
2018 Low-Power Image Recognition Challenge

Sergei Alyamkin, Matthew Ardi, Achille Brighton, Alexander C. Berg, Yiran Chen, Hsin-Pai Cheng,
Bo Chen, Zichen Fan, Chen Feng, Bo Fu, Kent Gauen, Jongkook Go, Alexander Goncharenko, Xuyang Guo,

Hong Hanh Nguyen, Andrew Howard, Yuanjun Huang, Donghyun Kang, Jaeyoun Kim, Alexander Kondratyev,
Seungjae Lee, Suwoong Lee, Junhyeok Lee, Zhiyu Liang, Xin Liu, Juzheng Liu, Zichao Li, Yang Lu,
Yung-Hsiang Lu, Deeptanshu Malik, Eunbyung Park, Denis Repin, Tao Sheng, Liang Shen, Fei Sun,

David Svitov, George K. Thiruvathukal, Baiwu Zhang, Jingchi Zhang, Xiaopeng Zhang, Shaojie Zhuo

Abstract

The Low-Power Image Recognition Challenge
(LPIRC, ​https://rebootingcomputing.ieee.org/lpirc​) is
an annual competition started in 2015. The
competition identifies the best technologies that can
classify and detect objects in images efficiently (short
execution time and low energy consumption) and
accurately (high precision). Over the four years, the
winners’ scores have improved more than 24 times.
As computer vision is widely used in many
battery-powered systems (such as drones and mobile
phones), the need for low-power computer vision will
become increasingly important. This paper
summarizes LPIRC 2018 by describing the three
different tracks and the winners’ solutions.

1. Introduction

Competitions are an effective way of promoting
innovation and system integration. “Grand
Challenges” can push the boundaries of technologies
and open new directions for research and
development. The DARPA Grand Challenge in 2004
opened the era of autonomous vehicles. Since 2010,
the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) has become a de facto standard
benchmark in computer vision. The Low-Power
Image Recognition Challenge (LPIRC) started in
2015 as an annual competition identifying the best
system-level solution for detecting objects in images
while using as little energy as possible ​(Lu et al.
2015)​. Although many competitions are held every
year, LPIRC is the only one integrating both image
recognition and low power. In LPIRC, a contestants’
system is connected to the referee system through an
intranet (wired or wireless). ​There is no restriction on
software or hardware. ​The contestant’s system issues

HTTP GET commands to retrieve images from the
referee system and issues HTTP POST commands to
send the answers. In the past four years, LPIRC has
experimented with different tracks with different
rules and restrictions. In 2015, offloading of
processing was allowed but only one team
participated. In 2016, a track displayed images on a
computer screen and a constantant’s system used a
camera to capture the images but only one team
participated in this track. These two tracks are no
longer offered.

2. Tracks in 2018 LPIRC

Vision systems typically consist of three components:
model architecture (such as a neural network),
inference engine (such as a series of kernels that
evaluates neural network operations efficiently on a
specific hardware), and the carrying hardware
LPIRC tracks prior to 2018 required system-level
improvements that did not distinguish between
progress in individual components. In 2018, two new
tracks were offered that strategically focused on
model architecture and the inference engine.

2.1 Track 1: TfLite Model on Mobile Phones

This new track, also known as the On-device Visual
Intelligence Competition, focused on model
architecture: contestants submit their inference neural
network model in TfLite format using Tensorflow
(​https://www.tensorflow.org/mobile/tflite/​). The
models were benchmarked on a fixed inference
engine (TfLite) and hardware model (Pixel 2 XL
phone). The task is ImageNet classification. The
submissions should strive to classify correctly as
many images as possible given a time budget of 30
ms per image. The submissions were evaluated on a

1

https://rebootingcomputing.ieee.org/lpirc
https://paperpile.com/c/QRR2oE/VDcG
https://paperpile.com/c/QRR2oE/VDcG
https://www.tensorflow.org/mobile/tflite/

single core with a batch-size of one to mimic realistic
use cases on mobile devices. Although the scoring
metric is based on inference latency rather than
energy consumption, the two are usually correlated
when the same benchmarks are used on the same
hardware.

Track 1’s latency-based metric is critical to
accelerating the development of mobile model
architectures. Prior to this metric, there was no
common, relevant and verifiable metric to evaluate
the inference speed of mobile model architectures.
Numerous papers characterize inference efficiency
using unspecified benchmarking environments or
latency on desktop as a proxy. Even the most
commonly used metric, MACs (multiply-add count)
do not correlate well with inference latency in the
real-time (under 30 ms) range (Chen and Gilbert
2018).

Track 1’s metric is the first to measures on-device

latency in a realistic use case in the real-time range.
In addition, this track provides a benchmarking
platform (see Section 5.1) that allows for repeatable
measurements and fair comparison of mobile model
architectures. The flexibility of submitting just the
model and not the full system allows this track to be
an online competition. This convenience helps to
boost the submission count to 130 models within just
2 weeks.

The submissions also witness excellent quality,
establishing the new state-of-the-art in mobile model
architecture design. Within the 30 ms latency range,
the best of track 1 submissions outperformed the
previous state-of-the-art based on quantized
MobileNet V1, by 3.1% on the hold-out test set.

The submissions have demonstrated a considerable
amount of diversity. Slightly over half (51.7%) of the
solutions are quantized. Most of the architectures
(74.1%) are variations of the existing Mobilenet
model family, namely quantized V2 (22.4%),
quantized V1 (24.1%) and float V2 (27.6%). The
predominant dependence on Mobilenets is not
surprising, considering their exceptional performance
on-device and the convenient support by TfLite. On
the other hand, to sustain long-term mobile vision
research, track 1 should also serve to reward
previously under- or un-explored model architectures.
In future installments of LPIRC, track 1 is looking to
implement mechanisms for facilitating the discovery
of novel architectures and rendering the platform
more inclusive to general vision researchers.

