
SAT-Based Optimal Hypergraph Partitioning with Replication
 Michael G. Wrighton1 André M. DeHon
 Tabula, Inc. California Institute of Technology
 3250 Olcott St. Computer Science, 256-80
 Santa Clara, CA 95054 Pasadena, CA 91125
 mwrighton@tabula.com andre@cs.caltech.edu

1 This work was done while the first author was at Caltech.

ABSTRACT
We propose a methodology for optimal k-way partitioning with
replication of directed hypergraphs via Boolean satisfiability. We
begin by leveraging the power of existing and emerging SAT solvers
to attack traditional logic bipartitioning and show good scaling
behavior. We continue to present the first optimal partitioning results
that admit generation and assignment of replicated nodes concurrently.
Our framework is general enough that we also give the first published
optimal results for partitioning with respect to the maximum
subdomain degree metric and the sum of external degrees metric.
We show that for the bipartitioning case we can feasibly solve
problems of up to 150 nodes with simultaneous replication in hundreds
of seconds. For other partitioning metrics, we are able to solve
problems up to 40 nodes in hundreds of seconds.

1 INTRODUCTION
Balanced, k-way hypergraph partitioning is a fundamental problem in
the design of integrated circuits. The precise details of the partitioning
problems vary by application [1], but all known useful formulations of
balanced partitioning result in NP-hard optimization problems.
Although effective heuristics exist to solve many partitioning
problems, few provably optimal solution techniques have been
explored. Where optimal techniques have been applied, significant
quality per given runtime improvements have been observed over
heuristics for small problem sizes [2]. Rather than focus on time-
quality tradeoffs, we decided to explore the limits of solving
partitioning optimally.
A key definition in computer science is that any NP-complete problem
can be transformed into any other NP-complete problem given only a
polynomial amount of time and space [3]. Seminal work nearly two
decades ago [4] suggested that partitioning can be efficiently
remapped to Boolean satisfiability. Recent advances in SAT solvers
allow enormous SAT instance to be solved (or proven UNSAT) within
seconds [5]. These results have been obtained across a range of
benchmarks represented in a canonical “conjunctive normal form”
(CNF). Annual competitions have yielded rapid SAT solver progress
in recent years.
A key limitation of the early SAT-mapped partitioning work is that the
published results handled a very traditional and specific partitioning
formulation. “Real-world” partitioning problems may have complex
formulations [6]. The author of the early work, however, recognized a
broader potential of the SAT-mapped approach [4]:
“An attractive feature of this approach is that the entire space of
feasible solutions can be represented in a compact way, facilitating the
search for optimal solutions under complex cost functions and
associated constraints.”
We developed and benchmarked a framework for SAT-mapping more
complex cost functions and constraints than considered in prior work
on optimal partitioning. This framework allows us to construct optimal
k-way partitions. Further, we consider partitioning balance constraints
that allow nodes to appear in multiple partitions (i.e. replication). To
illustrate cost function flexibility, this work considers three well-
established metrics for partitioning quality: The traditional total cut

hyperedges metric penalizes every edge that is not fully contained
within a single partition. The sum of external degrees function
penalizes every entry or exit of a wire from a partition. In multi-way
partitioning problems, this may be appropriate as solvers targeting this
cost function prefer solutions where edges interact with small numbers
of partitions over solutions where the same number of edges are split
over all of the partitions. Finally, the maximum subdomain degree
metric limits the maximum IO into any given partition as opposed to
the average IO over all of the partitions. Though runtime remains an
issue for the more sophisticated metrics, we show techniques that are
sufficiently general to consider cost functions that are tightly defined
by their application domain.
With this work, we expand the literature on optimal partitioning with
the following innovations:
• SAT formulations for three distinct partitioning metrics

• An enhancement for optimal k-way partitioning (as opposed to
simple bipartitioning)

• Concurrent replication and partitioning of nodes as a natural part
of problem formulation

