9 shows the results for this new experiment. As
can be seen from the results, due to communication antennas
that may prevent the drones to arrive at the target hospital,
only 12% of the original drones (without wrapper W2) landed
normally at the destination (achieving GR1) when compared
to experiments E1-E3, and 48 drones returned to home. Those
drones, together with ten other drones that landed on the
ground, resulted in only 58% of drones that satisfied GR2.
Moreover, 30% of the drones fell on the river.

For the case in which wrappers are used, our approach
helped to increase GR1 from 12% to 41% by allowing
14 drones perform the scenario KeepMoving (eight of these
drones executed KeepMoving after performing the exceptional
scenario Glide), and 15 drones glided for a while and resumed
their journey to the target hospital. With respect to achieving
GR2, 16 drones performed the scenario MoveAside. This
allowed GR2 to increase from 58% to 59%. In this scenario,
no drone landed on water.

Experiment E4 has shown that it is possible to have con-
flicts among defiant components and the need to impose a
precedence order. For instance, there were situations in which
a drone, during the execution of the exceptional scenario Glide
due to a bad connection, had its battery level decreased to 10%,
which triggered scenario SafeLanding. We used a prioritization
approach in which the safe landing functionality has higher
precedence over the gliding functionality, since a low battery
situation is more critical and, not dealing with it, can cause
possible hazards to the drone and to the payload. In Figure 9,
column “Gliding and Landed at Destination by Keep Flying”
indicates the percentage of times that the above mentioned
situation occurred. As can be seen, with this strategy, our
approach was able to avoid losing from 30 to 43 drones in
experiments E1-E4.

Openness. In this case, we wanted to evaluate how the
approach supports the introduction of other participating com-
ponents in the system-of-systems and continues to deal with
defiant situations. We expanded the organ payload delivery

application to support the participation of rescue boats, which
allows drones to land on boats, instead of landing on water.
In this case, we added a boat centre with three rescue boats to
support the rescue of drones. In this scenario, during the Safe
Landing procedure, if a drone does not satisfy environmental
conditions to perform the exceptional scenario KeepFlying,
then it sends an S.O.S. message to the boat centre, which
knows where all rescue boats are along the river. The boat
centre verifies which boat is closer to the drone to be rescued
and, if it is within the distance threshold of 1 km 3, the
boat center sends the boat to rescue the drone. After helping
the drone, the rescue boat takes the drone with the payload
to the destination hospital. In this way, one can increase the
success rate of GR1. In the case in which there are no rescue
boats available at an appropriate distance to the boat, the drone
attempts to perform the MoveAside exceptional scenario.

We implemented a new wrapper W3 as an extension of
wrapper W2 adding the handling of S.O.S. messages. The
above situation was executed in experiment E5 and the results
are shown in Figure 9. In this case, the achievement of GR1
increases to 57% as 16 drones were rescued by boats and
delivered to the hospital. In the cases in which there was no
boat near to those drones, then the drones executed scenario
MoveAside. This explains why the result for GR2 decreased
for this experiment, when compared to E4 and W2, from 59%
to 43%. No drone was lost by landing on the water.

Heterogeniety. In this case, we wanted to evaluate the ap-
proach for heterogeneous defiant components. More specifi-
cally, we analysed the case in which defiant situations occur
for different types of components in a system-of-systems. We
expanded the boat rescue scenario described above to allow
other types of boats such as cargo transportation boats that
are in the river with a purpose different from that of the organ
payload delivery application.

Consider the situation in which transportation boats can
receive requests from the boat centre to rescue drones, but
can only do this if they are free (i.e., a boat is not doing a
transportation service). Assume that the boat controller’s code
is not accessible. When a boat starts a transportation service, it
becomes unavailable for rescuing drones, refusing to respond

3We used a distance threshold of 1 km to give enough time for the boat to
arrive to rescue a drone before the drone lands on water.