2.2 Track 2: Caffe 2 and TX 2

LPIRC aims to discover the most energy-efficient
solutions for detecting objects in images. For this
reason, LPIRC is a system-level competition and
contestants must port their solutions to functional
systems. To reduce the barrier to entry, Track 2 uses
pre-selected software (Caffe 2) and hardware (Nvidia
TX2). A software development kit (SDK) is provided
for installing the necessary packages. There are two
main requirements for Track 2:

1. Participants use Caffe2 (​http://caffe2.ai/​) to
build their image detection systems. For
example, the official code of Faster R-CNN
is written by Caffe, participants need to
convert it to Caffe2.

2

http://caffe2.ai/

2. Participants use Nvidia TX2
(​http://developer.nvidia.com/embedded/buy/
jetson-tx2​) as the hardware platforms.

With these conditions, the solutions for Track 2 can
be submitted online and evaluated in the organizers’
laboratory. The score of track 2 is the ratio between
recognition accuracy (mean average precision, mAP)
and the total amount of energy consumption
(Watt-hour). The energy consumption is measured
using a power meter of the power supply to TX2.

Each team has 10 minutes to process all the images.
There are total 200 classes of objects in the
competition. These classes are the same as
ImageNet’s. Contestant’s training set is not restricted
to ImageNet. They can use any datasets to train the
model.

Test images are stored in the referee system and
retrieved by TX2 through the router. The results are
uploaded to the referee system through the network.
After the contestant’s system logs in, the power meter
starts to measuring the power consumption. The
power meter stops after 10 minutes or a contestant’s
system logs out. This allows a team that finishes
processing all images within 10 minutes to reduce
their overall energy consumption.

2.3 Track 3: Onsite, No Restriction

The original track, always offered since 2015, was
also available in 2018. This track has no restriction in
hardware or software and gives contestants the most
flexibility. Additional information about Track 3 can

be obtained from prior publications ​(Gauen et al.
2017)​, ​(Gauen et al. 2018)​, ​(Lu, Berg, and Chen
2018)​.

2.4 Training Data

LPIRC uses the same training images as ImageNet
Large Scale Visual Recognition Challenge
(ILSVRC). For Track 1, the data from localization
and classification task (LOC-CLS) is used. It consists
of around 1.2 million photographs, collected from
flickr and other search engines, hand-labeled with the
presence or absence of 1000 object categories.
Bounding boxes for the objects are available,
although Track 1 only considers classification
accuracy as a performance metric. For track 2 and 3,
the data from object detection is used. It has around
550,000 images and bounding boxes of labels for all
200 categories.

2.5 Testing Data

For Track 1, the test data is newly created by using
the ILSVRC image crawling tool to collect 100
images for each category from Flickr. When crawling
the images, synonyms (e.g. "house finch, linnet,
Carpodacus mexicanus") are used in the searching to
ensure that the images are relevant to the
corresponding categories. ​The competition uses only
the images uploaded after June 2017 to avoid
duplications with the test images used in the previous
years’ LPIRC​. Thumbnail images are used to remove
duplicates by resizing the images to 30 x 30, and
calculating the L2-norm of differences with images in
the previous dataset. Ten representative images are
manually chosen from each category. Representative
images refer to the images that can be identified as
one of the 1000 ImageNet classification categories
without ambiguity. The following photos show
examples.

 Accordion Appenzeller Artichoke

3

http://developer.nvidia.com/embedded/buy/jetson-tx2
http://developer.nvidia.com/embedded/buy/jetson-tx2
https://paperpile.com/c/QRR2oE/SsQj
https://paperpile.com/c/QRR2oE/SsQj
https://paperpile.com/c/QRR2oE/wdHq
https://paperpile.com/c/QRR2oE/UnJq
https://paperpile.com/c/QRR2oE/UnJq

 ​Bagel Barometer Steam Locomotive

Tracks 2 and 3 also use the ILSVRC tool to crawl
images from Flickr with the context query phrases
(e.g., cat in the kitchen) instead of the label names
(e.g., cat) as the keywords. As a result, the tool can
obtain images with various types of objects. The
annotations (bounding boxes) are created by using
Amazon Mechanical Turk (MTurk) jobs. The tracks
use 20,000 test images.

2.6 Other Datasets for Image Recognition

ImageNet (provided by ILSVRC) is one of many
popular datasets for evaluating computer vision.
Other commonly used datasets include PASCAL
VOC, COCO (Common Objects in COntext), SUN
(Scene UNderstanding), INRIA Pedestrian Dataset,
KITTI Vision Benchmark Suite, and Caltech
Pedestrian Dataset. Over time the image datasets
have improved in two primary ways. First, the quality
of the image annotations has significantly improved
due to more sophisticated methods for
crowdsourcing. Second, the variety of the dataset has
increased, in both content and annotations, by
increasing the number of classes. The figure below
shows PASCAL VOC (left) and ImageNet (right).
Datasets and their corresponding competitions have
yielded great improvements in computer vision
technology.

PASCAL VOC started its first challenge in 2005 for
object detection and classification of four classes. In
2012, the final year of the competition, the PASCAL
VOC training and validation datasets consisted of

27,450 detection objects in 11,530 images with 20
classes. From 2009 - 2005 the overall classification
AP improved from 0.65 - 0.82 and detection AP
improved from 0.28 - 0.41 (Everingham et al. 2015).

The COCO competition continues to be held annually
with a primary focus of correctness of solutions.
COCO contains over 2.5 million labeled instances in
over 382,000 images with 80 common objects for
instance segmentation. COCO also contains other
types of annotations including Keypoints, Panoptic,
and Stuff (Lin et al. 2014) (Caesar et al. 2018). The
performance of a model on COCO has improved for
bounding-box object detection has improved from
0.373 to 0.525 from 2015 - 2017.

The significant improvements of model accuracy
demonstrated by just two of these image processing
competitions is a similar goal of LPIRC. In addition
to accuracy, LPIRC also considers energy
consumption and execution time.