We show that when considering the traditional bipartitioning problem,
our technique scales to more difficult problems than a branch-and-
bound implementation. Within that formulation, we can consider
integrated replication set generation for not more than an order of
magnitude runtime penalty. Finally, for some small netlists, we show
the first published optimal results for two sophisticated cost metrics,
with and without replicated nodes.
2 PRIOR WORK
We are aware of a single published work on hypergraph partitioning
via Boolean SAT [4]. Devadas considers the traditional formulation of
hypergraph bipartitioning. He shows that within a reasonable amount
of time (14 minutes in the longest case), the hardware and SAT solvers
of 1989 could optimally bipartition a benchmark netlist of 32 nodes
under the total cut hyperedges metric.
Instead of SAT, the recent work to date on optimal netlist partitioning
has focused on branch-and-bound techniques — an approach to which
the cut hyperedges metric avails itself due to several clever techniques
available in that formulation [2]. These optimizations, by their nature,
are limited to the traditional bipartitioning formulation.
Previous implementations of k-way and broader cost metric
partitioning have been limited to heuristic techniques. For example,
Karypsis’s group at the University of Minnesota has developed
partitioners that generate k-way partitionings to minimize the sum of
external degrees, total cut hyperedges, and maximum subdomain
degree metrics [7, 8].
The best-known techniques for allowing replication in order to
improve partitioning quality are based on network flows [9, 10]. These
techniques offer exact solutions to several unbalanced formulations of
the bipartitioning problem. At the cost of optimality, they may be used
as kernels in heuristics for k-way, balanced hypergraph partitioning
and replication.

The partitioning problem is fundamentally no different from any other
finite-domain constraint satisfaction problem. This fact led us to apply
unsuccessfully a Prolog-based constraint solver [11] to the task. We
are not the first to note that constraint solvers which remap their
problems to CNF can be significantly faster than solvers that operate
on a more direct problem formulation [12].
There are numerous solvers available for SAT instances, a complete
exploration of which is beyond the scope of this paper. Readers may
refer to annual SAT Solver Competitions at ICSAT for the current
state-of-the-art in solvers. We found that siege_v4 [13] (which does
not participate in the competition due to a ‘black-box’ restriction)
generally provided the best performance for our SAT instances.

3 SOLUTION OUTLINE
A well-known technique for solving an NP-hard optimization problem
is to transform it into a series of NP-complete decision problems.
Generically, we represent this as:

while (upperBound != lowerBound) {
 thisTry = (upperBound + lowerBound) / 2;
 if (existsSolutionLessThan(thisTry)) {
 upperBound = thisTry;
 }
 else
 lowerBound = thisTry;
}

The kernel of our approach is that we build a SAT problem instance
which is satisfiable if, and only if, the circuit netlist can be partitioned
with a goodness metric less than or equal to some target (an NP-
complete decision problem). In order to be a valid solution which
meets a particular cost metric we will assert that:

MetricMet
BalancedPartitions

presentedAllNodesReSAT

∧
∧
=

Then after obtaining a SAT/UNSAT result, we have a new upper or
lower bound on the optimal solution to use in a binary search for the
minimum cost partitioning. Once the bounds are tight, the satisfying
assignment to the SAT instance associated with the best goodness
metric implies a solution to the NP-hard optimization problem. If we
wish to relax the optimality constraint, we can treat problem instances
where the solver times out as UNSAT. Otherwise, we must report the
optimization problem as unsolved. Our experience has shown that
SAT instances asserting a cost metric some distance from the
minimum can be solved or proven UNSAT much more quickly than
those very near the minimum. We found that this effect was more
significant than the count of CNF clauses and variables.
The SAT instances we generate have kN binary inputs, representing
which nodes appear in each of the partitions. For 3-way partitioning,
the graph in Figure 1 implies these inputs to a satisfiability instance:

A0, A1, A2, B0, B1, B2, C0, C1, C2, D0, D1, D2, E0, E1, E2

A ‘1’ in the satisfying input assignment indicates that a node appears
in a particular partition. This contrasts with Devadas’ approach [4],
which encodes the partition assignment with a single bit per node.
Having outlined the approach, we have several natural questions.

• How do we assert a valid partitioning?
• How are the various metrics specified in the SAT instance?
• How does the SAT approach scale against other solutions?
• What size problems are feasible to solve for the various cost

metrics?
The following sections answer these questions.

A

D

BC

E

e1 e2

e3

Figure 1. An Example Hypergraph

4 THE DETAILS
As stated in the previous section, we construct a SAT instance (in the
form of a Boolean logic circuit). We show how each higher-level
asserted variable in our circuit is constructed.
4.1 Cardinality Constraints
At several points, we will need to make an assertion about the number
of ‘1’s set over some number of variables. Our notation in this work
represents ‘1’s counters with the symbol, both in equations and
diagrams. In text, we refer to the ‘1’s counter as a totalizer. We expand
on our technique for asserting cardinality constraints in Section 5.1.
4.2 All Nodes Represented
In order to be a valid solution we assert that each node appears in at
least one partition. Continuing with the example of a three-way
partitioning of the netlist from Figure 1:

()
()
()
()
()210

210

210

210

210

EEE

DDD

CCC

BBB
AAA

presentedAllNodesRe

∨∨
∧∨∨
∧∨∨
∧∨∨
∧∨∨

=

Or more generally, for a k-way partitioning:
()()ikiNodesA
ApresentedAllNodesRe

<≤∈
∨∧=

0

If the problem formulation we are considering does not admit
replication, then we can assert that no node appears in two (or more)
partitions:

ji

kji
kiNodesA

AAtsNoReplican ∧∧∧=
<≤+

<≤∈
1

0

4.3 Partitions Balanced
We make an assertion on the cardinality of each of the partitions by
means of the totalizer described above. If the partitions are balanced
then no partition has more than some fraction of the total nodes in the
graph.

