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Abstract—Internet of Things (IoT) systems continuously collect
a large amount of data from heterogeneous “smart objects”
through standardised service interfaces. A key challenge is
how to use these data and relevant event logs to construct
continuously adapted usage profiles and apply them to enhance
testing methods, i.e., prioritization of tests for the testing of
continuous integration of an IoT system. In addition, these usage
profiles provide relevance weightings to analyse architecture and
behaviour of the system. Based on the analysis, testing methods
can predict specific system locations that are susceptible to error,
and therefore suggest where expanded runtime monitoring is
necessary. Furthermore, IoT aims to connect billions of “smart
devices” over the network. Testing even a small IoT system
connecting a few dozens of smart devices would require a network
of test Virtual Machines (VMs) possibly spreading across the Fog
and the Cloud. In this paper we propose a framework for testing
of each IoT layer in a separate VM environment, and discuss
potential difficulties with optimal VM allocation.

Index Terms—Software Engineering, Testing, Internet of
Things

I. INTRODUCTION

Internet of Things (IoT) aims to connect billions of “smart
devices” over the internet. Usefulness of IoT systems is being
realised in various application domains such as transportation,
healthcare, smart cities, smart cars, smart factories, etc. De-
pending on the complexity of an IoT system, its architecture
may involve several layers of networking, where appropriate
IoT middleware support an IoT application. One of common
middleware design approaches is Service Oriented Architec-
ture (SOA), cf. [1]. SOA-based IoT middleware is a promising
design perspective to overcome heterogeneity of physical
devices and their underlying communication technologies with
high level standardised service interfaces.

IoT network and middleware design follow a common
layered approach. Both from networking and middleware
perspective, Fog and Cloud computing are envisioned as
natural fit for layered design of IoT systems, cf. [2], [3].
Layered architecture model of IoT middleware allow designing
IoT application components, which reside into separate VMs
that may spread across Cloud and Fog infrastructure. Cloud
infrastructure provides centralized resources and processing
at a global scale [4]–[7]. As Cloud computing and storage
services are highly scalable and efficient, many applications
utilise Cloud for analytics, Big Data processing, etc. It also
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enables long running and data-intensive scientific experiments
[8]. In the Fog infrastructure, certain services are managed
at the edge of the network, at so-called Fog nodes. Both
Fog and Cloud nodes share a high level of virtualisation.
Whereas fewer cloud nodes represent fewer and much larger
global resources at very long distances away from IoT devices,
Fog nodes are numerous, smaller and more compact and
importantly accessible from from IoT devices through local
area or regional networks. IoT applications can be handled
taking into account their specific requirements, such that low
latency response, mobility support, location awareness, etc.

Contributions: We propose a framework for testing each
IoT layer in a separate Virtual Machine (VM) environment.
As per Bourque and Dupuis [9], software testing consists of
the dynamic verification of the software behaviour against the
expected behaviour, using a finite set of test cases. The set
of test cases has to be selected from the (usually infinite)
execution domain, with the goal to fulfil the specified coverage
criteria. However, dynamic verification of program behaviour
requires observation of its runtime behaviour (i.e., monitoring)
thereby allowing measurement of compliance against expected
behaviour of the system. Our study is focused on deriving
operational profiles from monitoring data that is collected
during dynamic verification of behaviour. We aim (1) to use
operational profiles for prioritising tests during test selection in
regression testing, (2) to predict fault location in IoT services
by combining operational profiles and Markov chain usage
models, derived from interface behaviours of IoT services. If
it is predicted that an IoT might have faults, it would undergo
extended runtime verification procedure, accomplished with
monitoring. The corresponding specifications for monitors are
going to be derived from interface specifications of the stan-
dardised IoT services. We call this methodology “monitoring
informed testing”.

II. IOT ARCHITECTURE

IoT middleware could be divided into three layers (percep-
tion, middleware and application layers), where each of them
has specific functionalities, cf. [1].