3. LPIRC Scores

3.1 Object Detection and Mean Average Precision

To win Tracks 2 and 3 of LPIRC, a contestant's
solution must be able to detect objects in images and
mark the objects by bounding boxes. The objects
belong to 200 pre-defined categories, such as person,
car, airplanes, etc. The image shows an example
containing two people, two cars, one motorcycle, and
one helmet. The accuracy is measured by Mean
Average Precision (mAP). A successful object
detection must identify the category correctly and the
bounding box must overlap with the correct solution
(also called “ground truth”) by at least 50%. This is
the same definition as ILSVRC. Unlike ILSVRC,
however, LPIRC has time limitation: each solution
has only 10 minutes to process all images (5,000 in

4

year 2015 and 20,000 since 2016). A superior
solution must be able to detect objects and their
locations in the images quickly, while consuming as
little energy as possible.

3.2 Energy Consumption

A system’s energy consumption is measured using a
high-speed power meter, Yokogawa WT310 Digital
Power Meter. It can measure AC or DC and can
synchronize with the referee system for the
10-minute time limit.

3.3 Score = mAP / Energy

Year Accuracy Energy Score Ratio
2015 0.02971 1.634 0.0182 1.0
2016 0.03469 0.789 0.0440 2.4
2017 0.24838 2.082 0.1193 6.6

2018-2 0.38981 1.540 0.2531 13.9
 2018-3 0.18318 0.412 0.4446 24.4

The score of each solution is the ratio of mAP and the
energy consumption. The accuracy is measured by
the mean average precision; the energy is measured
by Watt-hour. The last column shows the progress of
the winners’ solutions. From 2015 to 2018, the
winners’ solutions improved by a factor of 24. The
row of 2018-2 is the track using Nvidia TX2 and
Caffe2. 2018-3 has no restriction of hardware or
software.

3.4 Track 1 Scores

Track 1 is held for the first time in 2018. The table
shows the score of the winner of Track 1. The
holdout set is freshly collected for the purpose of the
competition.

ImageNet
Validation Set

Holdout Set

Latency 28.0 27.0
Test Metric 0.64705 0.72673
Accuracy on Classified 0.64705 0.72673
Accuracy / Time 1.08 E-06 2.22 E-06
Classified 20000 10927

Latency: ​Latency (ms) is single-threaded,
non-batched runtime measured on a single Pixel 2 big
core of classifying one image.
Test metric (main metric): is the total number of
images corrected in a wall time of 30 ms ✕ N
divided by N, where N is the total number of test
images.
Accuracy on Classified: ​is the accuracy in [0, 1]
computed based only on the images classified within
the wall-time.
Classified: is the number of images classified
within the wall-time.
Accuracy/Time: is the ratio of the accuracy and
either the total inference time or the wall-time,
whichever is longer.

Track 1 received 128 submissions. The figure below
represents a total of 121 valid submissions
(submissions that passed the bazel test and
successfully evaluated). 56 submissions received test
metric scores between 0.59 and 0.65.

Mean: ​0.4610 Median: ​0.5654
Mode: ​0.6347 Standard Deviation: ​0.2119

Some duplicate submissions that are successfully
evaluated have differences with the “Test Metrics”
score due to changes in the evaluation server. These
changes are made throughout the progress of the
competition. Files that have the same md5 hash
information are considered identical/duplicates.
Duplicates may be caused by repeating submission
done by the participants or re-submission by the same
team using different accounts. Files with identical
md5 hash information are grouped and only one file
with the best “test metric” score is considered to be
the unique file among the identical files. If the “test
metric” values of all duplicates are equal, only one of

5

the submissions is considered to be unique. After
eliminating duplicates, there are 97 unique
submissions.

3.5 Tracks 2 and 3 Scores

The table shows the top teams in track 2. The winner
achieved very high accuracy and finished recognizing
all 20,000 images in 5 min. The 2018 winner’s final
score is twice as high as the 2017 best score.

Team mAP Energy Score

winner 0.3898 1.3667 0.2852
second 0.1646 2.6697 0.0616
third 0.0315 1.2348 0.0255

The table shows the scores for the winners. Two
teams’ scores are too very close and both teams win
the second prize. Also, the top three scores
outperform the 2017 winner. Two teams’ energy
consumption is much lower than previous years’
winners’.

Team mAP Energy Score
winner 0.1832 0.4120 0.44462
second 0.2119 0.5338 0.39701
second 0.3753 0.9463 0.39664
third 0.2235 1.5355 0.14556

4. Winners’ Solutions

4.1 First Prize of Track 1

The Qualcomm team wins the first prize of Track 1.
The competition is driven by the real-world need for
accurate real-time image classification using neural
network models running on edge devices. Qualcomm
provides edge AI platforms with Snapdragon
(including the Google Pixel 2 phone used in this
competition) so that Smartphone could become real
intelligent devices in the near future.

Accurate and fast image recognition on the edge
device requires several steps. First, a neural network
model needs to be built and trained to identify and
classify images (recognizing when a photo is of a dog
vs. a cat for example). Then, the model should run as

accurate as possible on the actual hardware without
latency issues. As most neural networks are trained
on a floating-point model, they usually need to be
converted to fixed-point in order to efficiently run on
edge devices.

For this competition, the model is based on
MobileNet V2, but is modified to be
quantization-friendly. Although Google's MobileNet
models successfully reduce parameter size and
computation latency due to the use of separable
convolution, directly quantizing a pre-trained
MobileNet v2 model can cause huge precision loss.
The team analyzes and identifies the root cause of
accuracy loss due to quantization in such separable
convolution networks, and solved it properly without
utilizing quantization-aware re-training.
In separable convolutions, depthwise convolution is
applied on each channel independently. However, the
min and max values used for weights quantization are
taken collectively from all channels. An outlier in one
channel may cause a huge quantization loss for the
whole model due to an enlarged data range. Without
correlation crossing channels, depthwise convolution
may be prone to produce all-zero values of weights in
one channel. This is commonly observed in both
MobileNet v1 and v2 models. All-zero values in one
channel means small variance. A large “scale” value
for that specific channel would be expected while
applying batch normalization transform directly after
depthwise convolution. This hurts the representation
power of the whole model.