≤∧=
∈<≤

MaxSizeABalancedPartitions
NodesA

iki0

If replicated nodes are allowed, we may also construct a totalizer for
the ‘excess’ nodes in the design and limit them as desired.
4.4 Metric Met
The subtleties of SAT-mapped partitioning occur when we assert that
a metric is less than or equal to some given value. We begin this work
by examining a single cost metric. We discuss additional metrics in
Section 7.
4.4.1 Total Cut Hyperedges
The total cut hyperedges metric is the easiest to describe. We define an
edge (e) as a source (e.Source) with a set of sinks (e.Sinks) and assert
that it is cut if any of its sink nodes appear in a partition without the
source node.

()iiSinkseski
sSourceeeCut ∧∨∨=

∈<≤
.)(

.0

We employ a totalizer to sum over all the potentially cut edges, and
assert that their cardinality is less than our current target.

MaxMetriceCutMetricMet
Edgese

≤=
∈

)(

Figure 2 shows how we would build the MetricMet function using the
total cut hyperedges metric for a three-way partitioning of the sample
hypergraph shown in Figure 1.

C0

B0

E0

D0

C1

B1

E1

D1

C2

B2

E2

D2

C0

C1

A0

A2

C2

A1

E0

E1

D0

D2

E2

D1

Cut(e1)

Cut(e2)

Cut(e3)

M
etricM

et

MaxMetric

Figure 2. Cut Hyperedges Metric

5 OPTIMIZING IMPLEMENTATION
Having identified problem formulations that guarantee optimal results
given unlimited SAT runtime, we move on to consider a few
techniques that offer the potential of reducing the total amount of time
that the SAT solver will require to solve the generated instances.
Intuitively, the key to these techniques is the notion that we can
improve the tractability of SAT by assuring that partial assignments of
variables allow maximum implications to assign other variables in the
instance. We show, on a few sample netlists, how two techniques
improve our runtimes.
5.1 Cardinality Constraints
One way to assert cardinality constraints in our SAT instances is via a
tree of adders. This is the technique employed by Devadas [4]. A
desirable property of this approach is that it requires few clauses or
variables in the generated SAT instance. However, SAT solvers
operate on a partial assignment of variables. Figure 3 shows that if we
limit the ‘1’s cardinality over a set of four variables to one, even after
three of the input variables are set to ‘1’, the solver will not be able to
prune the search space.

1

1
Half

Adder

+
Half

Adder

1

X

10

XX

< 2XXX 1

Figure 3. Cardinality constraint expressed in binary arithmetic
We improve on Devadas’ cardinality constraints by sacrificing the
brevity of the binary approach for the strategy of Bailleux and
Boufkhad [12, 14]. They construct binary trees of totalizers, each

operating on pre-unate2 input. The pre-unate representation allows the
solver to more quickly discover conflicts and prune the search space
with fewer input variables assigned.3 We then assert SAT on the
appropriate inverted output from the top-level totalizer. Figure 4
shows how a SAT solver would interpret the cardinality constraint
from before with the same partial assignment of inputs. In fact, as soon
as any two input pins are assigned ‘1’, the totalizer tree will produce a
contradiction. The complexity of the CNF encoding is O(N2) clauses
and O(N log (N)) variables if we are constraining N variables to a sum
of N-1 (the most pathological case).

1

1
1-2

Totalizer

2-4
Totalizer

1-2
Totalizer

1

X

1

1

1

1

X

1

2

2

1

2

3

1

4
1
X

1

Contradiction

1

Figure 4. Cardinality constraint expressed with pre-unate totalizers

5.2 Symmetry Breaking
In a k-way partitioning, we have k! potential orderings (i.e.
symmetries) of the partition sets. When we generate the satisfiability
instance, we can break one degree of symmetry by preassigning a
single node to an arbitrary partition. We considered several potential
heuristics to select the breaking node: The node connected to the most
other nodes; the node connected to the least other nodes; and a random
node. Table 2 shows that not breaking the symmetry reliably causes
the longest runtimes over our selected netlists. When we do break the
symmetry, choosing a random node seems to provide as good a result
as any of the more crafted selection heuristics.
For k > 2 partitioning, preassigning a single node for symmetry
breaking leaves obvious symmetries unaddressed. Adding another
hard symmetry breaking preassignment (assigning another node to
another arbitrary partition) would destroy our optimality guarantee.
However, we can safely preassign a second node to either the same
partition as the first or another arbitrary partition. We generalize the
technique by inserting a “weak backbone” as a symmetry constraint.
We construct a weak backbone for the netlist as follows:

weakBackbone(k, netlist) {
P = heuristicPartition(k, netlist)
for i 0 to k – 1
do
 Node = randomSelection(P[i])
 assertInOneOf(Node, 0..i)
}