Perception Layer: Sensor data i.e. context information is
gathered from smart physical objects. IoT applications with
various application-specific requirements (such as low latency
response, mobility support, location awareness, etc.) are han-
dled at this layer. Data is collected at collector nodes from
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sensors, then filtered, processed, analysed, and after that the
decided actions are performed through actuators. Functionali-
ties like data acquisition, context annotation, device configura-
tion, device management, etc., are provided as services through
SOA-based IoT middleware.

Middleware Layer: Fog computing is considered as widely
accepted approach that could be set up at this layer to prevent
large burst of sensor data from flooding into the Internet.
Fog nodes [10] are highly virtualised platforms (e.g., IOx
and Cloudlet), which may be a computer like “cloud in a
box” providing computation, storage, and networking services.
Middleware support aims to provide higher-level services. For
example, SOA IoT middleware provide activity reasoning,
processing, machine-to-machine-interoperability services [11].

Application Layer: Global coverage for an IoT application
can be provided through a Cloud. The Cloud is particularly
useful to serve as data storage and also providing processing
power needed for IoT big data analytics. Service interfaces,
APIs, etc. provided through IoT middleware are utilised to
implement data analytics, storage management, application
and health monitoring, profiling, etc. Here, we explain the
testing set-up of an industrial IoT application and also discuss
SOA functionalities of industrial IoT middleware oneM2M
[12], which is an industrial IoT middleware for machine-to-
machine (M2M) interoperability, compliant to the European
Telecommunications Standards Institute (ETSI) standards1.

Device Nodes: We envision of a global industrial automa-
tion systems development company (e.g., ABB and Siemens)
who has several Test Fields in different countries across the
world. In each Test Field they would have a collection of
IoT enabled smart devices for testing purposes. Such a Test
Field would have a variety of sensors and actuators attached
smart machines, embedded devices and computational nodes.
Figure 1 illustrates perception layer setup for an industrial
IoT application, where each smart machine is connected with
a dedicated Device Service Capability Layer (DSCL), i.e.,
a middleware component provided by oneM2M that collects
data from a smart device.

Fog Nodes: We anticipate that Devices Nodes that are
located at a Test Field will directly connect to the Fog Nodes,
cf. Figure 1. OneM2M’s Network Service Capability Layer
(NSCL) is a middleware component that provides higher-
level services such as resource access, provisioning, and self-
configuration, etc.

Cloud Nodes: The industrial IoT application would imple-
ment a dashboard providing data analytics, industrial process
monitoring, machine learning, etc. at the Cloud. In oneM2M,
nodes consist of at least one common services entity (CSE) or
one application entity (AE). An AE defines application logic
for an end-to-end M2M solution [13].

III. MONITORING APPROACHES

The monitoring requirement for testing lies in the amount
and type of information required for (1) detecting failures

1http://www.etsi.org/about

Fig. 1. Industrial IoT Networking Architecture

due to bugs (functional or extra-functional violations) or slugs
(performance bottlenecks), (2) locating their root causes or
errors, and (3) analysing the error context so as to prepare
fixing or preventing them. For testing sequential processes
[14], it is usually sufficient to monitor input and output
behaviour through predefined service interfaces. The actual
information to be monitored can be categorized into three
groups:

• Data flow to observe the input data flow of a service as
well as the output data produced and passed through the
service interfaces;

• Control flow to observe in what order inputs are received
and outputs are produced; and

• Resource flow including usage and performance of mem-
ory, compute, network and file system resources.

The services need to be instrumented with probes to be able to
observe their behaviours. Furthermore, these probes need to be
left within the system. However, effect of probes in the system
need to be measured and compensated by allocating additional
resources to the system. However, in-line-probes, a kind of
probe instrumented at task level (e.g. atomic service level)
to yield additional outputs to the task, would be sufficient
for our purposes. Our goal is to create operational profiles
through analysing the outputs that are produced through the
service level in-line-probes instrumented within the system.
This approach has to be applied within the development phase.
One of the potential issues related with the in-line-probes, is
over instrumenting that decreases the system performance as
this may impact on Resource Flow monitoring.

