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Abstract 
 
The Low-Power Image Recognition Challenge     
(LPIRC, ​https://rebootingcomputing.ieee.org/lpirc​) is   
an annual competition started in 2015. The       
competition identifies the best technologies that can       
classify and detect objects in images efficiently (short        
execution time and low energy consumption) and       
accurately (high precision). Over the four years, the        
winners’ scores have improved more than 24 times.        
As computer vision is widely used in many        
battery-powered systems (such as drones and mobile       
phones), the need for low-power computer vision will        
become increasingly important. This paper     
summarizes LPIRC 2018 by describing the three       
different tracks and the winners’ solutions.  
 
1. Introduction 
 
Competitions are an effective way of promoting       
innovation and system integration. “Grand     
Challenges” can push the boundaries of technologies       
and open new directions for research and       
development. The DARPA Grand Challenge in 2004       
opened the era of autonomous vehicles. Since 2010,        
the ImageNet Large Scale Visual Recognition      
Challenge (ILSVRC) has become a de facto standard        
benchmark in computer vision. The Low-Power      
Image Recognition Challenge (LPIRC) started in      
2015 as an annual competition identifying the best        
system-level solution for detecting objects in images       
while using as little energy as possible ​(Lu et al.          
2015)​. Although many competitions are held every       
year, LPIRC is the only one integrating both image         
recognition and low power. In LPIRC, a contestants’        
system is connected to the referee system through an         
intranet (wired or wireless). ​There is no restriction on         
software or hardware. ​The contestant’s system issues       

HTTP GET commands to retrieve images from the        
referee system and issues HTTP POST commands to        
send the answers. In the past four years, LPIRC has          
experimented with different tracks with different      
rules and restrictions. In 2015, offloading of       
processing was allowed but only one team       
participated. In 2016, a track displayed images on a         
computer screen and a constantant’s system used a        
camera to capture the images but only one team         
participated in this track. These two tracks are no         
longer offered.  
 
2. Tracks in 2018 LPIRC 
 
Vision systems typically consist of three components:       
model architecture (such as a neural network),       
inference engine (such as a series of kernels that         
evaluates neural network operations efficiently on a       
specific hardware), and the carrying hardware      
LPIRC tracks prior to 2018 required system-level       
improvements that did not distinguish between      
progress in individual components. In 2018, two new        
tracks were offered that strategically focused on       
model architecture and the inference engine.  
 
2.1 Track 1: TfLite Model on Mobile Phones 
 
This new track, also known as the On-device Visual         
Intelligence Competition, focused on model     
architecture: contestants submit their inference neural      
network model in TfLite format using Tensorflow       
(​https://www.tensorflow.org/mobile/tflite/​). The  
models were benchmarked on a fixed inference       
engine (TfLite) and hardware model (Pixel 2 XL        
phone). The task is ImageNet classification. The       
submissions should strive to classify correctly as       
many images as possible given a time budget of 30          
ms per image. The submissions were evaluated on a         
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single core with a batch-size of one to mimic realistic          
use cases on mobile devices. Although the scoring        
metric is based on inference latency rather than        
energy consumption, the two are usually correlated       
when the same benchmarks are used on the same         
hardware.  
 
Track 1’s latency-based metric is critical to       
accelerating the development of mobile model      
architectures. Prior to this metric, there was no        
common, relevant and verifiable metric to evaluate       
the inference speed of mobile model architectures.       
Numerous papers characterize inference efficiency     
using unspecified benchmarking environments or     
latency on desktop as a proxy. Even the most         
commonly used metric, MACs (multiply-add count)      
do not correlate well with inference latency in the         
real-time (under 30 ms) range (Chen and Gilbert        
2018).  
 

 
Track 1’s metric is the first to measures on-device          

latency in a realistic use case in the real-time range.          
In addition, this track provides a benchmarking       
platform (see Section 5.1) that allows for repeatable        
measurements and fair comparison of mobile model       
architectures. The flexibility of submitting just the       
model and not the full system allows this track to be           
an online competition. This convenience helps to       
boost the submission count to 130 models within just         
2 weeks. 
 
The submissions also witness excellent quality,      
establishing the new state-of-the-art in mobile model       
architecture design. Within the 30 ms latency range,        
the best of track 1 submissions outperformed the        
previous state-of-the-art based on quantized     
MobileNet V1, by 3.1% on the hold-out test set.  

 
The submissions have demonstrated a considerable      
amount of diversity. Slightly over half (51.7%) of the         
solutions are quantized. Most of the architectures       
(74.1%) are variations of the existing Mobilenet       
model family, namely quantized V2 (22.4%),      
quantized V1 (24.1%) and float V2 (27.6%). The        
predominant dependence on Mobilenets is not      
surprising, considering their exceptional performance     
on-device and the convenient support by TfLite. On        
the other hand, to sustain long-term mobile vision        
research, track 1 should also serve to reward        
previously under- or un-explored model architectures.      
In future installments of LPIRC, track 1 is looking to          
implement mechanisms for facilitating the discovery      
of novel architectures and rendering the platform       
more inclusive to general vision researchers.  
 