The power of this approach is that it allows us to imply an ordering of
the partitions, but without removing the optimality guarantee from the
result. Table 2 shows that the weak-backbone approach provides better
scalability than simply constraining a single node as the number of
partitions generated increases.

2 “Pre-unate” represents k in N bits by setting the first k bits to ‘1’ and

the trailing N - k bits to ‘0’. For example, if N = 5, three is expressed
as ‘00111’.

3 More formally, unit propagation on any subset of assigned variables
restores generalized arc-consistency.

Table 1. Effect of Cardinality Constraints

SAT Runtime (ms)
Netlist Size k Binary Bailleux &

Boufkhad Speedup
2 16360 2762 5.9
3 20130 4168 4.8
4 42877 10960 3.9
5 93999 15332 6.1

ex4 55

6 174480 22921 7.6
2 16098 1246 12.9
3 59514 14344 4.1
4 105858 14678 7.2
5 160268 16358 9.8

misex2 97

6 524047 62035 8.4
2 73936 8631 8.6
3 207867 40410 5.1
4 716010 102163 7.0
5 Timeout 243489 -

5xp1 100

6 Timeout 652259 -
2 7416 2010.25 3.7
3 25970 3049 8.5
4 27988 2694 10.4
5 135951 9881 13.8

f51m 114

6 533034 34044 15.7
2 400696 22714 17.6
3 742069 75493 9.8
4 1442291 160343 9.0
5 Timeout Timeout -

kirkman 151

6 Timeout Timeout -

6 BENCHMARKING RESULTS
In order to show the potential for practical usefulness of our technique,
we quantify the performance of our SAT mappings. In this section, we
examine our benchmark results for traditional bipartitioning with cut
hyperedges as the metric – we perform a side-by-side comparison
against an optimized and widely-used branch-and-bound partitioner.
We continue to show that adding replication to this formulation does
not cause runtime to increase too much.
6.1 Methodology
Our implementation of the approach generates ISCAS89 format files,
which represent the satisfiability instances. We convert these to CNF
via a Perl script [15]. As benchmark hypergraphs, we employed
4-LUT FPGA mappings (generated via Flowmap [16]) of the small
IWLS93 benchmark circuits. These netlists are appropriate to explore
this methodology as they consist of nodes of equal size – standard-cell
mapped circuits would complicate our construction of balance
constraints. We ran our flow on dual-processor 2.8 GHz Intel Pentium
4 machines with 512 KB L2 cache and 4 gigabytes of RAM.
Whenever we report a CPU time, it is the total time spent in the SAT
solver.
6.2 SAT Solver Choice
The experience of the SAT community is that it is unusual for a given
solver to be ideal across a range of problem types. Therefore, we
conducted an evaluation of several SAT solvers [13, 17, 18]. We
determined that a solver would receive a ‘pass’ for a partitioning-
derived satisfiability instance if it could solve (SAT/UNSAT) the
problem within a reasonably long amount of time (which we
arbitrarily set at two hours of CPU time). At this stage, we deemed the
higher priority to find a solver that would solve many problems than to
reduce the average runtime of solved instances. Over many SAT
instances, we found that siege_v4 consistently solved more instances
than the other solvers.
If a solver superior to siege_v4 appears, it is a simple matter to
adjust our flow to leverage the new tool because the SAT community

has widely standardized upon the CNF representation of problem
instances.

Table 2. Effect of various symmetry-breaking choices.

SAT Runtime (ms)
Netlist Size k None Least

Conn.
Most
Conn.

Rand. Weak
Back.