Another approach to monitoring is runtime verification
(RV), where a formal specification of behaviour is instru-
mented in the system during runtime. RV aims to combine
testing with formal methods such that systems behaviour
is thoroughly checked against requirement specifications at
runtime. In this approach, formal models (e.g., state machines)
for service interfaces are typically developed during designing
test models. The formal model is derived from requirement
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specification and then integrated with source code. Afterwards,
monitors are generated automatically based on the formal
models and weaved into the runtime code. An advantage of
RV is that formal models can be encoded with varying levels
of abstraction thus allowing varying levels of monitoring data
to be generated.

IV. STATISTICAL TESTING

In statistical testing, statistical methods are used to deter-
mine the reliability of a system to demonstrate a system’s
fitness against its intended use. In our future work, we are
going to focus on a fundamental approach that applies Markov
Chain Usage Model (MCUM) in conjunction with this method.
The statistical testing process may be started at any point:
all test artefacts become valuable assets and may be reused
throughout the software system life cycle. Statistical testing
involves several steps, such as usage model development,
model analysis and validation, tool chain development, test
case generation, etc. We are going to focus on the issues
on usage model construction as it relates to one of the
fundamental concepts of our study.

A. Markov Chain Usage Model

A fundamental statistical artefact for statistical testing is
study of population, which requires the characterization and
representation of the system. This should include common
and typical as well as infrequent and exceptional scenarios
of the system at a suitable level of abstraction. One such
method of characterisation and representation of system is
done through developing operational usage model. A oper-
ational usage model characterises the population of usage
scenarios described in terms of how it is going to be used
in an operational environment. Markov Chain Usage Model
(MCUM) characterises usually infinite population, which con-
tains all possible scenarios of a system. However, when a
population is too large for exhaustive study, a statistically
correct sample must be drawn as a basis for inferences about
the population.

MCUM is usually derived from requirements specification,
and can be developed in two stages, structural and statistical.
The structural stage involves possible use; the statistical stage
deals with expected use. Developing the structural model
involves identifying sets of states within a system and associ-
ated state transitions, which are defined by directed arcs. The
statistical stage involves determining transition probabilities in
the structure. There are two basic ways of assigning transition
probability - one based on direct assignment of probabilities
and the other is determining values through analytical method.

Direct assignment of transition probabilities among states
in a usage model may involve collecting data from historical
or projected usage of an application. Transition probabilities
among states yield various usage information of a system for
example usage environments, user demographics, classes, or
other special usage situations. Moreover, sets of transition
probability may change several times as systems mature,
based on availability of information, or experience of use. A

probability value for each arc of the model may be determined
when extensive field data for systems is collected over long
periods of time. However, to determine transition probabilities
for new systems, we may follow a manual process, i.e.,
analyse software requirements documents, review user guides,
take customer reviews, etc. In case essential information is
not available, all transition states are assigned with uniform
probability in the beginning.

B. Operational profile

An operational profile characterizes how a system will
be used in production [15]. Therefore, it allows estimating
reliability of a software product, helps prioritization of product
feature to be developed and tested according to their usage
frequency. In the context of IoT systems and software in pro-
duction, deployed across millions of devices with thousands
of different variants of code and personal user preference
settings, it is particularly important to reflect the frequency of
software deployment in specific device, location and personal
contexts. This does not only require monitoring the uncondi-
tional probability of executing a piece of code globally, but its
conditional probability, given the likelihood of executing in a
specific context defined by variants of devices, OS, application
software, location and personal preferences etc.

When software is developed, in testing phase or already in
deployment, operational profiles may be generated either man-
ually as described earlier or automatically through analysing
event logs. The operational profile then may be used to
generate random test cases such that random walk through
MCUM [16].