2.2 Track 2: Caffe 2 and TX 2 
 
LPIRC aims to discover the most energy-efficient       
solutions for detecting objects in images. For this        
reason, LPIRC is a system-level competition and       
contestants must port their solutions to functional       
systems. To reduce the barrier to entry, Track 2 uses          
pre-selected software (Caffe 2) and hardware (Nvidia       
TX2). A software development kit (SDK) is provided        
for installing the necessary packages. There are two        
main requirements for Track 2: 
 

1. Participants use Caffe2 (​http://caffe2.ai/​) to     
build their image detection systems. For      
example, the official code of Faster R-CNN       
is written by Caffe, participants need to       
convert it to Caffe2. 
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2. Participants use Nvidia TX2    
(​http://developer.nvidia.com/embedded/buy/
jetson-tx2​) as the hardware platforms.  

 
With these conditions, the solutions for Track 2 can         
be submitted online and evaluated in the organizers’        
laboratory. The score of track 2 is the ratio between          
recognition accuracy (mean average precision, mAP)      
and the total amount of energy consumption       
(Watt-hour). The energy consumption is measured      
using a power meter of the power supply to TX2.  
 
Each team has 10 minutes to process all the images.          
There are total 200 classes of objects in the         
competition. These classes are the same as       
ImageNet’s. Contestant’s training set is not restricted       
to ImageNet. They can use any datasets to train the          
model.  
 

 
 
Test images are stored in the referee system and         
retrieved by TX2 through the router. The results are         
uploaded to the referee system through the network.        
After the contestant’s system logs in, the power meter         
starts to measuring the power consumption. The       
power meter stops after 10 minutes or a contestant’s         
system logs out. This allows a team that finishes         
processing all images within 10 minutes to reduce        
their overall energy consumption. 
 
2.3 Track 3: Onsite, No Restriction 
 
The original track, always offered since 2015, was        
also available in 2018. This track has no restriction in          
hardware or software and gives contestants the most        
flexibility. Additional information about Track 3 can       

be obtained from prior publications ​(Gauen et al.        
2017)​, ​(Gauen et al. 2018)​, ​(Lu, Berg, and Chen         
2018)​.  
 
2.4  Training Data  
 
LPIRC uses the same training images as ImageNet        
Large Scale Visual Recognition Challenge     
(ILSVRC). For Track 1, the data from localization        
and classification task (LOC-CLS) is used. It consists        
of around 1.2 million photographs, collected from       
flickr and other search engines, hand-labeled with the        
presence or absence of 1000 object categories.       
Bounding boxes for the objects are available,       
although Track 1 only considers classification      
accuracy as a performance metric. For track 2 and 3,          
the data from object detection is used. It has around          
550,000 images and bounding boxes of labels for all         
200 categories. 
 
2.5 Testing Data 
 
For Track 1, the test data is newly created by using           
the ILSVRC image crawling tool to collect 100        
images for each category from Flickr. When crawling        
the images, synonyms (e.g. "house finch, linnet,       
Carpodacus mexicanus") are used in the searching to        
ensure that the images are relevant to the        
corresponding categories. ​The competition uses only      
the images uploaded after June 2017 to avoid        
duplications with the test images used in the previous         
years’ LPIRC​. Thumbnail images are used to remove        
duplicates by resizing the images to 30 x 30, and          
calculating the L2-norm of differences with images in        
the previous dataset. Ten representative images are       
manually chosen from each category. Representative      
images refer to the images that can be identified as          
one of the 1000 ImageNet classification categories       
without ambiguity. The following photos show      
examples. 
 

 
       Accordion                  Appenzeller                     Artichoke 
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Tracks 2 and 3 also use the ILSVRC tool to crawl           
images from Flickr with the context query phrases        
(e.g., cat in the kitchen) instead of the label names          
(e.g., cat) as the keywords. As a result, the tool can           
obtain images with various types of objects. The        
annotations (bounding boxes) are created by using       
Amazon Mechanical Turk (MTurk) jobs. The tracks       
use 20,000 test images. 
 
2.6 Other Datasets for Image Recognition 
 
ImageNet (provided by ILSVRC) is one of many        
popular datasets for evaluating computer vision.      
Other commonly used datasets include PASCAL      
VOC, COCO (Common Objects in COntext), SUN       
(Scene UNderstanding), INRIA Pedestrian Dataset,     
KITTI Vision Benchmark Suite, and Caltech      
Pedestrian Dataset. Over time the image datasets       
have improved in two primary ways. First, the quality         
of the image annotations has significantly improved       
due to more sophisticated methods for      
crowdsourcing. Second, the variety of the dataset has        
increased, in both content and annotations, by       
increasing the number of classes. The figure below        
shows PASCAL VOC (left) and ImageNet (right).       
Datasets and their corresponding competitions have      
yielded great improvements in computer vision      
technology. 
 