2 2782 1448 1202 1622 1678
3 4226 2687 2238 3311 1851
4 11480 7361 3440 7226 3079
5 15652 9491 6238 11006 6422

ex4 55

6 23563 15420 9169 16311 8840
2 1237 1343 998 928 1092
3 15082 9293 4291 5481 4443
4 14740 10695 7269 7095 4814
5 16671 14101 9831 8530 5463

misex2 97

6 64989 56707 45003 38717 23974
2 8692 8477 5663 5347 7317
3 42566 40228 22779 18809 27546
4 103773 91713 70658 72145 41012
5 248916 240253 172330 192982 113177

5xp1 100

6 665235 846848 651781 441434 490670
2 2022 1729 1021 2540 1503
3 3091 2358 1939 2259 2060
4 2713 2941 2623 2004 2059
5 10000 13515 12639 12848 10118

f51m 114

6 34828 32823 31933 25315 21705
2 23141 18457 18788 16561 17206
3 77397 66562 71601 52921 47441
4 164108 136261 172171 97556 60365
5 Timeout 574638 687024 876982 501577

kirkman 151

6 Timeout Timeout Timeout Timeout Timeout

6.3 Scalability Against Branch and Bound
We used our approach and the branch-and-bound solver from Capo [2]
to optimally bipartition our benchmark circuits (which have from 10 to
255 nodes). We allowed up to a 10% unbalanced partitioning. We
validated that the partitioning metrics generated between the two
solvers were identical. Figure 5 shows that while the branch-and-
bound approach is superior for many netlists, as the complexity
increases, our approach dominates. We present plots sorted by both
SAT runtime and branch-and-bound runtime because merely
considering node count is not a strong enough predictor of problem
complexity to give a clear visualization.
We observe that as branch-and-bound’s runtime increases, our SAT-
mapped formulation offers much better scaling properties. Branch-and
bound times out on many of the benchmarks that SAT completes (even
though we allowed the branch-and-bound implementation 10x longer
runtime). There are no examples in the benchmark set however where
SAT times out and branch-and-bound does not.
6.4 Bipartitioning with Integrated Replication
Typically, adding replication to the logic bipartitioning SAT
formulation does not increase the runtime by more than an order of
magnitude. We considered the case of allowing two partitions, each
60% of the total size of the netlist. Table 3 shows that, for large
benchmarks of fewer than 152 nodes (the largest netlists we could
reliably partition without timing out), we can obtain improvements in
cutsize with a modest overhead in compute time over the non-
replicated case. In many cases, the freedom to replicate nodes allows
us to find an optimal solution even more quickly.

Figure 5. SAT vs. Branch-and-Bound Scaling

7 BEYOND CUT HYPEREDGES
In principle, a key feature of the SAT formulation is that we need not
be limited to simple formulations of the partitioning problem. It is not
difficult to construct satisfiability instances that represent more
sophisticated cost metrics than total cut hyperedges. We conducted
experiments on two such metrics (which are formally described in the
appendix) and show results for three benchmarks of forty nodes. We
report the first results from an optimal algorithm to solve partitioning
for these metrics (and allow replicated nodes in the formulation) –
unfortunately, our results to date indicate that the SAT formulation
appears to be a very slow method of attacking these problems. Our
results consider dividing the nodes into partitions of maximum size =
(1.2 / k × total node area). In the replicated case we allow nodes to
appear in multiple partitions while keeping the maximum size fixed.
We report a timeout when the SAT solver times out at 1200 s.

Table 3. Optimal Bipartitioning with Simultaneous Replication

Netlist Size No Replication Replication
 Cut ms Cut ms Slowdown% Cutsize

Impr.
c8 131 8 1413 8 2228 1.58 0

sao2 133 15 188887 10 7401 0.04 33
s641 135 13 55061 10 16559 0.30 23
s713 137 13 56494 10 12840 0.23 23

mm9b 141 17 344367 15 3348853 9.72 12
C1355 147 16 32097 16 117767 3.67 0
C499 147 16 28155 16 292111 10.38 0
cse 148 18 1522416 11 221276 0.15 39
cht 151 5 170 5 145 0.85 0

kirkman 151 12 11317 9 15006 1.33 25
Avg. 2.82 15.5

7.1 Sum of External Degrees
When we consider the sum of external degrees cost (“SOED”)
function, we must consider every hyperedge as a potential external
degree of one or more partitions. If a net is cut, it will appear as an
output degree on exactly one partition and an input degree on at least
one partition. A totalizer tree sums over all the potential partition pins
(all the hyperedges in the hypergraph for every partition for inputs,
and all the hyperedges again for outputs).

()()()
MaxMetric

eCut

sSourceeeCut

MetricMet

Edgese

ki
Edgese

ie.Sinkssi

≤
+

∨∧∧

=

∈

<≤
∈ ∈

)(

.)(
0

Table 4 shows that our SAT formulation is not yet efficient enough to
reliably optimize this cost function, even for small, forty node netlists.
We present the results to show our current progress on optimizing this
metric.
Figure 6 shows how we assert the sum of external degrees function for
a three-way partitioning of the example circuit in Figure 1.