C. Continuous Integration and Regression Testing

An IoT application may be layered into the three distin-
guishable components: Device Component in perception layer,
Middleware Component in networking layer, and Application
Component in presentation layer. Each of these functional
components would undergo automated regression testing as
soon as new changes to the code are submitted. Regression
testing nowadays is integrated with continuous integration
software development practice that aims to ensure program’s
correctness as soon as new changes to the code is submitted
to a mainstream code repository that triggers automated build,
and testing. One of the core functionalities of regression
testing is prioritizing test cases to achieve some performance
goal [17], for example selecting frequently used features for
testing early. Executing tests ordered by priority of frequently
used feature would allow to achieve higher reliability by
discovering and fixing high frequency failures sooner. Hence,
we aim to prioritize tests according to the order of frequency
of the features derived within an operational profile.

V. FRAMEWORK FOR MONITORING INFORMED TESTING

The aim of the framework is to monitor IoT services
and generate operational profile from monitoring information.
IoT systems provide various types of services at different
layers. Sensor data collected through service interfaces travel



from perception layer, through middleware layer to application
layer. Furthermore, the data is formatted and processed at
different layers differently. Our goal is to analyse the mon-
itoring information in services as well as in sensor data with
a view to design operational profile for an IoT services. We
aim to design continuously adapted operational profiles. Thus,
we need to investigate in what time intervals the operational
profiles are adapted and also that the same event is not
recorded multiple times in the contentiously adapted profile.

We are going to prioritize tests based on service usage
frequency in operational profile. The monitors will be derived
from specifications of IoT services and integrated into rele-
vant IoT services at IoT runtime. Our intention is to apply
runtime verification only for the services identified through
fault prediction mechanism. Thus, MCUM will be derived the
interface specifications that are provided with IoT services for
identifying states and state-transitions that are needed for a
MCUM. The judgements from operational profiles have to
be evaluated against the prediction derived through MCUM.
Therefore, we plan to design a high confidence fault prediction
mechanism where prediction measured through MCUM would
be combined with that gathered from the operational profile.

All three IoT architectural layers (i.e., perception, middle-
ware and application layers) will be tested in separate VMs, as
illustrated in Figure 2. We define a Test Server VM required
for Continuous Integration (CI) setup, involving loading source
code and tests from repository, doing the builds, deploying the
build to appropriate test machines and running regression tests.

Fig. 2. Proposed Framework: Infrastructure

A global company with multiple test fields would require
a large test network setup with test VMs deployed across
Fog and Cloud. Figure 2 shows a network of test VMs that
forms a weighted graph where weight of an edge is measured
according QoS constraints like bandwidth, latency, etc. Thus,
we intend design an optimal VM allocation strategy that
would allocate VMs in test network considering all these
QoS constraints. Such an VM allocation method is needed for
various reasons such as lowering the amount of data transfer
through high cost edge, thereby enabling faster test execution,
lowering networks usage, etc. However, the VM allocation
method needs to consider following issues:

• Data exchange: A huge amount of data would be ex-
changed across the test network. For example source code
and tests need to be transferred to test servers, and tests
have to be sent on testing VMs for execution. An optimal
VM allocation method would be required to minimise the
amount of data transferred, especially across the high cost
edge.

• Allocation of VMs: Device Components (DCs) have to
be tested at the field network at perception layer. Virtual
sensors may be suitable for testing purposes to simulate
data into DCs. This would allow us to allocate them either
to the Fog or the Cloud. In some cases where testing
of virtual sensors or actuators is not feasible, the VM
allocation method should find an optimal route keeping
DC nodes allocated to a dedicated layer.

• Quality of Service: Network Quality of Service (QoS)
constraints such as bandwidth, latency and network fail-
ure have to be considered. For example, the network
connection between Field Node and Fog Node should
have high bandwidth, low latency, and very low network
failures. Therefore, the QoS constraints need to be mea-
sured as part of our Resource Flow monitoring and as
demanded by the optimization method.