Fig. 9. Results for the experiment for RQ2

to new requests from the boat centre until its transportation
task is completed. A conflict exists between the boat’s local
requirement of being unavailable due to a transportation ser-
vice and the system-of-systems global requirement of a drone
having to arrive at a hospital. This conflict occurs only in
the exceptional scenario where the drone needs to make an
emergency landing while flying over the river, and there is a
boat close enough to make the rescue. However, the boat is
already engaged in a service. Therefore, both the boat and the
drone are considered defiant components.

In this case, it is necessary to implement two wrappers: one
for the drone and one for the boat. We considered wrapper
W3 for the drone and implemented a new wrapper W4 for
the boat. Wrapper W4 changes the boat’s destination to the
location of a drone that needs to be rescued. After rescuing
the drone, the boat will restore to its normal service.

Figure 9 shows the results for experiment E6 in which we
considered drones with wrapper W3 and boats with wrapper
W4. The results show that five drones arrived at the destination
by performing KeepFlying functionality, 18 drones glided
and reach the target hospital, and two drones are recovered
by an available boat. In this new situation, 18 drones were
rescued by a defiant boat, which means that if those boats
did not implement the wrapper, these drones would have
performed a MoveAside functionality (as specified in W3). The
approach avoided drones to land on water and helped deliver
the payloads to their destinations. It contributed to the rise of
satisfying GR1 to 59%. In fact, when comparing the results
for experiments E4, E5 and E6, the latter is the one with a
higher achievement for GR1. The results also show that 41%
of the drones satisfied GR2, and no drone landed on water.

D. Discussions

The experiments showed that our cautious adaptation ap-
proach helps improve the achievement of global requirements
in a system-of-systems. We are aware of threats to the validity
of our evaluation and limitations of the proposed approach. We
discuss them below.

Threats to validity. There are three types of threats to validity
in our evaluation.

Construct validity. We simulated up to 100 executions in
different scenarios and considered both homogeneous and
heterogeneous defiant components. However, in real-life cases,
the contextual variables and their combinations can be much
more complex. Moreover, we only simulated the applications
in the context of system-of-systems, but defiant components

can be found in other domains such as microservice-based
distributed systems and Internet of Things. In our future work
we plan to test the cautious adaptation approach in larger case
studies involving a higher number of defiant components and
considering other application domains.

Internal validity. The choices made during the simulation such
as the environment design, distance between the hospitals,
drone speed, and location of antennas may affect the re-
sults. Considering all possible choices at once is hard since
the combination of variables may lead to an explosion of
possibilities. However, in the evaluation, we tried to make
reasonable realistic choices for the simulations, considering
plausible values for the environmental variables and internal
drone components such as battery levels.

External validity. Defiant components by our definition are a
fairly generalisable concept which may manifest as physical
hardware components (like the drones in this paper), as well
as cyber-physical components including human in the loop. In
the future we plan to evaluate the approach including scenarios
with defiant cyber-physical components.

Limitations. Our approach extends traditional adaptation ap-
proaches by changing parameters or calling functions of
components that do not offer such possibilities when the
source code of the components are not available. In a way,
the assumption of adaptability is exchanged with a weaker
assumption – that it is possible to define joinpoints at which
to intervene. While this works well in highly modularised
systems with clear separation of concerns (as in the examples
shown), this may pose further challenges to complex legacy
software, which is left for future investigations.