Table 4. Sum of External Degrees Optimization

Netlist k No Replication Replication
 SOED ms SOED ms

2 25 195 21 79
3 33 6538 27 1434
4 35 5824 34 220448
5 42 895024 Timeout

misex1

6 Timeout Timeout
2 22 428 18 423
3 31 45958 28 640239
4 38 2515958 Timeout
5 Timeout Timeout

bbara

6 Timeout Timeout
2 22 897 18 1647
3 32 119169 Timeout
4 Timeout Timeout
5 Timeout Timeout

ex7

6 Timeout Timeout

7.2 Maximum Subdomain Degree
Minimizing the maximum subdomain degree (“MSD”) requires the
most intricate SAT formulation. At first, it appears sufficient to
modify slightly the SOED formulation. However, the replicated nodes
create an additional complexity. We must only charge one partition for
the output from a replicated node.
We employ totalizers at several points in the assertion of the MSD
value. First, we employ totalizers for each partition to sum the number
of input pins into each partition – this is similar to the SOED metric.
Then we totalize the outputs.

C0

Cut(e1)

C2

C1

Cut(e2)

B0

E0

D0

B2

E2

D2

B1

E1

D1

E0

1

Cut(e3)

E2

E1

MaxMetric + 1 Metric
Met

...

Figure 6. Sum of External Degrees Metric
We assert that if an edge is cut, its output node must count as an output
in exactly one of the partitions where it appears. We employ separate
totalizer trees to sum the inputs and outputs over each of the partitions
(subdomains). We assert that for every partition, SumMaxMetric+1 is false.
If we wish, this technique is easily extended to to solve the FPGA
clustering problem (where each cluster would typically have a
particular number fixed inputs and fixed outputs as opposed to general
IO pins [6]). Figure 7 shows the satisfiability instance we construct for
this metric on the example hypergraph in Figure 1.

1

10

100

1000

10000

100000

1000000

10000000

100000000

Netlist (Sort by SAT Time)

Ti
m

e
(m

s) SAT
BB
BB Timeout

1

10

100

1000

10000

100000

1000000

10000000

100000000

Netlist (Sort by BB Time)

Ti
m

e
(m

s) SAT
BB
BB Timeout

Out(e1)0

A0

Out(e1)1

A1

Out(e1)2

A2

Sum 1 = Cut(e1)

Sum 2 = 0

Out(e2)0
C0

Out(e2)1
C1

Out(e2)2

C2

Sum1 = Cut(e2)

Sum2 = 0

Out(e3)0
D0

Out(e3)1
D1

Out(e3)2
D2

Sum 1 = Cut(e3)

Sum 2 = 0

MaxMetric + 1

MetricMet

Cut(e1)

Cut(e2)

Cut(e3)

C0

B0

E0

D0

E0

Cut(e1)

Cut(e2)

Cut(e3)

C1

B1

E1

D1

E1

Cut(e1)

Cut(e2)

Cut(e3)

C2

B2

E2

D2

E2

In
pu

t D
eg

re
es

Output Degrees

External
Degrees

Figure 7. Maximum Subdomain Degree Metric
Table 5 shows that our formulation of the MSD problem scales better
than the SOED formulation. Further, we see at least anecdotally, that
allowing replication improves results for this metric.
8 FUTURE DIRECTIONS
We believe that the flexibility introduced by representing partitioning
as a SAT problem creates new opportunities for optimal solutions with
diverse notions of partitioning quality. Future work will broadly
consider how we can improve the scaling properties.
8.1 Higher K Partitioning
So far, we have found that as K is increased, the time to compute an
optimal partition set goes up quickly. We believe that this could be
somewhat alleviated if more of symmetries in partition ordering could
be broken. If we were to optimize a partitioning metric where the
partitions naturally form a spatial order, we could break this
symmetry.
8.2 Hybrid Cost Functions
We have seen that two cost functions other than cut-hyperedges are
very difficult to solve optimally with SAT. The cut-hyperedges
solutions may be very helpful in identifying the gross locality in the
hypergraphs. We believe that by creating a hybrid cost function, we
can significantly speedup the search for solutions to more complex
partitioning problems. For example, at the cost of our optimality
guarantee, we might seed an MSD or SOED problem instance with
some hard preassignments from a cut hyperedges solution.

9 CONCLUSION
We have shown several new problem formulations and speedup
techniques for optimally solving hypergraph partitioning by remapping
the problem to Boolean satisfiability. Combining these techniques with
a leading edge SAT solver allows us to perform optimal multiway
partitioning with integrated optimal replication for small benchmark
netlists. For the traditional logic bipartitioning cost function, our
method scales better than the optimal branch-and-bound algorithm in
an academic placer. Under this model, we can add integrated
generation of replicated nodes to the problem formulation for
relatively small additional runtime.
We further show how our framework allows us to produce the first
published optimal results of k-way logic partitioning under two more
sophisticated cost metrics. We generate these with and without
replicated nodes. Our runtime results to date in this effort suggest that
Devadas’ claim of SAT’s applicability to broader cost functions may
have been premature. Future work will consider how we can improve
the scaling properties of SAT-based solutions to these problems.