 
 
PASCAL VOC started its first challenge in 2005 for         
object detection and classification of four classes. In        
2012, the final year of the competition, the PASCAL         
VOC training and validation datasets consisted of       

27,450 detection objects in 11,530 images with 20        
classes. From 2009 - 2005 the overall classification        
AP improved from 0.65 - 0.82 and detection AP         
improved from 0.28 - 0.41 (Everingham et al. 2015). 
 
The COCO competition continues to be held annually        
with a primary focus of correctness of solutions.        
COCO contains over 2.5 million labeled instances in        
over 382,000 images with 80 common objects for        
instance segmentation. COCO also contains other      
types of annotations including Keypoints, Panoptic,      
and Stuff (Lin et al. 2014) (Caesar et al. 2018). The           
performance of a model on COCO has improved for         
bounding-box object detection has improved from      
0.373 to 0.525 from 2015 - 2017.  
 
The significant improvements of model accuracy      
demonstrated by just two of these image processing        
competitions is a similar goal of LPIRC. In addition         
to accuracy, LPIRC also considers energy      
consumption and execution time. 
 
3. LPIRC Scores 
 
3.1 Object Detection and Mean Average Precision 

 
To win Tracks 2 and 3 of LPIRC, a contestant's          
solution must be able to detect objects in images and          
mark the objects by bounding boxes. The objects        
belong to 200 pre-defined categories, such as person,        
car, airplanes, etc. The image shows an example        
containing two people, two cars, one motorcycle, and        
one helmet. The accuracy is measured by Mean        
Average Precision (mAP). A successful object      
detection must identify the category correctly and the        
bounding box must overlap with the correct solution        
(also called “ground truth”) by at least 50%. This is          
the same definition as ILSVRC. Unlike ILSVRC,       
however, LPIRC has time limitation: each solution       
has only 10 minutes to process all images (5,000 in          
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year 2015 and 20,000 since 2016). A superior        
solution must be able to detect objects and their         
locations in the images quickly, while consuming as        
little energy as possible. 
 
3.2 Energy Consumption 
 
A system’s energy consumption is measured using a        
high-speed power meter, Yokogawa WT310 Digital      
Power Meter. It can measure AC or DC and can          
synchronize with the referee system for the       
10-minute time limit.  
 
3.3 Score = mAP / Energy 
 

Year Accuracy Energy Score Ratio 
2015 0.02971 1.634 0.0182 1.0
2016 0.03469 0.789 0.0440 2.4
2017 0.24838 2.082 0.1193 6.6

2018-2 0.38981 1.540 0.2531 13.9 
     2018-3 0.18318 0.412 0.4446 24.4 

 
The score of each solution is the ratio of mAP and the            
energy consumption. The accuracy is measured by       
the mean average precision; the energy is measured        
by Watt-hour. The last column shows the progress of         
the winners’ solutions. From 2015 to 2018, the        
winners’ solutions improved by a factor of 24. The         
row of 2018-2 is the track using Nvidia TX2 and          
Caffe2. 2018-3 has no restriction of hardware or        
software. 
 
3.4 Track 1 Scores 
 
Track 1 is held for the first time in 2018. The table            
shows the score of the winner of Track 1. The          
holdout set is freshly collected for the purpose of the          
competition.  
 

ImageNet 
Validation Set 

Holdout Set 

Latency 28.0 27.0 
Test Metric 0.64705 0.72673 
Accuracy on Classified 0.64705 0.72673 
Accuracy / Time 1.08 E-06 2.22 E-06
# Classified 20000 10927 

Latency: ​Latency (ms) is single-threaded,     
non-batched runtime measured on a single Pixel 2 big         
core of classifying one image. 
Test metric (main metric): is the total number of         
images corrected in a wall time of 30 ms ✕ N           
divided by N, where N is the total number of test           
images. 
Accuracy on Classified: ​is the accuracy in [0, 1]         
computed based only on the images classified within        
the wall-time. 
# Classified: is the number of images classified        
within the wall-time. 
Accuracy/Time: is the ratio of the accuracy and        
either the total inference time or the wall-time,        
whichever is longer. 
 
Track 1 received 128 submissions. The figure below        
represents a total of 121 valid submissions       
(submissions that passed the bazel test and       
successfully evaluated). 56 submissions received test      
metric scores between 0.59 and 0.65. 
 