Another limitation is with regards to the choice of tech-
niques to implement wrappers. Although AOP is shown di-
rectly applicable to defiant components in this work, we are
aware of other wrapper techniques which might be more
suitable for other types of defiant components in domains such
as self-driving cars and driverless trains. We plan to investigate
this in future work. The approaches works without access to
the source code of defiant components. However, it is still
necessary to know the API signatures of internal methods
and to have access to the executable or the byte code part
of the implementation. For instance, considering our example,
it is necessary to know manoeuvre() and checkStatus(). In
the experiments we only used aspect-oriented programming
for Java programs through AspectJ. The application of AOP
paradigm to other programming languages will be investigated

in the future.
Although we have implemented the entire process, the

wrappers have not been deployed to drones in the real world,
which would require additional approvals by legal and ethics
regulatory bodies. Moreover, the use of a simulator abstracted
away the time necessary to perform adaptations, which may
be in fact critical in the context of fast-flying drones. To
mitigate this threat, we are currently liaising with industrial
organisations (e.g., local transport company and real hospitals)
to deploy the solution into their system-of-systems. In the
future, we would also like to analyse the delays that may be
caused by computation and communication activities.

V. RELATED WORK

Our cautious adaptation approach is related to works in the
following areas: (i) identification of normal and exceptional
scenarios, (ii) self-adaptive systems and runtime obstacles, (iii)
system-of-systems and COTS adaptation, (iv) aspect-oriented
programming and dependency injection, and (v) safety as-
surance of drones and simulation. We discuss below existing
works in each of these areas.

Identification of normal and exceptional scenarios. The
first steps of our approach consist of modelling both normal
and exceptional situations of a system-of-systems as scenarios.
Although the choice is left to the adopters of our approach
on how scenarios will be identified, we envisage that some
techniques can aid software engineers in this task such as self-
adaptive requirements modelling [24], specification mining
[25], and reverse engineering [26] [27] [28] techniques.

The work in [24] uses an adaptation-oriented requirement
modelling approach for system-of-systems based on Goal-
Oriented Requirements Engineering (GORE) concepts [29].
The approach allows to specify scenarios for adaptation strate-
gies. This approach could be helpful to model normal and
exceptional MSCs used in our approach.

A specification miner takes a program presented as a set of
static or dynamic traces as its input, and produces one or more
candidate specifications with respect to a set of interesting
program events [30]. In this direction, one could propose
a specification miner that receives dynamic traces from the
system-of-systems execution and generates a set of initial
scenarios, similarly to the approach proposed in [25]. Other
scenarios could also be discovered using reverse engineering
techniques that process execution traces and produce candidate
MSCs [26]. The work in [27] proposes to reverse engineer
goals directly from legacy source code through refactoring-
based approaches. The work in [28] uses mined message
sequence charts from the partial ordering of execution traces of
concurrent programs. This technique could be used to support
the situation in which MSCs of various components need to
be composed concurrently.

Self-Adaptive Systems and Runtime Obstacles. In order
to provide high-assurance and management of uncertainty at
runtime [31], [32], self-adaptive systems typically use MAPE-
K control loops [20] based on previously known require-

ments [33] and predefined high-variability alternatives [34],
[35]. To manage inconsistencies between global requirements
and defiant behaviours of local components, we propose a cau-
tious adaptation approach where scenarios are used to identify
contextual variables to monitor and points of interception. In
this way, the need to prepare high-variability alternatives is re-
placed by creating wrappers that handle exceptional scenarios
and contextual conditions.

Traditionally safety requirements [36] can be analysed to
identify contingency requirements using obstacle analysis [37],
where contingency requirements can be viewed as exceptional
conditions, but they are exposed in requirement goals, rather
than in concrete scenarios at runtime. With a similar moti-
vation to handle exceptions at runtime, Cailliau et al. [38]
proposed probabilistic obstacles that can be addressed through
runtime monitoring and verification. Although probabilistic
obstacles are conceptually similar to defiant situations, our ap-
proach directly modifies the behaviour of defiant components-
off-the-shelf (COTS), without resorting to probabilistic evi-
dence collection and reasoning on probabilistic LTL.

System-of-Systems (SoSs) Inconsistency and COTS Adap-
tation. One of the problems to manage inconsistency of SoSs
is to identify conflicts among different components [39] and
resolve conflicts through the use of a utility function by the
MAPE-K self-adaptive feedback loops [40]. Defiant compo-
nents are a source of conflicts and our cautious adaptation
approach can be seen as a means to resolve conflicts by design.