As a solution, the team proposes an effective
quantization-friendly separable convolution
architecture, where the nonlinear operations (both
batch normalization and ReLU6) between depthwise
and pointwise convolution layers are all removed,
letting the network learn proper weights to handle the
batch normalization transform directly. In addition,
ReLU6 is replaced with ReLU in all pointwise
convolution layers. From various experiments in
MobileNet v1 and v2 models, this architecture shows
a significant accuracy boost in the 8-bit quantized
pipeline.

Fixed-point inferencing while preserving a high level
of accuracy is the key to enable deep learning use

6

cases on low power edge devices. The team identifies
the industry-wide quantization issue, analyzes the
root cause, and solves it on MobielNets efficiently.
The quantized modified MobileNet_v2_1.0_128
model can achieve 28 milliseconds per inference with
high accuracy (64.7% on ImageNet validation
dataset) on a single ARM CPU of Pixel 2. More
details are described in the paper
“Quantization-friendly separable convolution
architecture for MobileNets”
(​https://arxiv.org/abs/1803.08607​).

4.2 Third Prize of Track 1

The Expasoft team wins the third prize of Track 1.
The team builds a neural network architecture that
gives the high accuracy and inference time equal to
30 ms on Google Pixel 2. The team chooses two most
promising architectures MobileNet and
MobileNet-v2.

Running MobileNet-v1_224 with float-32 on Pixel-2
phone gives 70% accuracy and inference time of 81.5
ms. The team chooses two main directions to
accelerate neural network on device: neural network
quantization and reducing input image resolution.
Both methods lead to accuracy reduction and the
team finds trade-off for accuracy – speed relation.
Tests of MobileNet and MobileNet-v2 architectures
suggest quantizing the neural networks into uint8
data format. The team’s evaluation shows final score
equal to 68.8% accuracy and 29ms inference time.

Neural
network

architecture

Input
image

resolution

Data
type

Accurac
y (%)

Google
Pixel-2

inference
time
(ms)

Accurac
y/inferen
ce time
(%/ms)

mobilenet v1 224x224 float32 70.2 81.5 0.86
mobilenet v1 224x224 uint8 65.5 68.0 0.96
mobilenet v1 128x128 uint8 64.1 28.0 2.28
mobilenet v2 150x150 uint8 64.4 36.6 1.75
mobilenet v2 132x132 uint8 62.7 31.8 1.97
mobilenet v2 130x130 uint8 59.9 31.2 1.91

Quantization to uint8 allows to reduce inference size
from 81ms to 68ms but leads to significant accuracy
drops. During standard quantization process in

Tensorflow it is required to start from full-precision
trained model and learn quantization parameters (min
and max values). Instead of joint training of neural
network and tuning quantization parameters, the
Expasoft team proposes an another approach: tuning
quantization parameters using Stochastic Gradient
Descent approach with State Through Estimator
(Bengio et al. 2013) of gradients of discrete
functions (round, clip) without updating weights of
the neural networks. Loss function for this process is
L2 for embedding layers of full-precision and
quantized networks. Mobilenet-v1 224x224
quantized such way shows 65.3% accuracy. Proposed
method requires more detailed research but have two
significant advantages:

1. method doesn’t require labeled data for
tuning quantization parameters

2. training goes faster, because no need to train
neural network, tune only quantization
parameters

4.3 First Prize of Track 2

The Seoul National University team wins the first
prize in Track 2. The hardware device is Jetson TX2.
Optimization is needed to balance speed and
accuracy for existing deep learning algorithms
originally designed for fast servers. The team
discovers that optimization efficiency differs from
network to network. For this reason, the team
compares various object detection networks on the
Jetson TX2 board to find the best solution.

The team compares five modern one-stage object
detectors: YOLOv2, YOLOv3, TinyYOLO, SSD,
and RetinaNet. Two-stage detectors such as Faster
R-CNN are excluded because they are slightly better
in accuracy than the one-stage detectors but much
slower in speed. The baseline for each network is
selected as the authors’ published form. For the
comparison, the networks are improved with several
software techniques briefly introduced as follows.
(1) ​Pipelining: ​An object detection network can be
split into three stages: input image pre-processing, a
convolutional network body, and post-processing
with output results of the body. Since the network
body is typically run on the GPU and the others are
on the CPU, they can be executed concurrently by the

7

https://arxiv.org/abs/1803.08607

well-known pipelining technique. (2) ​Tucker
decomposition: ​It is one of the ​low-rank
approximation techniques. As described in ​(Tucker
1966)​, 2-D Tucker decomposition is used in the
network comparison. (3) ​Quantization: ​For the Jetson
TX2 device, only 16-bit quantization is allowed and
it is applied to the networks. (4) ​Merging batch
normalization layer into weights: ​Since the batch
normalization layer is a linear transformation, it can
be integrated into the previous convolutional layer by
adjusting the filter weights before running the
inference. (5) ​Input image size reduction: ​Reducing
input image size is an easy solution to enhance the
network throughput. It was also observed in
experiments that the effect of this technique depends
on the networks.

By comparing the networks, the team finds that
YOLOv2 outperforms other networks for the
on-device object detection with the Jetson TX2. The
table shows how much the YOLOv2 network is
enhanced by the series of the improvements. Since
the total energy consumption is inversely
proportional to the network speed, the score
(mAP/Wh) can be estimated as mAP x speed. This
optimized ​YOLOv2 network is selected for the
LPIRC Track 2 application.

Description mAP(A) FPS(B) Score

(A x B)
Normalized
score

Baseline
(416x416)

51.1 7.97 407 1.0

Pipelining 51.1 8.85 452 1.11
Tucker 50.2 15.1 758 1.86
Quantization 50.2 19.9 999 2.45
256 x 256 43.0 32.5 1640 4.03
Batch = 16 43.0 90.3 3880 9.54

YOLOv2 is tested on the Darknet framework in the
experiments and it needs to be translated to Caffe2
framework for Track 2. The team implemente custom
Caffe2 operators to support Darknet-specific
operators and optimization techniques such as
pipelining and 16-bit quantization. Additionally,
various batch sizes for the network are tested to find
the best batch size for the submission.

Through the steps illustrated above, the estimated
score for the YOLOv2 has increased about 9.54 times

compared to the baseline and this result surpassed the
other object detection networks on the Jetson TX2.