 
Mean: ​0.4610 Median: ​0.5654 
Mode: ​0.6347 Standard Deviation: ​0.2119 
  
Some duplicate submissions that are successfully      
evaluated have differences with the “Test Metrics”       
score due to changes in the evaluation server. These         
changes are made throughout the progress of the        
competition. Files that have the same md5 hash        
information are considered identical/duplicates.    
Duplicates may be caused by repeating submission       
done by the participants or re-submission by the same         
team using different accounts. Files with identical       
md5 hash information are grouped and only one file         
with the best “test metric” score is considered to be          
the unique file among the identical files. If the “test          
metric” values of all duplicates are equal, only one of          
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the submissions is considered to be unique. After        
eliminating duplicates, there are 97 unique      
submissions.  
 
3.5 Tracks 2 and 3 Scores 
 
The table shows the top teams in track 2. The winner           
achieved very high accuracy and finished recognizing       
all 20,000 images in 5 min. The 2018 winner’s final          
score is twice as high as the 2017 best score.  
 
Team mAP Energy Score

winner 0.3898 1.3667 0.2852
second 0.1646 2.6697 0.0616
third 0.0315 1.2348 0.0255
 
The table shows the scores for the winners. Two         
teams’ scores are too very close and both teams win          
the second prize. Also, the top three scores        
outperform the 2017 winner. Two teams’ energy       
consumption is much lower than previous years’       
winners’.  
 
Team mAP Energy Score
winner 0.1832 0.4120 0.44462 
second 0.2119 0.5338 0.39701 
second 0.3753 0.9463 0.39664 
third 0.2235 1.5355 0.14556 
 
4. Winners’ Solutions 
 
4.1 First Prize of Track 1  
 
The Qualcomm team wins the first prize of Track 1.          
The competition is driven by the real-world need for         
accurate real-time image classification using neural      
network models running on edge devices. Qualcomm       
provides edge AI platforms with Snapdragon      
(including the Google Pixel 2 phone used in this         
competition) so that Smartphone could become real       
intelligent devices in the near future. 
 
Accurate and fast image recognition on the edge        
device requires several steps. First, a neural network        
model needs to be built and trained to identify and          
classify images (recognizing when a photo is of a dog          
vs. a cat for example). Then, the model should run as           

accurate as possible on the actual hardware without        
latency issues. As most neural networks are trained        
on a floating-point model, they usually need to be         
converted to fixed-point in order to efficiently run on         
edge devices. 
 
For this competition, the model is based on        
MobileNet V2, but is modified to be       
quantization-friendly. Although Google's MobileNet    
models successfully reduce parameter size and      
computation latency due to the use of separable        
convolution, directly quantizing a pre-trained     
MobileNet v2 model can cause huge precision loss.        
The team analyzes and identifies the root cause of         
accuracy loss due to quantization in such separable        
convolution networks, and solved it properly without       
utilizing quantization-aware re-training. 
In separable convolutions, depthwise convolution is      
applied on each channel independently. However, the       
min and max values used for weights quantization are         
taken collectively from all channels. An outlier in one         
channel may cause a huge quantization loss for the         
whole model due to an enlarged data range. Without         
correlation crossing channels, depthwise convolution     
may be prone to produce all-zero values of weights in          
one channel. This is commonly observed in both        
MobileNet v1 and v2 models. All-zero values in one         
channel means small variance. A large “scale” value        
for that specific channel would be expected while        
applying batch normalization transform directly after      
depthwise convolution. This hurts the representation      
power of the whole model. 
 
As a solution, the team proposes an effective        
quantization-friendly separable convolution   
architecture, where the nonlinear operations (both      
batch normalization and ReLU6) between depthwise      
and pointwise convolution layers are all removed,       
letting the network learn proper weights to handle the         
batch normalization transform directly. In addition,      
ReLU6 is replaced with ReLU in all pointwise        
convolution layers. From various experiments in      
MobileNet v1 and v2 models, this architecture shows        
a significant accuracy boost in the 8-bit quantized        
pipeline. 
 
Fixed-point inferencing while preserving a high level       
of accuracy is the key to enable deep learning use          
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cases on low power edge devices. The team identifies         
the industry-wide quantization issue, analyzes the      
root cause, and solves it on MobielNets efficiently.        
The quantized modified MobileNet_v2_1.0_128    
model can achieve 28 milliseconds per inference with        
high accuracy (64.7% on ImageNet validation      
dataset) on a single ARM CPU of Pixel 2. More          
details are described in the paper      
“Quantization-friendly separable convolution   
architecture for MobileNets”   
(​https://arxiv.org/abs/1803.08607​). 
 
4.2 Third Prize of Track 1 
 
The Expasoft team wins the third prize of Track 1.          
The team builds a neural network architecture that        
gives the high accuracy and inference time equal to         
30 ms on Google Pixel 2. The team chooses two most           
promising architectures MobileNet and    
MobileNet-v2.  
 