When global requirements are not achievable by the compo-
nents off-the-shelf (COTS), adaptation would be required [41].
Although COTS adaptation has similar motivations to our
cautious adaptation approach, the main difference lies in the
support of multiple defiant components within COTS. The
proposed wrappers aim to partition defiant components by
the internal behaviours rather than traditional adaptation at
component interfaces.

AOP and DI. Modification of legacy systems can be supported
by the use of aspect-oriented programming (AOP) [42] and
dependency injection (DI) [16], in particular when it is not
allowed to change the design of original system intrusively.
Both AOP and DI could modify the behaviour of original
programs. AOP can be applied to both source and binary
code, while DI is applicable typically when the programming
languages support reflection [43]. In our work, AOP was
used for implementing the adaptation concept. Compared to a
simple application of AOP, our approach introduces additional
“caution” by checking, proactively, that both local and global
requirements of the system are satisfied for normal and excep-
tional conditions of the environment. When the components
are high-level (rather than simulated programmatically in the
running example), requirement-level aspect-oriented approach
may also be considered [44], so that the advices can be
implemented using traditional functions.

Safety Assurance of Drones and Simulation. Formal meth-
ods have been applied to provide assurance for safety require-
ments satisfaction for UAVs [45]. However, runtime assur-

ance of required properties can be weakened by exceptional
conditions. Scenarios have been applied to address these
exceptional conditions formally. However, such application of
scenarios was not enforced by runtime systems due to the
black box nature of legacy systems. Our approach makes the
early connection between scenario-based assurance of formal
properties and their practical enforcement through wrappers.

Safety requirements, among many functional and non-
functional requirements, are critical for transportation systems
such as drones [46]. Although several attempts exist for safety
assurance, incidents of drones still happen, often leading to
interference in other transport systems like passenger aircraft
and airports. In such cases, the protection of drones can be
seen as a rather narrowed view of safety with respect to a
broader, and much more challenging, safety and other critical
requirements for the system-of-systems. The running example
of payload organ delivery illustrates that it is not sufficient
to consider just the safety cases of the drones. Self-adaptive
system-of-systems have to address global requirements.

While a swarm of drones are difficult to be evaluated,
simulation is a recognized way to assure functionalities be-
fore physical tests in the sky. Drone simulations such as
Dronology [47] are an established way to simulate drones for
critical safety properties such as separation of distances. Our
simulator goes beyond safety-critical properties and consider
more general requirements of system-of-systems.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel approach to support
changes in participating components in system-of-systems
that have been designed to satisfy predefined requirements,
and not necessarily intended to change their behaviour in
order to support global requirements of system-of-systems.
We call these defiant components. We presented a cautious
adaptation approach that supports changes in the behaviour
of defiant components in order to satisfy global requirements
in exceptional situations.

The cautious adaptation approach guarantees that changes
will not interfere with the original functionalities of the par-
ticipating components under normal situations. The approach
uses scenarios to represent normal and exceptional situations,
uses wrappers implemented in aspect-oriented techniques to
represent behaviour of exceptional situations, and executes
runtime adaptation. We use an example of a payload organ
delivery drone application to illustrate and evaluate the work.

Currently, we are extending the approach to support on-the-
fly identification of new exceptional situations due to emergent
behaviours, and the creation of their respective wrappers. We
are also evaluating the scalability of the work with respect
to large-scale scenarios in different domains, and considering
components with complex requirements, functionalities, and
prioritisation decisions.

We plan to define a reference architecture for runtime adap-
tation of defiant components, which can be applied to multiple
application domains. We envisage extending the identification
of exceptional scenarios to deal with emergent scenarios at

runtime. Another area for future work is concerned with the
extension of the approach to support analysis of the impact of
adaptation during systems execution with respect to multiple
crosscutting aspects (e.g., performance), and in terms of its
side-effect on other components participating in a system-of-
systems.