4.4 Third Prize of Track 2

The team’s members are from Tsinghua University,
University of Science and Technology of China, and
Nanjing University. The team evaluates several
mainstream object detection neural models and picks
the most efficient one. The selected model is then
fine-tuned with sufficient dataset before being
quantized into 16-bit float datatype in order to
achieve better power-efficiency and time-efficiency
in the exchange of minimal accuracy loss.

The team explores popular object detection neural
architectures such as YOLO, RCNN and their
variants. Among these architectures, YOLO V3
achieves the best balance between accuracy and
computational cost. However, considering the
difficulty of engineering implementation in a short
amount of time, the team chooses faster RCNN as the
base structure and then quantizes the parameters in
order to shorten the inference time and reduce power
consumption.

Faster RCNN consists of 2 sub-networks--the feature
extraction network and the detection network. While
the latter doesn’t seem to have much space for
altering, there’re many options for the former, such as
VGG and MobileNet. The MobileNet family is
known for their much lower computational cost for
achieving equivalent accuracy compared with
traditional feature extraction architectures. Although
MobileNets are reported with good classification
results, the mAP for object detection seems low. The
team decides to choose VGG-16.

The overview of the software optimization methods
can be seen in the figure below. The team reshapes
the images on the CPU in order to adjust the image
shape to the input shape of the module and then
conducts the inference on the GPU. After the
inference, the images are reshaped again to obtain the
coordinates of the bounding boxes. The team applies
three different techniques to accelerate the image
recognition process: TensorRT-based inference,
16-bit Quantization, and CPU multithreading.

8

https://paperpile.com/c/QRR2oE/Viex
https://paperpile.com/c/QRR2oE/Viex

The implements the well-trained ​Fast-RCNN model
used for image recognition on TensorRT. NVIDIA
TensorRT (​https://developer.nvidia.com/tensorrt​) is a
high-performance deep learning inference optimizer
and runtime that delivers low latency and
high-throughput for deep learning inference
applications. The inference time becomes much
shorter by using TensorRT and therefore saves
energy. TensorRT provides quantization operation for
the GPU inference engine. The computation latency
is shortened because of less floating point arithmetic.
In order not to reduce the mAP of the model, the
team quantizes the weight to 16-bit while doing
inference.

The method reshapes the images before and after the
inference process. Since reshaping on the CPU is
costly, the method uses CPU multithreading to
accelerate the process. The method generates two
threads on each CPU core and each thread process
one batch of data. TX 2 has 6 CPU cores and the
method creates 12 threads. The inference on the GPU
can only work in a single thread; thus the method
takes the inference as a mutual process and different
threads need to compete for the GPU.

Applying multithreading method results in a 1.4x
speeding up (the fps without multithreading is 3.17
while the fps with multithreading is 4.41), not as high
as expected. The reason is competition for the
mutual recourse among the threads and constrains
acceleration. Different threads need to wait for the
inference process when it’s occupied and need to use
mutual lock to avoid the hazard.

4.5 First and Second Prizes of Track 3

The ETRI and KPST team wins both the first and the
second prizes of Track 3. The performance of object
detection can be evaluated using accuracy, speed and
memory. The accuracy is a common measurement

and it has been widely used in comparing different
object detection architectures. However, its
performance is dependent upon speed and memory as
well as accuracy for the given environments and
applications. In this competition, the performance is
measured using accuracy (mAP) and energy
consumption (WH). The accuracy is influenced by
the detection architectures, an input resolution and a
base network for feature extraction. The more
complex structures with a high-resolution image may
achieve higher accuracy at higher energy
consumption. To obtain a high score, it is necessary
to balance accuracy and energy consumption.

The team examines the score function and finds the
most important factor is energy consumption. At the
same accuracy, the score is higher at lower energy
consumption. Moreover, the accuracy is weighted by
the processed images ratio within 10 minutes. This
means that the detection architecture should be fast
and light and the trade-off between accuracy and
energy consumption. Accordingly, single stage
detectors such as SSD ​(Liu et al. 2016) and YOLO
(Redmon and Farhadi 2017) are considered in the
pipeline. The team selects SSD as a detection
framework due to its simplicity and stable accuracy
among feature extractors ​(Huang et al. 2017)​. To
obtain the best score, the team performs three
optimization steps: 1) Detection structure
optimization, 2) Feature extraction optimization, and
3) System and parameters optimization.

For detection structure optimization, in the detection
structure, the original SSD is based on VGG and its
performance is well balanced in accuracy and speed.
Its speed and memory can be improved for
low-power and real-time environments. To speed up,
the team proposes efficient SSD (eSSD) by adding
additional feature extraction layers and prediction
layers in SSD. The following table shows the
comparison of SSD ​(Liu et al. 2016)​, SSDLite
(Sandler et al. 2018) and eSSD. In SSD, additional
feature extraction is computed by 1x1 conv and 3x3
conv with stride 2 and prediction uses 3x3 conv. The
SSDLite replaces all 3x3 conv with depthwise conv
and 1x1 conv. The eSSD extracts additional features
with depthwise conv and 1x1 conv and predicts
classification and bounding box of an object with 1x1

9

https://developer.nvidia.com/tensorrt
https://paperpile.com/c/QRR2oE/mqRt1
https://paperpile.com/c/QRR2oE/GNMWF
https://paperpile.com/c/QRR2oE/q2LQX
https://paperpile.com/c/QRR2oE/mqRt1
https://paperpile.com/c/QRR2oE/fNnP8

conv. This reduces memory and computational
resources.

Type Additional
 feature extraction

Prediction

SSD 1x1 conv / 3x3 conv-s2 3x3 conv

SSDLite
1x1 conv / 3x3 conv(dw)-s2
/ 1x1 conv

3x3 conv(dw) /
1x1 conv

eSSD 3x3 conv(dw)-s2 / 1x1 conv 1x1 conv
The comparison of feature extraction and prediction
in SSD, SSDLite and eSSD.