A. Operational profile based online test prioritization

Software testing based on users’ perspective is known
as usage-based testing. Both Markov chains and operational
profiles are used to characterise usage models statistically.
Many usage based testing methods have been proposed in
classical software engineering and also a few in the service
oriented architectures. Sammodi et al. [18] applied opera-
tional profile for test case prioritization where service based
monitoring data is used to derive operational profile. From
an IoT perspective, data is generated from heterogeneous
smart devices and collected through IoT services. Hence, we
believe it is essential to analyse monitoring data with reference
to appropriate inline probing mechanism that we discussed
previously. Bai et al. [19] proposed an ontology-based method
for producing operational profile through analysing SOAP
messages. However, they use the operational profile for test
generation purposes. On the other hand, we aim to create
operational profiles for IoT oriented CoAP or REST services
for the purposes of test prioritization.

There are also many approaches on operational profile
generation. In the industry, various tools are used for event
correlation, e.g., SEC [20]. Nagappan et al. [21] proposed
an algorithm for creating operational profiles that calculates
frequency of both used and unused features. The procedure be-
gins with identifying the list of functions from the source code
that prints out logs. Then a log abstraction method is used,
where an integer equivalent of the execution log is created.
Afterwards, using that integer equivalent of the execution log
an operational profile is generated for each identified function
by implementing a suffix array based algorithm that has log(N)
complexity. However, our goal is to produce continuously



adapted operational profile from monitoring data and event
logs generated from IoT devices.

B. Usage model based fault prediction
The main objective of statistical testing methods is relia-

bility prediction. Usage models such as Markov chains and
operational profiles are built to achieve this objective. Test
cases generated from usage modes carry statistical significance
and failure of test case (test sequence) is referenced back to
usage model for predicting the location of fault. Sammodi
et al. [18] cross checked test sequence from Markov chain
with input sequence in monitoring information and based on
some precision measurement in fault prediction and propose
runtime adaptation of services. Metzger et al. [22] applied
similar fault prediction mechanism, also suggesting runtime
testing of services for confidence measurement. In contrast to
these approaches, our goal is to enable runtime verification of
service that is predicted to have fault.

C. Virtualized IoT layers and Optimal VM Allocation
Integrating heterogeneous smart objects (e.g. sensors and

actuators) to an automated test system would be difficult task.
Also setting up a test system and maintaining it with connected
smart devices would be challenging. We aim to use virtual
sensors [23] to simulate the interactions of smart objects with
the physical layer of IoT middleware, thereby enabling the
Physical Component of IoT application be tested in a VM.
A test network for a global industrial IoT company could be
depicted as a weighted graph, cf. Figure 2. A similar scenario
where optimal VM allocation problem over distributed Cloud
been presented as a weighted graph in [24]. The authors
explained this to be a graph slicing (a NP-hard) problem
and proposed two approximation algorithms, one for VM
allocation within same cloud and another for inter cloud VM
allocation. However, we are considering a weighted graph
which has multiple dynamic weights, i.e., bandwidth, latency,
network failure, etc. and also the weight of an edge would be
calculated dynamically.

VI. CONCLUSIONS

This paper introduces the core ideas of an adaptive frame-
work for monitoring informed testing, with an aim to monitor
IoT services and generate operational profile from monitoring
information. The proposed framework will enhance testing
activities by utilizing monitoring data gathered from IoT smart
devices and relevant event logs. We suggest
(1) to use monitoring probes for Data, Control and Resource

flow combined;
(2) to model operational profiles in a context dependent way

using conditional probabilities with reflecting the high
variation in hardware, software and consumer contexts,
and

(3) to predict fault locations in IoT services by combining
operational profiles and Markov chain usage models,
derived from interface behaviours of IoT services.

This would enable, e.g., runtime verification of service that is
predicted to have fault.
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