VII. ACKNOWLEDGMENTS

This work is partially supported by CNPq/Brazil under
grant Universal 438783/2018-2 and Funcap/Brazil under grant
UKA-0160-00005.01.00/19; EPSRC Platform Grant on Secure
Adaptable Usable Software Engineering (EP/R013144/1); EU
H2020 SESAR EngageKTN on DroneIdentity (No. 783287);
ERC Advanced Grant on Adaptive Security and Privacy
(No. 291652), and Science Foundation Ireland (SFI) grant
13/RC/2094.

REFERENCES

[1] M. W. Maier, “Architecting principles for system of systems,” vol. 1, 01
1998.

[2] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos,
“Awareness requirements for adaptive systems,” in Proceedings of
the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS ’11. New
York, NY, USA: ACM, 2011, pp. 60–69. [Online]. Available:
http://doi.acm.org/10.1145/1988008.1988018

[3] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 341–350. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985840

[4] D. Weyns and J. Andersson, “On the challenges of self-adaptation in
systems of systems,” in Proceedings of the First International Workshop
on Software Engineering for Systems-of-Systems, ser. SESoS ’13. New
York, NY, USA: ACM, 2013, pp. 47–51.

[5] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu,
B. R. Schmerl, D. Weyns, L. Baresi, N. Bencomo, Y. Brun, J. Cámara,
R. Calinescu, M. B. Cohen, A. Gorla, V. Grassi, L. Grunske, P. Inverardi,
J. Jézéquel, S. Malek, R. Mirandola, M. Mori, H. A. Müller, R. Rouvoy,
C. M. F. Rubira, É. Rutten, M. Shaw, G. Tamburrelli, G. Tamura, N. M.
Villegas, T. Vogel, and F. Zambonelli, “Software engineering for self-
adaptive systems: Research challenges in the provision of assurances,”
in Software Engineering for Self-Adaptive Systems III. Assurances -
International Seminar, Dagstuhl Castle, Germany, December 15-19,
2013, Revised Selected and Invited Papers, 2013, pp. 3–30.

[6] M. Szvetits and U. Zdun, “Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime,” Softw. Syst.
Model., vol. 15, no. 1, pp. 31–69, Feb. 2016.

[7] D. M. Barbosa, R. G. de Moura Lima, P. H. M. Maia, and E. C. Junior,
“Lotus@Runtime: A tool for runtime monitoring and verification of self-
adaptive systems,” in Proceedings of the 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 24–30.

[8] P. Arcaini, E. Riccobene, and P. Scandurra, “Formal design and verifi-
cation of self-adaptive systems with decentralized control,” ACM Trans.
Auton. Adapt. Syst., vol. 11, no. 4, pp. 25:1–25:35, Jan. 2017.

[9] T. Viana, A. Zisman, and A. K. Bandara, “Identifying conflicting
requirements in systems of systems,” in 2017 IEEE 25th International
Requirements Engineering Conference (RE), Sep. 2017, pp. 436–441.

[10] K. YoungGab and C. Sungdeok, “Threat scenario based security risk
analysis using use case modeling in information systems,” Security and
Communication Networks, vol. 5, no. 3, pp. 293–300, 2011.

[11] S. Uchitel, D. Alrajeh, S. Ben-David, V. Braberman, M. Chechik,
G. De Caso, N. D’Ippolito, D. Fischbein, D. Garbervetsky,
J. Kramer, A. Russo, and G. Sibay, “Supporting incremental
behaviour model elaboration,” Computer Science - Research and
Development, vol. 28, no. 4, pp. 279–293, Nov 2013. [Online].
Available: https://doi.org/10.1007/s00450-012-0233-1

[12] X. Ban and X. Tong, “A scenario-based information security risk eval-
uation method,” International Journal of Security and Its Applications,
vol. 8, no. 5, pp. 21–30, 2014.