The next table shows accuracy, speed and memory
comparison of SSD variants in VOC0712 database.
In this experiment, a simple prediction layer such as 3
by 3 or 1 by 1 is applied and an inference time
(forward time) is measured in a single Titan XP
(Pascal) GPU. SSDLite is more efficient in memory
usage than eSSD, but eSSD shows better
performance in speed than SSDLite.

Base
Network
(300x300)

Feature extraction
/ Prediction mAP

Speed
(ms)

Model
(MB)

MobileNetV1 SSD / 3x3 68.6 8.05 34.8
MobileNetV1 SSD / 1x1 67.8 6.19 23.1
MobileNetV1 SSDLite /1x1 67.8 5.91 16.8
MobileNetV1 eSSD / 1x1 67.9 5.61 17.4
MobileNetV1

(​C​=0.75)
eSSD / 1x1 65.8 5.20 11.1

MobileNetV1
(​C​=0.75)

eSSD(L=5) /1x1 65.8 4.62 10.9

VGG SSD / 3x3 77.7 12.43 105.2
The accuracy (mAP), speed (ms) and memory (MB)
for different feature extraction and prediction
architectures in VOC 0712 train and VOC 2007 test
dataset.

For feature extraction optimization, the base model of
feature extractor, MobilNetV1 ​(Howard et al. 2017)
is used and feature extraction layers of MobileNetV1
is optimized in eSSD. To improve memory usage and
computational complexity, the team uses 75% weight
filter channels (​C​=0.75). Although this drops
accuracy, energy consumption is greatly reduced. The
team uses five additional layers and modified anchors
for a low resolution image. It generates a small
number of candidate boxes and improves detection

speed. After detection structures are optimized, the
team also modifies MobileNetV1 by applying early
down-sampling and weight filter channel reduction in
earlier layers and trained the base model
(MobileNetV1+) from the scratch. All models are
trained with ImageNet database and Caffe
framework. In training, batch normalization is used
and trained weights are merged into final model as
introduced in ​(Fu et al. 2017)​.

For system and parameters optimization, after
training the models, the system is set up and the
trained models are ported into NVIDIA TX2. In
object detection, multiple duplicate results are
obtained and Non-Maximal Suppression (NMS) with
thresholding is important. The team tunes NMS
process between CPU and GPU to reduce
computational complexity and adjust the NMS
threshold to decrease result file size for the network
bandwidth. Then batch size modification and queuing
are applied to maximize speed in detection and to
increase the efficiency of network bandwidth. After
tuning the speed, to minimize energy consumption,
the team uses the low power mode (max-Q mode) in
NVIDIA Jetson TX2. The table shows final model
specifications in LPIRC 2018 Track 3.

Models Accuracy
(mAP)

Time
(sec)

Energy
(WH)

Score

eSSD-
MobileNetV1+
(​C​=0.75, ​I​=160,

th​=0.05, ​batch​= 96)

18.318 300 0.4119 0.4446
(1st)

eSSD-
MobileNetV1+
(​C​=0.75, 192,

th​=0.05, ​batch​=64)

21.192 350 0.5338 0.3970
(2nd)

Proposed (eSSD-MobileNetV1+) Model
specifications for LPIRC 2018 Track 3. ​C​, ​I​, ​th and
batch represent channel reduction, input resolution,
NMS threshold and batch size, respectively​.

4.6 Second Prize of Track 3

The Seoul National University team shares the
second prize of Track 3 because the scores are very
close. The team chooses TX2 board as the hardware
platform because of the GPU-based deep learning
application. The object detection network is an

10

https://paperpile.com/c/QRR2oE/s7TNS
https://paperpile.com/c/QRR2oE/4i9u8

improve ​YOLOv2 network. ​The C-GOOD framework
(Kang et al. 2018) ​is used. Derived from Darknet,
this framework helps explore a design space of deep
learning algorithms and software optimization
options. The team reduces the energy consumption by
managing the operating frequencies of the processing
elements. The team discovers the optimal
combination of CPU and GPU frequencies.

5. Industry Support for Low-Power Computer
Vision

5.1 Google Tensorflow Models

Google provided technical support to Track 1 in two
aspects. First, Google open-sources TfLite, an
mobile-centric inference engine for Tensorflow
models. TfLite encapsulates optimal implementations
of standard operations such as convolutions and
depthwise-convolutions that shields the contestants
from such concerns. This effectively allows people
with no background in mobile optimization to
participate in the competition. Second, Google
provides the mobile benchmarking system and it
allows repeatable measurement of the performance
metric. The system comes in two flavors: a
stand-alone App that the contestants can run on their
local phones, and a cloud-based service where the
submissions will be automatically dispatched to a
Pixel 2 XL phone and benchmarked using the
standardized environment. The App (opensourced at
https://github.com/tensorflow/tensorflow/tree/master/
tensorflow/contrib/lite/java/ovic#measure-on-device-l
atency​) and a validation tool
(​https://github.com/tensorflow/tensorflow/tree/master
/tensorflow/contrib/lite/java/ovic#run-tests​) are
provided to facilitate rapid development, exploring
novel models and catching runtime bugs.
.
Once the model is sufficiently polished, it is
submitted to the cloud service, which as a daily
submission cap, for refinements and verification.

5.2 Facebook AI Performance Evaluation
Platform

Machine learning is a rapidly evolving area with
many moving parts: new and existing framework

enhancements, new hardware solutions, new software
backends, and new models. With so many moving
parts, it is very difficult to quickly evaluate the
performance of a machine learning model. However,
such evaluation is vastly important in guiding
resource allocation in:

● The development of the frameworks
● The optimization of the software backends
● The selection of the hardware solutions
● The iteration of the machine learning models

Because of this need, Facebook has developed an AI
performance evaluation platform (FAI-PEP, open
sourced at ​https://github.com/facebook/FAI-PEP​) to
provide a unified and standardized AI benchmarking
methodology.

FAI-PEP supports Caffe2 and TFLite frameworks,
the iOS, Android, linux, and windows operating
systems. The FAI-PEP is modularly composed that
new frameworks and backends can be added easily.
The built-in metrics collected by FAI-PEP are:
latency, accuracy, power, and energy. It also supports
reporting arbitrary metrics that the user desires to
collect. With FAI-PEP, the benchmark runtime
condition can be specified precisely, and the ML
workload can be benchmarked repeatedly with low
variance.