Running MobileNet-v1_224 with float-32 on Pixel-2      
phone gives 70% accuracy and inference time of 81.5         
ms. The team chooses two main directions to        
accelerate neural network on device: neural network       
quantization and reducing input image resolution.      
Both methods lead to accuracy reduction and the        
team finds trade-off for accuracy – speed relation.        
Tests of MobileNet and MobileNet-v2 architectures      
suggest quantizing the neural networks into uint8       
data format. The team’s evaluation shows final score        
equal to 68.8% accuracy and 29ms inference time. 
 

Neural 
network 

architecture 

Input 
image 

resolution 

Data 
type 

Accurac
y (%) 

Google 
Pixel-2 

inference 
time 
(ms) 

Accurac
y/inferen
ce time 
(%/ms) 

mobilenet v1 224x224 float32 70.2 81.5 0.86
mobilenet v1 224x224 uint8 65.5 68.0 0.96
mobilenet v1 128x128 uint8 64.1 28.0 2.28
mobilenet v2 150x150 uint8 64.4 36.6 1.75
mobilenet v2 132x132 uint8 62.7 31.8 1.97
mobilenet v2 130x130 uint8 59.9 31.2 1.91
 
Quantization to uint8 allows to reduce inference size        
from 81ms to 68ms but leads to significant accuracy         
drops. During standard quantization process in      

Tensorflow it is required to start from full-precision        
trained model and learn quantization parameters (min       
and max values). Instead of joint training of neural         
network and tuning quantization parameters, the      
Expasoft team proposes an another approach: tuning       
quantization parameters using Stochastic Gradient     
Descent approach with State Through Estimator      
(Bengio et al. 2013) of gradients of discrete        
functions (round, clip) without updating weights of       
the neural networks. Loss function for this process is         
L2 for embedding layers of full-precision and       
quantized networks. Mobilenet-v1 224x224    
quantized such way shows 65.3% accuracy. Proposed       
method requires more detailed research but have two        
significant advantages:  

1. method doesn’t require labeled data for      
tuning quantization parameters 

2. training goes faster, because no need to train        
neural network, tune only quantization     
parameters 
 

4.3 First Prize of Track 2 
 
The Seoul National University team wins the first        
prize in Track 2. The hardware device is Jetson TX2.          
Optimization is needed to balance speed and       
accuracy for existing deep learning algorithms      
originally designed for fast servers. The team       
discovers that optimization efficiency differs from      
network to network. For this reason, the team        
compares various object detection networks on the       
Jetson TX2 board to find the best solution.  
  
The team compares five modern one-stage object       
detectors: YOLOv2, YOLOv3, TinyYOLO, SSD,     
and RetinaNet. Two-stage detectors such as Faster       
R-CNN are excluded because they are slightly better        
in accuracy than the one-stage detectors but much        
slower in speed. The baseline for each network is         
selected as the authors’ published form. For the        
comparison, the networks are improved with several       
software techniques briefly introduced as follows. 
(1) ​Pipelining: ​An object detection network can be        
split into three stages: input image pre-processing, a        
convolutional network body, and post-processing     
with output results of the body. Since the network         
body is typically run on the GPU and the others are           
on the CPU, they can be executed concurrently by the          
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well-known pipelining technique. (2) ​Tucker     
decomposition: ​It is one of the ​low-rank       
approximation techniques. As described in ​(Tucker      
1966)​, 2-D Tucker decomposition is used in the        
network comparison. (3) ​Quantization: ​For the Jetson       
TX2 device, only 16-bit quantization is allowed and        
it is applied to the networks. (4) ​Merging batch         
normalization layer into weights: ​Since the batch       
normalization layer is a linear transformation, it can        
be integrated into the previous convolutional layer by        
adjusting the filter weights before running the       
inference. (5) ​Input image size reduction: ​Reducing       
input image size is an easy solution to enhance the          
network throughput. It was also observed in       
experiments that the effect of this technique depends        
on the networks. 
  
By comparing the networks, the team finds that        
YOLOv2 outperforms other networks for the      
on-device object detection with the Jetson TX2. The        
table shows how much the YOLOv2 network is        
enhanced by the series of the improvements. Since        
the total energy consumption is inversely      
proportional to the network speed, the score       
(mAP/Wh) can be estimated as mAP x speed. This         
optimized ​YOLOv2 network is selected for the       
LPIRC Track 2 application. 
 