[13] G. Kiczales and E. Hilsdale, “Aspect-oriented programming,” SIGSOFT
Softw. Eng. Notes, vol. 26, no. 5, pp. 313–, Sep. 2001. [Online].
Available: http://doi.acm.org/10.1145/503271.503260

[14] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,
2nd ed. Wiley Publishing, 2006.

[15] D. Xu, I. Alsmadi, and W. Xu, “Model checking aspect-oriented design
specification,” in 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), vol. 1, July 2007, pp. 491–
500.

[16] M. Fowler, “Inversion of control containers and the dependency injec-
tion pattern,” http://www.martinfowler.com/articles/injection.html, 2004,
accessed: 2015-07-23.

[17] M. Wermelinger and Y. Yu, “Analyzing the evolution of eclipse
plugins,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08. New
York, NY, USA: ACM, 2008, pp. 133–136. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370783

[18] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of behavioral models
from scenarios,” IEEE Trans. Softw. Eng., vol. 29, no. 2, pp. 99–115, Feb.
2003. [Online]. Available: https://doi.org/10.1109/TSE.2003.1178048

[19] D. Harel and P. S. Thiagarajan, “Message sequence charts,” in UML for
Real: Design of Embedded Real-Time Systems, L. Lavagno, G. Martin,
and B. Selic, Eds. Boston, MA: Springer US, 2003, pp. 77–105.

[20] IBM, “An architectural blueprint for autonomic computing,” IBM, Tech.
Rep., Jun. 2005.

[21] M. A. Jackson, Problem Frames - Analysing and Structuring Software
Development Problems. Pearson Education, 2000.

[22] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,
2nd ed. Wiley Publishing, 2006.

[23] P. H. Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, and B. Nuseibeh,
“Dragonfly: a tool for simulating self-adaptive drone behaviours,” in
2019 IEEE/ACM 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), May 2019, pp. 107–
113.

[24] M. Maciel, P. H. Maia, F. C. M. B. Oliveira, and F. Maciel, “Adore:
An adaptation-oriented requirement modeling approach for systems of
systems,” in Proceedings of the XXXIII Brazilian Symposium on Software
Engineering. New York, NY, USA: ACM, September 2019.

[25] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,”
SIGPLAN Not., vol. 37, no. 1, pp. 4–16, Jan. 2002. [Online]. Available:
http://doi.acm.org/10.1145/565816.503275

[26] F. C. d. Sousa, N. C. Mendonca, S. Uchitel, and J. Kramer, “Detecting
implied scenarios from execution traces,” in Proceedings of the 14th
Working Conference on Reverse Engineering, ser. WCRE ’07. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 50–59.

[27] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J. C. S.
do Prado Leite, “Reverse engineering goal models from legacy code,” in
13th IEEE International Conference on Requirements Engineering (RE
2005), 29 August - 2 September 2005, Paris, France, 2005, pp. 363–372.

[28] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo, “Mining message
sequence graphs,” in Proceedings of the 33rd International Conference
on Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 91–100.

[29] A. Van Lamsweerde, “Goal-oriented requirements engineering: A
guided tour,” in Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering, ser. RE ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 249–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882477.883624

[30] W. Weimer and G. C. Necula, “Mining temporal specifications for
error detection,” in Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
ser. TACAS’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 461–
476.

[31] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Kar-
sai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns,
and J. Whittle, “Software engineering for self-adaptive systems,” B. H.
Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Berlin,

Heidelberg: Springer-Verlag, 2009, ch. Software Engineering for Self-
Adaptive Systems: A Research Roadmap, pp. 1–26.

[32] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and
T. Kelly, “Engineering trustworthy self-adaptive software with dynamic
assurance cases,” IEEE Trans. Software Eng., vol. 44, no. 11, pp. 1039–
1069, 2018.

[33] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-
driven adaptation,” in Proceedings of the 2010 18th IEEE International
Requirements Engineering Conference, ser. RE ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 125–134.

[34] A. Lapouchnian, Y. Yu, S. Liaskos, and J. Mylopoulos, “Requirements-
driven design of autonomic application software,” in Proceedings of
the 26th Annual International Conference on Computer Science and
Software Engineering, ser. CASCON ’16. Riverton, NJ, USA: IBM
Corp., 2016, pp. 23–37.

[35] M. Salifu, Y. Yu, and B. Nuseibeh, “Specifying monitoring and switch-
ing problems in context,” in 15th IEEE International Requirements
Engineering Conference, RE 2007, October 15-19th, 2007, New Delhi,
India, 2007, pp. 211–220.

[36] R. R. Lutz, “Software engineering for safety: A roadmap,” in Proceed-
ings of the Conference on The Future of Software Engineering, ser. ICSE
’00. New York, NY, USA: ACM, 2000, pp. 213–226.

[37] R. R. Lutz, A. Patterson-Hine, S. Nelson, C. R. Frost, D. Tal, and
R. Harris, “Using obstacle analysis to identify contingency requirements
on an unpiloted aerial vehicle,” Requir. Eng., vol. 12, no. 1, pp. 41–54,
2007. [Online]. Available: https://doi.org/10.1007/s00766-006-0039-4

[38] A. Cailliau and A. van Lamsweerde, “Runtime monitoring and reso-
lution of probabilistic obstacles to system goals,” in 12th IEEE/ACM
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2017, Buenos Aires, Argentina, May
22-23, 2017, 2017, pp. 1–11.

[39] T. Viana, A. Zisman, and A. K. Bandara, “Identifying conflicting
requirements in systems of systems,” in 2017 IEEE 25th International
Requirements Engineering Conference (RE), Sep. 2017, pp. 436–441.

[40] T. Viana, A. Zisman, and A. K. Bandara, “Towards a framework for
managing inconsistencies in systems of systems,” in Proceedings of the
International Colloquium on Software-intensive Systems-of-Systems at
10th European Conference on Software Architecture, ser. SiSoS@ECSA
’16. New York, NY, USA: ACM, 2016, pp. 8:1–8:7.

[41] D. Wile, R. Balzer, N. Goldman, M. Tallis, A. Egyed, and T. Hollebeek,
“Adapting cots products,” 10 2010, pp. 1 – 9.

[42] G. Kiczales and E. Hilsdale, “Aspect-oriented programming,” in Pro-
ceedings of the 8th European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International Symposium on Foundations
of Software Engineering 2001, Vienna, Austria, September 10-14, 2001,
2001, p. 313.

[43] S. Chiba and R. Ishikawa, “Aspect-oriented programming beyond de-
pendency injection,” in Proceedings of the 19th European Conference
on Object-Oriented Programming, ser. ECOOP’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 121–143.

[44] Y. Yu, J. C. S. do Prado Leite, and J. Mylopoulos, “From goals to
aspects: Discovering aspects from requirements goal models,” in 12th
IEEE International Conference on Requirements Engineering (RE 2004),
6-10 September 2004, Kyoto, Japan, 2004, pp. 38–47.

[45] M. Webster, M. Fisher, N. Cameron, and M. Jump, “Formal
methods for the certification of autonomous unmanned aircraft
systems,” in Proceedings of the 30th International Conference on
Computer Safety, Reliability, and Security, ser. SAFECOMP’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 228–242. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2041619.2041644

[46] C. Lin, D. He, N. Kumar, K. R. Choo, A. Vinel, and X. Huang, “Security
and privacy for the internet of drones: Challenges and solutions,” IEEE
Communications Magazine, vol. 56, no. 1, pp. 64–69, Jan 2018.

[47] J. Cleland-Huang, M. Vierhauser, and S. Bayley, “Dronology: an in-
cubator for cyber-physical systems research,” in Proceedings of the
40th International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE (NIER) 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, 2018, pp. 109–112.