Appendix
In this work, we consider several well-known partitioning cost metrics.
For the reader’s convenience, we formalize our definitions in this
appendix. We adapt the descriptions given in [8] to describe our

hypergraph model and partitioning metrics along with their evaluation.
We make appropriate modifications to expand the model to include a
notion of node replication appropriate for VLSI layout applications.

Table 5. Maximum Subdomain Degree Optimization

Netlist k No Replication Replication
 MSD ms MSD ms

2 14 470 11 120
3 12 1490 10 2667
4 11 6734 9 13478
5 10 14052 Timeout

misex1

6 9 8616 8 1780920
2 12 525 9 927
3 11 3979 10 18182
4 11 13421 9 138265
5 10 23967 9 107820

bbara

6 10 45501 Timeout
2 12 3496 9 4586
3 12 8490 9 99578
4 11 25455 Timeout
5 11 122051 Timeout

ex7

6 10 218037 Timeout

A.1 Netlist and Partitioning Definitions
A netlist hypergraph G = (V, E) consists of a set of vertices V (“logic
elements”) and directed hyperedges E (“wires”). Every hyperedge
e = (d, R) has exactly one source vertex (d) and a set of at least one
sink vertex R. This model is not appropriate for all applications – for
example, circuit models which include tristate drivers would not
include the limitation of one source node per hyperedge.

A decomposition of V into k subsets V1, V2, …, Vk, such that ∩i Vi = V
is called a k-way partitioning of V. We refer to each of these subsets as
a partition or subdomain. The partitions need not be disjoint if
replication is permitted. A k-way partitioning of V satisfies a balance
constraint specified by [l, u] if, for each partition l |Vi| u.

A.2 Total Cut Hyperedges
The total cut hyperedges metric counts the number of hyperedges that
are cut between the partitions. A hyperedge is cut if it has at least one
sink vertex r ∈ R in a partition where the driving vertex (d) is not
assigned. Formally, a hyperedge e = (d, R) is cut if there exists Vi s.t.
R Vi ≠ ∅ and d ∉Vi.
For the example partitioning in Figure 8, the cut hyperedges metric is
4, because edges sourced by vertices A, B, E, and F are shared
between multiple partitions.

A.3 Sum of External Degrees
The sum of external degrees cost function (SOED) counts the total
‘pins’ required over the partitions. Partitions have two types of
external degrees: input and output. The input set Ii of a partition Vi is
the set of hyperedges which form its input. Vi includes at least one sink
vertex from i and does not include the source vertex from i. We
compute the set of output degrees overall by assigning an output
degree to every input degree ∩i Ii = O. Note that we do not assign the
output edges to particular partitions – this is significant as the source
node might appear in multiple partitions. The SOED cost function is
SOED = |O| + i |Ii|.
For the example in Figure 8: V1 has zero inputs, V2 has inputs from B,
E, and F. V3 has inputs from A and B. We then have that A, B, E, and
F are outputs. So the SOED metric is 0 + 3 + 2 + 4 = 9.

A.4 Maximum Subdomain Degree
The most intricate metric is the maximum subdomain degree (MSD)
criteria. We expand from the computation of the SOED metric. We
separate the output hyperedge set O into disjoint subsets O1,…,Ok s. t.
∩i Oi = O and MSD = MAXi (|Oi| + |Ii|) is minimized. In the non-

replicated case, the computation of the MSD metric for a given
partitioning is trivial (the output hyperedges are constrained to
assignment in the partitions where their source nodes are assigned). If
we allow node replication, then assigning the output hyperedges to
minimize the MSD for a given partitioning is more involved. Each
output hyperedge o with source vertex d may be feasibly assigned to a
partition Q ∈ {V1, …, Vk} s.t. d ∈ Q.

A

E

D

C

B

A

F

I

I

I

I

O

I

O

O

O*

V1

V2

V3

Figure 8. A Partitioned Hypergraph
For the example in Figure 8 we begin with the input assignments from
SOED: V1 has zero inputs, V2 has inputs from B, E, and F. V3 has
inputs from A and B. We must assign the output E to V1 and the
output F to V3. Before considering output A, V1 has degree 2, V2
degree 3 and V3 degree 3. By choosing to assign the output A to V1
instead of V2, the MSD metric is 3.
In debugging our work and examining non-SAT generated partitions,
we found that evaluating MSD with of replicated nodes is non-trivial.