6. Future Low-Power Computer Vision

In 2018 CVPR, LPIRC invites three speakers from
Google and Facebook sharing their experience
building energy-efficient computer vision. More than
100 people attend the workshop. The panel after the
speeches answers many attendees’ questions. The
high participation suggests that there is strong
interest, in both academia and industry, to create
datasets and common platforms (both hardware and
software) for benchmarking different solutions.
Readers interested in contributing to future
low-power computer vision are encouraged to contact
the LPIRC organizers for further discussion.

7. Conclusion

This paper explains the three tracks of the 2018
Low-Power Image Recognition Challenge. The

11

https://paperpile.com/c/QRR2oE/BbLU
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite/java/ovic#measure-on-device-latency
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite/java/ovic#measure-on-device-latency
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite/java/ovic#measure-on-device-latency
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite/java/ovic#run-tests
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite/java/ovic#run-tests
https://github.com/facebook/FAI-PEP

winners describe the key improvements in their
solutions. As computer vision is widely used in many
battery-powered systems (such as drones and mobile
phones), the need for low-power computer vision will
become increasingly important. The initial success of
the novel tracks in 2018 also showcases the
advantages of making focused advances on specific
components of the vision system, as well as of
lowering the bar-of-entry to be inclusive of the
general vision and machine learning communities.

Acknowledgments

IEEE Rebooting Computing is the founding sponsor
of LPIRC. The sponsors since 2015 include Google,
Facebook, Nvidia, Xilinx, IEEE Circuits and Systems
Society, IEEE Council on Electronic Design
Automation, IEEE Council on Superconductivity.

References

Yoshua Bengio, Nicholas Léonard, Aaron Courville,

2013. “Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional
Computation”,
https://arxiv.org/abs/1308.3432

Chen, Gilbert. 2018. “Introducing the CVPR 2018
On-Device Visual Intelligence Challenge”,
Google AI Blog, April 20, 2018,
https://ai.googleblog.com/2018/04/introduci
ng-cvpr-2018-on-device-visual.html

Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish
Tyagi, and Alexander C. Berg. 2017. “DSSD :
Deconvolutional Single Shot Detector.” ​arXiv
[cs.CV]​. arXiv. ​http://arxiv.org/abs/1701.06659​.

Kent Gauen, Ryan Dailey, Yung-Hsiang Lu,
Eunbyung Park, Wei Liu, Alexander C. Berg,
and Yiran Chen. 2018. “Three Years of
Low-Power Image Recognition Challenge:
Introduction to Special Session.” In ​2018
Design, Automation & Test in Europe
Conference & Exhibition (DATE)​.
https://doi.org/​10.23919/date.2018.8342099​.

Kent Gauen, Rohit Rangan, Anup Mohan,
Yung-Hsiang Lu, Wei Liu, and Alexander C.
Berg. 2017. “Low-Power Image Recognition
Challenge.” In ​2017 22nd Asia and South
Pacific Design Automation Conference.
https://doi.org/​10.1109/aspdac.2017.7858303​.

Andrew G. Howard, , Menglong Zhu, Bo Chen,

Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam.
2017. “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision
Applications.” ​arXiv [cs.CV]​. arXiv.
http://arxiv.org/abs/1704.04861​.

Huang, Jonathan, Vivek Rathod, Chen Sun,
Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, et al. 2017. “Speed/accuracy
Trade-Offs for Modern Convolutional Object
Detectors.” In ​IEEE CVPR​. Vol. 4.
http://openaccess.thecvf.com/content_cvpr_201
7/papers/Huang_SpeedAccuracy_Trade-Offs_fo
r_CVPR_2017_paper.pdf​.

Kang, D., E. Kim, I. Bae, E. Bernhard, and S. Ha.
2018. “C-GOOD: C-Code Generation
Framework for Optimized On-Device Deep
Learning.” In ​Proceedings of the 37th
International Conference on Computer-Aided
Design​, 1–8.

Liu, Wei, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C. Berg. 2016. “SSD: Single
Shot MultiBox Detector.” In ​Computer Vision –
ECCV 2016​, 21–37. Springer International
Publishing.

Lu, Yung-Hsiang, Alexander C. Berg, and Yiran
Chen. 2018. “Low-Power Image Recognition
Challenge.” ​AI Magazine​ 39 (2): 87.

Lu, Yung-Hsiang, Alan M. Kadin, Alexander C.
Berg, Thomas M. Conte, Erik P. DeBenedictis,
Rachit Garg, Ganesh Gingade, et al. 2015.
“Rebooting Computing and Low-Power Image
Recognition Challenge.” In ​2015 IEEE/ACM
International Conference on Computer-Aided
Design (ICCAD)​.
https://doi.org/​10.1109/iccad.2015.7372672​.

Margulies, Anne, and Adolfo Plasencia. 2018. ​The
Challenge of the Open Dissemination of
Knowledge, Distributed Intelligence, and
Information Technology​.

Redmon, Joseph, and Ali Farhadi. 2017.
“YOLO9000: Better, Faster, Stronger.” ​arXiv
Preprint​.
http://openaccess.thecvf.com/content_cvpr_201
7/papers/Redmon_YOLO9000_Better_Faster_C
VPR_2017_paper.pdf​.

Sandler, Mark, Andrew Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang-Chieh Chen.
2018. “MobileNetV2: Inverted Residuals and
Linear Bottlenecks.” In ​Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition​, 4510–20.