Description mAP(A) FPS(B) Score 

(A x B) 
Normalized 
score 

Baseline 
(416x416) 

51.1 7.97 407 1.0

Pipelining 51.1 8.85 452 1.11
Tucker 50.2 15.1 758 1.86
Quantization 50.2 19.9 999 2.45
256 x 256 43.0 32.5 1640 4.03
Batch = 16 43.0 90.3 3880 9.54
 
YOLOv2 is tested on the Darknet framework in the         
experiments and it needs to be translated to Caffe2         
framework for Track 2. The team implemente custom        
Caffe2 operators to support Darknet-specific     
operators and optimization techniques such as      
pipelining and 16-bit quantization. Additionally,     
various batch sizes for the network are tested to find          
the best batch size for the submission. 
 
Through the steps illustrated above, the estimated       
score for the YOLOv2 has increased about 9.54 times         

compared to the baseline and this result surpassed the         
other object detection networks on the Jetson TX2.  
 
4.4 Third Prize of Track 2 
 
The team’s members are from Tsinghua University,       
University of Science and Technology of China, and        
Nanjing University. The team evaluates several      
mainstream object detection neural models and picks       
the most efficient one. The selected model is then         
fine-tuned with sufficient dataset before being      
quantized into 16-bit float datatype in order to        
achieve better power-efficiency and time-efficiency     
in the exchange of minimal accuracy loss.  
 
The team explores popular object detection neural       
architectures such as YOLO, RCNN and their       
variants. Among these architectures, YOLO V3      
achieves the best balance between accuracy and       
computational cost. However, considering the     
difficulty of engineering implementation in a short       
amount of time, the team chooses faster RCNN as the          
base structure and then quantizes the parameters in        
order to shorten the inference time and reduce power         
consumption.  
 
Faster RCNN consists of 2 sub-networks--the feature       
extraction network and the detection network. While       
the latter doesn’t seem to have much space for         
altering, there’re many options for the former, such as         
VGG and MobileNet. The MobileNet family is       
known for their much lower computational cost for        
achieving equivalent accuracy compared with     
traditional feature extraction architectures. Although     
MobileNets are reported with good classification      
results, the mAP for object detection seems low. The         
team decides to choose VGG-16. 
 
The overview of the software optimization methods       
can be seen in the figure below. The team reshapes          
the images on the CPU in order to adjust the image           
shape to the input shape of the module and then          
conducts the inference on the GPU. After the        
inference, the images are reshaped again to obtain the         
coordinates of the bounding boxes. The team applies        
three different techniques to accelerate the image       
recognition process: TensorRT-based inference,    
16-bit Quantization, and CPU multithreading. 
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The implements the well-trained ​Fast-RCNN model      
used for image recognition on TensorRT. NVIDIA       
TensorRT (​https://developer.nvidia.com/tensorrt​) is a    
high-performance deep learning inference optimizer     
and runtime that delivers low latency and       
high-throughput for deep learning inference     
applications. The inference time becomes much      
shorter by using TensorRT and therefore saves       
energy. TensorRT provides quantization operation for      
the GPU inference engine. The computation latency       
is shortened because of less floating point arithmetic.        
In order not to reduce the mAP of the model, the           
team quantizes the weight to 16-bit while doing        
inference.  
 
The method reshapes the images before and after the         
inference process. Since reshaping on the CPU is        
costly, the method uses CPU multithreading to       
accelerate the process. The method generates two       
threads on each CPU core and each thread process         
one batch of data. TX 2 has 6 CPU cores and the            
method creates 12 threads. The inference on the GPU         
can only work in a single thread; thus the method          
takes the inference as a mutual process and different         
threads need to compete for the GPU. 
 
Applying multithreading method results in a 1.4x       
speeding up (the fps without multithreading is 3.17        
while the fps with multithreading is 4.41), not as high          
as expected. The reason is competition for the        
mutual recourse among the threads and constrains       
acceleration. Different threads need to wait for the        
inference process when it’s occupied and need to use         
mutual lock to avoid the hazard. 
 
4.5 First and Second Prizes of Track 3 
 
The ETRI and KPST team wins both the first and the           
second prizes of Track 3. The performance of object         
detection can be evaluated using accuracy, speed and        
memory. The accuracy is a common measurement       

and it has been widely used in comparing different         
object detection architectures. However, its     
performance is dependent upon speed and memory as        
well as accuracy for the given environments and        
applications. In this competition, the performance is       
measured using accuracy (mAP) and energy      
consumption (WH). The accuracy is influenced by       
the detection architectures, an input resolution and a        
base network for feature extraction. The more       
complex structures with a high-resolution image may       
achieve higher accuracy at higher energy      
consumption. To obtain a high score, it is necessary         
to balance accuracy and energy consumption.  
 
The team examines the score function and finds the         
most important factor is energy consumption. At the        
same accuracy, the score is higher at lower energy         
consumption. Moreover, the accuracy is weighted by       
the processed images ratio within 10 minutes. This        
means that the detection architecture should be fast        
and light and the trade-off between accuracy and        
energy consumption. Accordingly, single stage     
detectors such as SSD ​(Liu et al. 2016) and YOLO          
(Redmon and Farhadi 2017) are considered in the        
pipeline. The team selects SSD as a detection        
framework due to its simplicity and stable accuracy        
among feature extractors ​(Huang et al. 2017)​. To        
obtain the best score, the team performs three        
optimization steps: 1) Detection structure     
optimization, 2) Feature extraction optimization, and      
3) System and parameters optimization. 
 
For detection structure optimization, in the detection       
structure, the original SSD is based on VGG and its          
performance is well balanced in accuracy and speed.        
Its speed and memory can be improved for        
low-power and real-time environments. To speed up,       
the team proposes efficient SSD (eSSD) by adding        
additional feature extraction layers and prediction      
layers in SSD. The following table shows the        
comparison of SSD ​(Liu et al. 2016)​, SSDLite        
(Sandler et al. 2018) and eSSD. In SSD, additional         
feature extraction is computed by 1x1 conv and 3x3         
conv with stride 2 and prediction uses 3x3 conv. The          
SSDLite replaces all 3x3 conv with depthwise conv        
and 1x1 conv. The eSSD extracts additional features        
with depthwise conv and 1x1 conv and predicts        
classification and bounding box of an object with 1x1         
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conv. This reduces memory and computational      
resources.  
 

Type Additional 
 feature extraction 

Prediction 

SSD 1x1 conv / 3x3 conv-s2 3x3 conv 

SSDLite 
1x1 conv / 3x3 conv(dw)-s2 
/ 1x1 conv 

3x3 conv(dw) / 
1x1 conv 

eSSD 3x3 conv(dw)-s2 / 1x1 conv 1x1 conv 
The comparison of feature extraction and prediction       
in SSD, SSDLite and eSSD. 
 
The next table shows accuracy, speed and memory        
comparison of SSD variants in VOC0712 database.       
In this experiment, a simple prediction layer such as 3          
by 3 or 1 by 1 is applied and an inference time            
(forward time) is measured in a single Titan XP         
(Pascal) GPU. SSDLite is more efficient in memory        
usage than eSSD, but eSSD shows better       
performance in speed than SSDLite. 
 

Base 
Network 
(300x300) 

Feature extraction 
/ Prediction mAP 

Speed 
(ms) 

Model 
(MB) 

MobileNetV1 SSD /  3x3 68.6 8.05 34.8
MobileNetV1 SSD / 1x1 67.8 6.19 23.1
MobileNetV1 SSDLite /1x1 67.8 5.91 16.8
MobileNetV1 eSSD / 1x1 67.9 5.61 17.4
MobileNetV1 

(​C​=0.75) 
eSSD / 1x1 65.8 5.20 11.1

MobileNetV1 
(​C​=0.75) 

eSSD(L=5) /1x1 65.8 4.62 10.9

VGG SSD / 3x3 77.7 12.43 105.2
The accuracy (mAP), speed (ms) and memory (MB)        
for different feature extraction and prediction      
architectures in VOC 0712 train and VOC 2007 test         
dataset. 
 
For feature extraction optimization, the base model of        
feature extractor, MobilNetV1 ​(Howard et al. 2017)       
is used and feature extraction layers of MobileNetV1        
is optimized in eSSD. To improve memory usage and         
computational complexity, the team uses 75% weight       
filter channels (​C​=0.75). Although this drops      
accuracy, energy consumption is greatly reduced. The       
team uses five additional layers and modified anchors        
for a low resolution image. It generates a small         
number of candidate boxes and improves detection       

speed. After detection structures are optimized, the       
team also modifies MobileNetV1 by applying early       
down-sampling and weight filter channel reduction in       
earlier layers and trained the base model       
(MobileNetV1+) from the scratch. All models are       
trained with ImageNet database and Caffe      
framework. In training, batch normalization is used       
and trained weights are merged into final model as         
introduced in ​(Fu et al. 2017)​. 
 
For system and parameters optimization, after      
training the models, the system is set up and the          
trained models are ported into NVIDIA TX2. In        
object detection, multiple duplicate results are      
obtained and Non-Maximal Suppression (NMS) with      
thresholding is important. The team tunes NMS       
process between CPU and GPU to reduce       
computational complexity and adjust the NMS      
threshold to decrease result file size for the network         
bandwidth. Then batch size modification and queuing       
are applied to maximize speed in detection and to         
increase the efficiency of network bandwidth. After       
tuning the speed, to minimize energy consumption,       
the team uses the low power mode (max-Q mode) in          
NVIDIA Jetson TX2. The table shows final model        
specifications in LPIRC 2018 Track 3. 
 

Models Accuracy 
(mAP) 

Time 
(sec) 

Energy 
(WH) 

Score 

eSSD- 
MobileNetV1+ 
(​C​=0.75, ​I​=160, 

th​=0.05, ​batch​= 96) 

18.318 300 0.4119 0.4446 
(1st)

eSSD- 
MobileNetV1+ 
(​C​=0.75, 192, 

th​=0.05, ​batch​=64) 

21.192 350 0.5338 0.3970 
(2nd) 

Proposed (eSSD-MobileNetV1+) Model   
specifications for LPIRC 2018 Track 3. ​C​, ​I​, ​th and          
batch represent channel reduction, input resolution,      
NMS threshold and batch size, respectively​. 
 
4.6 Second Prize of Track 3 
 
The Seoul National University team shares the       
second prize of Track 3 because the scores are very          
close. The team chooses TX2 board as the hardware         
platform because of the GPU-based deep learning       
application. The object detection network is an       
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improve ​YOLOv2 network. ​The C-GOOD framework      
(Kang et al. 2018) ​is used. Derived from Darknet,         
this framework helps explore a design space of deep         
learning algorithms and software optimization     
options. The team reduces the energy consumption by        
managing the operating frequencies of the processing       
elements. The team discovers the optimal      
combination of CPU and GPU frequencies.  
 
5. Industry Support for Low-Power Computer      
Vision 
 
5.1 Google Tensorflow Models 
 
Google provided technical support to Track 1 in two         
aspects. First, Google open-sources TfLite, an      
mobile-centric inference engine for Tensorflow     
models. TfLite encapsulates optimal implementations     
of standard operations such as convolutions and       
depthwise-convolutions that shields the contestants     
from such concerns. This effectively allows people       
with no background in mobile optimization to       
participate in the competition. Second, Google      
provides the mobile benchmarking system and it       
allows repeatable measurement of the performance      
metric. The system comes in two flavors: a        
stand-alone App that the contestants can run on their         
local phones, and a cloud-based service where the        
submissions will be automatically dispatched to a       
Pixel 2 XL phone and benchmarked using the        
standardized environment. The App (opensourced at      
https://github.com/tensorflow/tensorflow/tree/master/
tensorflow/contrib/lite/java/ovic#measure-on-device-l
atency​) and a validation tool     
(​https://github.com/tensorflow/tensorflow/tree/master
/tensorflow/contrib/lite/java/ovic#run-tests​) are  
provided to facilitate rapid development, exploring      
novel models and catching runtime bugs.  
. 
Once the model is sufficiently polished, it is        
submitted to the cloud service, which as a daily         
submission cap, for refinements and verification.  
 
5.2 Facebook AI Performance Evaluation     
Platform 
 
Machine learning is a rapidly evolving area with        
many moving parts: new and existing framework       

enhancements, new hardware solutions, new software      
backends, and new models. With so many moving        
parts, it is very difficult to quickly evaluate the         
performance of a machine learning model. However,       
such evaluation is vastly important in guiding       
resource allocation in: 

● The development of the frameworks 
● The optimization of the software backends 
● The selection of the hardware solutions 
● The iteration of the machine learning models 

 
Because of this need, Facebook has developed an AI         
performance evaluation platform (FAI-PEP, open     
sourced at ​https://github.com/facebook/FAI-PEP​) to    
provide a unified and standardized AI benchmarking       
methodology. 
 
FAI-PEP supports Caffe2 and TFLite frameworks,      
the iOS, Android, linux, and windows operating       
systems. The FAI-PEP is modularly composed that       
new frameworks and backends can be added easily.        
The built-in metrics collected by FAI-PEP are:       
latency, accuracy, power, and energy. It also supports        
reporting arbitrary metrics that the user desires to        
collect. With FAI-PEP, the benchmark runtime      
condition can be specified precisely, and the ML        
workload can be benchmarked repeatedly with low       
variance. 
 
6. Future Low-Power Computer Vision 
 
In 2018 CVPR, LPIRC invites three speakers from        
Google and Facebook sharing their experience      
building energy-efficient computer vision. More than      
100 people attend the workshop. The panel after the         
speeches answers many attendees’ questions. The      
high participation suggests that there is strong       
interest, in both academia and industry, to create        
datasets and common platforms (both hardware and       
software) for benchmarking different solutions.     
Readers interested in contributing to future      
low-power computer vision are encouraged to contact       
the LPIRC organizers for further discussion. 
 
7. Conclusion 
 
This paper explains the three tracks of the 2018         
Low-Power Image Recognition Challenge. The     
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winners describe the key improvements in their       
solutions. As computer vision is widely used in many         
battery-powered systems (such as drones and mobile       
phones), the need for low-power computer vision will        
become increasingly important. The initial success of       
the novel tracks in 2018 also showcases the        
advantages of making focused advances on specific       
components of the vision system, as well as of         
lowering the bar-of-entry to be inclusive of the        
general vision and machine learning communities.  
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