Source

go5

go4

go3

go2

go1

Sink1

1

1

1

1

1

1

1

1

1

1

MSD - |I1|

MSD - |I2|

MSD - |I3|

Output
Degrees Partitions

Feasible
Assignments

Available
Outputs

gV1

gV3

gV21

MSD feasible if maxflow = 5

Figure 9. Max-flow Output Assignment Formulation
Our technique for evaluated the MSD metric without SAT is as
follows: We perform a binary search on potential MSD values to
determine the minimum MSD. We formulate the decision problem as
max-flow problem as follows:
For a particular value of MSD, we allow each partition Vi to have
output degree of oi = MSD - |Ii|. We construct a directed flow graph
that consists of a source with unit capacity flows leading to nodes
representing each output hyperedge to assign. We create nodes gvi for
each of the potential partitions to assign outputs. We create unit flow
edges from the nodes representing outputs to each of their feasible
partitions. We connect every node gVi representing partitions to a sink
via edges of capacity oi. We compute the maxflow. If the max flow is
equal to the total output degree, then the links with positive flow imply
an assignment of output hyperedges to partitions and a demonstration
that the potential MSD is feasible. If the maxflow is less than the total
output degree, the specified MSD is infeasible. Figure 9 shows an
example of flow graph constructed for assigning five output edges
(two of which are driven by replicated nodes) to three partitions.

Acknowledgements
This research was funded in part by the NSF CAREER program under
Grant CCR-0133102. We are grateful for the Capo source code,
provided by Igor Markov. Discussions with Michael deLorimier were
key in understanding how to evaluate the MSD metric.

REFERENCES
[1] F. M. Johannes, "Partitioning of VLSI Circuits and Systems,"

presented at ACM/IEEE Design Automation Conference, 1996.
[2] A. E. Caldwell, A. B. Kahng, and I. L. Markov, "Optimal

Partitioners and End-case Placers for Standard-cell Layout,"
IEEE Transactions on Computer-Aided Design, vol. 19, pp.
1304-1313, 2000.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness: W. H. Freeman, 1979.

[4] S. Devadas, "Optimal Layout via Boolean Satisfiability,"
presented at International Conference on Computer-Aided
Design, 1989.

[5] L. Zhang and S. Malik, "The Quest for Efficient Boolean
Satisfiability Solvers," presented at International Conference on
Computer Aided Verification, Copenhagen, 2002.

[6] V. Betz and J. Rose, "Cluster-Based Logic Blocks for FPGAs:
Area-Efficiency vs. Input Sharing and Size," presented at IEEE
Custom Integrated Circuits Conference, 1997.

[7] G. Karypis and V. Kumar, "Multilevel K-way Hypergraph
Partitioning," presented at Design Automation Conference, 1999.

[8] N. Selvakkumaran and G. Karypis, "Multi-Objective Hypergraph
Partitioning Algorithms for Cut and Maximum Subdomain
Degree Minimization," presented at International Conference on
Computer-Aided Design, 2003.

[9] W.-K. Mak and D. F. Wong, "Minimum Replication Min-Cut
Partitioning," IEEE Transactions on Computed-Aided Design for
Integrated Circuits and Systems, vol. 16, pp. 1221-1227, 1997.

[10] L. J. Hwang and A. E. Gamal, "Min-Cut Replication in
Partitioned Networks," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, pp. 96-106,
1995.

[11] M. Wallace and A. Veron, "Two Problems - Two Solutions: One
System - Eclipse," presented at IEE Colloquium on Advanced
Software Technologies for Scheduling, 1993.

[12] O. Bailleux and Y. Boufkhad, "Full CNF-Encoding: The
Counting Constraints Case," presented at International
Conference on Theory and Applications of Satisfiability Testing,
2004.

[13] L. Ryan, Efficient Algorithms for Clause-Learning SAT Solvers.
Masters thesis: Simon Fraser University, 2004.

[14] O. Bailleux and Y. Boufkhad, "Efficient CNF Encodings of
Boolean Cardinality Constraints," presented at International
Conference on the Principles and Practice of Constraint
Programming, 2003.

[15] J. M. Silva, Personal Website. http://sat.inesc-id.pt/~jpms/scripts/.
[16] J. Cong and Y. Ding, "FlowMap: An Optimal Technology

Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs," IEEE Transactions on Computer-Aided
Design, vol. 13, pp. 1-12, 1994.

[17] A. Nadel, Backtrack Search Algorithms for Propositional Logic
Satisfiability. Masters thesis: Tel-Aviv University, 2002.

[18] N. Eén and N. Sörensson, "An Extensible SAT-solver," presented
at International Conference on Theory and Applications of
Satisfiability Testing, 2003.