Tucker, L. R. 1966. “Some Mathematical Notes on

12

http://paperpile.com/b/QRR2oE/4i9u8
http://paperpile.com/b/QRR2oE/4i9u8
http://paperpile.com/b/QRR2oE/4i9u8
http://paperpile.com/b/QRR2oE/4i9u8
http://paperpile.com/b/QRR2oE/4i9u8
http://paperpile.com/b/QRR2oE/4i9u8
http://arxiv.org/abs/1701.06659
http://paperpile.com/b/QRR2oE/4i9u8
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/wdHq
http://dx.doi.org/10.23919/date.2018.8342099
http://paperpile.com/b/QRR2oE/wdHq
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/SsQj
http://dx.doi.org/10.1109/aspdac.2017.7858303
http://paperpile.com/b/QRR2oE/SsQj
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/s7TNS
http://arxiv.org/abs/1704.04861
http://paperpile.com/b/QRR2oE/s7TNS
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/q2LQX
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_SpeedAccuracy_Trade-Offs_for_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_SpeedAccuracy_Trade-Offs_for_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_SpeedAccuracy_Trade-Offs_for_CVPR_2017_paper.pdf
http://paperpile.com/b/QRR2oE/q2LQX
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/BbLU
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/mqRt1
http://paperpile.com/b/QRR2oE/UnJq
http://paperpile.com/b/QRR2oE/UnJq
http://paperpile.com/b/QRR2oE/UnJq
http://paperpile.com/b/QRR2oE/UnJq
http://paperpile.com/b/QRR2oE/UnJq
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/VDcG
http://dx.doi.org/10.1109/iccad.2015.7372672
http://paperpile.com/b/QRR2oE/VDcG
http://paperpile.com/b/QRR2oE/stwC
http://paperpile.com/b/QRR2oE/stwC
http://paperpile.com/b/QRR2oE/stwC
http://paperpile.com/b/QRR2oE/stwC
http://paperpile.com/b/QRR2oE/stwC
http://paperpile.com/b/QRR2oE/stwC
http://paperpile.com/b/QRR2oE/GNMWF
http://paperpile.com/b/QRR2oE/GNMWF
http://paperpile.com/b/QRR2oE/GNMWF
http://paperpile.com/b/QRR2oE/GNMWF
http://paperpile.com/b/QRR2oE/GNMWF
http://openaccess.thecvf.com/content_cvpr_2017/papers/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf
http://paperpile.com/b/QRR2oE/GNMWF
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/fNnP8
http://paperpile.com/b/QRR2oE/Viex

Three-Mode Factor Analysis.” ​Psychometrika
31 (3): 279–311.

Jacob, Benoit, Skirmantas Kligys, Bo Chen,
Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry
Kalenichenko. "Quantization and training of
neural networks for efficient
integer-arithmetic-only inference." In 2018
Computer Vision and Pattern Recognition
http://openaccess.thecvf.com/content_cvpr_
2018/papers/Jacob_Quantization_and_Traini
ng_CVPR_2018_paper.pdf

Everingham, M., S. M. A. Eslami, L. Van Gool, C.
K.

I. Williams, J. Winn, and A. Zisserman.
2015. “The Pascal Visual Object Classes
Challenge: A Retrospective.” ​International
Journal of Computer Vision​ 111 (1):
98–136.

Caesar, Holger, Jasper Uijlings, and Vittorio Ferrari.
2018. “COCO-Stuff: Thing and Stuff
Classes in Context.” In​ IEEE CVPR​.
http://openaccess.thecvf.com/content_cvpr_
2018/papers/Caesar_COCO-Stuff_Thing_an
d_CVPR_2018_paper.pdf

Lin, Tsung-Yi, Michael Maire, Serge Belongie,
James

Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. “Microsoft
COCO: Common Objects in Context.” In
European Conference on Computer Vision​,
2014.
/se3/wp-content/uploads/2014/09/coco_eccv
.pdf, http://mscoco.org.

Howard, Andrew G., Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam.
2017. “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision
Applications.” ​arXiv [cs.CV]​. arXiv.
http://arxiv.org/abs/1704.04861.

Zhu, Mark Sandler Andrew Howard Menglong, and
Andrey Zhmoginov Liang-Chieh Chen. n.d.
“MobileNetV2: Inverted Residuals and Linear
Bottlenecks.”
http://openaccess.thecvf.com/content_cvpr_201
8/papers/Sandler_MobileNetV2_Inverted_Resid
uals_CVPR_2018_paper.pdf​.

Authors’ Affiliations

The authors are ordered alphabetically.

Sergei Alyamkin (Expasoft)
Matthew Ardi (Purdue)
Achille Brighton (Google)
Alexander C. Berg (University of North Carolina at
Chapel Hill)
Yiran Chen (Duke)
Hsin-Pai Cheng (Duke)
Bo Chen (Google)
Zichen Fan (Tsinghua University)
Chen Feng (Qualcomm)
Bo Fu (Purdue, Google)
Kent Gauen (Purdue)
Jongkook Go (ETRI)
Alexander Goncharenko (Expasoft)
Xuyang Guo (Tsinghua University)
Hong Hanh Nguyen (KPST)
Andrew Howard (Google)
Yuanjun Huang (University of Science and
Technology of China)
Donghyun Kang (Seoul National University)
Jaeyoun Kim (Google)
Alexander Kondratyev (Expasoft)
Seungjae Lee (ETRI)
Suwoong Lee (ETRI)
Junhyeok Lee (KPST)
Zhiyu Liang (Qualcomm)
Xin Liu (Duke)
Juzheng Liu (Tsinghua University)
Zichao Li (Nanjing University)
Yang Lu (Facebook)
Yung-Hsiang Lu (Purdue)
Deeptanshu Malik (Purdue)
Eunbyung Park (University of North Carolina at
Chapel Hill)
Denis Repin (Expasoft)
Tao Sheng (Qualcomm)
Liang Shen (Qualcomm)
Fei Sun (Facebook)
David Svitov (Expasoft)
George K Thiruvathukal (Loyola University Chicago
and Argonne National Laboratory)
Baiwu Zhang (Qualcomm)
Jingchi Zhang (Duke)
Xiaopeng Zhang (Qualcomm)
Jay Zhuo (Qualcomm)

Corresponding Author: Yung-Hsiang Lu,
yunglu@purdue.edu

13

http://paperpile.com/b/QRR2oE/Viex
http://paperpile.com/b/QRR2oE/Viex
http://paperpile.com/b/QRR2oE/Viex
http://paperpile.com/b/QRR2oE/Viex
http://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf

