Low-Energy Asynchronous Memory Design

José A. Tierno

Alain J. Martin

California Institute of Technology
Pasadena, CA 91125

Abstract

We introduce the concept of energy per operation as
a measure of performance of an asynchronous circuit.
We show how to model energy consumption based on
the high-level language specification. This model is in-
dependent of voltage and timing considerations. We
apply this model to memory design. We show first
how to dimension a memory array, and how to break
up this memory array into smaller arrays to minimize
the energy per access. We then show how to use cache
memory and pre-fetch mechanisms to further reduce
energy per access.

Keywords: Low-energy, low-power, asynchronous

design, memory design.

1 Introduction

Present day portable computers run the most com-
mon interactive applications (word-processors, spread-
sheets, windows, etc.) with no noticeable computation
delay; weight and battery life have become more im-
portant than processing speed. These two factors are
related by battery size: to operate the computer for
a longer time without recharging, we need a larger,
heavier, battery.

The limitation is therefore in the total amount of
electric energy stored in that battery, that is available
for operation. To extend the battery life, we have to
make the computer more efficient in the way it uses
this energy.

Electrical power dissipation has been used as a fig-
ure of merit for this type of application. It is con-
venient for synchronous circuits with no power man-
agement, where power dissipation is very much inde-
pendent of the level of activity of the circuit. Asyn-
chronous operation is better described in terms of re-
active programs: energy is dissipated only when the
circuit is active. As a consequence, asynchronous cir-
cuits can have remarkable energy performance [6, 7].
For asynchronous systems, a proper measure of per-

” This metric

formance is the “energy per operation.
measures the energy required to execute an instruc-
tion, fetch a piece of data from memory, service an
interrupt, etc. To maximize the battery life, we can
minimize the average energy per operation, that is,
we maximize the number of instructions that we can
execute with one battery charge.

Energy per operation is an additive quantity: given
a computation described in terms of more elementary
steps, we can calculate the energy required to execute
that computation by adding the energy requirements
of each step. In this way we can compare the energy
efficiency of different algorithms that execute the same
computation, independently of timing considerations.
Comparison power consumptions would require some
knowledge about timing (e.g. “so much power at so
much throughput”).

In this article we propose an energy model for asyn-
chronous circuits based on the energy cost of data com-
munications. This model is justified in terms of the
physical implementation of a communication action,
and the actual energy dissipation associated with that
implementation.

As an example of the use of the energy model, we
analyze the design of asynchronous memories. Mem-
ory subsystems are usually designed for speed and
density, with secondary consideration given to en-
ergy. Memory is slow compared to processors, and
high throughput is achieved through parallelism (wide
data-words) and prediction (memory caching). These
same design techniques can be used to improve energy
performance; the design criteria are, however, differ-
ent, and are explained in detail in this paper.

First we show how to partition a memory array to
minimize access energy under the assumption that all
addresses are equally probable. Second, we show how
to use the statistics of long sequences of addresses to
further reduce the average energy per access. These
techniques result in a trade-off between area and en-
ergy per access. This analysis shows that conven-
tional commercial architectures are not optimal from
the point of view of energy efficiency.

2 Energy Index

The energy dissipation of a CMOS circuit is depen-
dent on the supply voltage: the speed of operation and
the energy required to charge capacitors increases at
higher voltages. In order to evaluate the energy ef-
ficiency of a high-level circuit description, we need a
measure of energy dissipation that is independent of
the supply voltage. In this section, we derive such an
index of performance, and use it in the next section
to justify an energy model for asynchronous circuits
based on the energy cost of communication actions.

2.1 Sources of energy dissipation

CMOS circuits have three main sources of energy
dissipation: leakage currents, short-circuit currents,
and dynamic currents. The total energy dissipated
during the execution of one operation, Er, can be cal-
culated as:

Er=E,+ E;+ E,. (1)

where Ej is the energy dissipated by the sub-threshold
leakage currents, Fg; is the energy used for charging
and discharging capacitors, and Ej, is the energy dis-
sipated by the short-circuit currents.

Leakage currents come from the sub-threshold be-
havior of MOSFET’s. For Vs < Vip, the channel
conductance, g., can be modeled by [11]:

q q(Vas — Vin)
e =1.— - 2
g T ©XP < T (2)

All these currents add up, and are responsible for an
energy dissipation of the form

E, = /VL%DIC% exp <— q]{‘gp’“) dt (3)
where Vs = 0is assumed. At the present state of the
technology, energy dissipation due to leakage currents
represents only a small fraction of the total power of
a CMOS circuit.

Short-circuit currents originate in the short tran-
sients, as in the case of a CMOS inverter, when both
pull-up and pull-down transistors conduct while the
input signal switches between Vip, and Vpp — Vigp.
This energy dissipation has the form [12]:

E,.=Y s (Vop —2Vin)° (4)

where the s;’s are proportionality constants, and the
sum is made over all transitions executed in one op-
eration. Short-circuit currents also play a significant
role in storing a value into a flip-flop built from cross-
coupled inverters.

KL - KS X vOD

40.0P =7 B i = INCREMENTER:
H 3 kLU
rY—

|
Lol

[RERTE CTYRI RNRA SRS

inhnlind @ Lindde

i

i

i

T ST RN I AURTINATON RSN AVUURTIAN TSRO I RTR
5.0 6.0
2.0 VoD CLIN) 10.0

[m

Figure 1: Graph of ET/VIZ)D against Vpp for a 4-bit
counter (SPICE simulation), and for the 3x+1 engine,
and the 1.6pum and 2.0um processors.

Dynamic energy dissipation, Fg4, comes from the
energy used to charge the capacitors in the circuit.
The capacitors are then discharged to ground, and the
energy is not recuperated. F4 can be computed as:

Eq=» nCi x Vi (5)
C;

where the C;’s are all the capacitors in the circuit, and
n; is the number of times the capacitor is switched in
the execution of one operation. We rewrite Eq. 5 as:

Eq=Kr x Vip (6)
2.2 Linear Energy Model

Using Eqs. 4 and 6, and neglecting the effect of sub-
threshold currents, we rewrite the energy equation as:

Voo — 2Vin)?
(M’me)) VDQD (7)
DD

Outside the sub-threshold region, (Vpp > Vip),
Eq. 7 simplifies to:

Er = (I{L + Kg

Er = (K + KsVop) Vip (8)

Figure 1 shows ET/VIZ)D as a function of Vpp for a
4-bit counter (SPICE simulation), and for the Caltech
Asynchronous Microprocessor and for a 3z 4+ 1 engine
(measurement). This figure shows that the linear ap-
proximation of Eq. 7 is indeed accurate.

Based on these results, we propose as an index of
performance for an asynchronous CMOS circuit, the
corresponding constants K and K. These indices

are independent of the power-supply voltage, and the
speed of operation; furthermore, Ky and K; are ad-
ditive: we can calculate the index corresponding to
an operation by adding the indices of all of its sub-
operations.

As a first-order approximation we assume K; = 0,
and use K as the energy performance index.

3 Energy model for CHP programs

Our high-level description language is CHP (Com-
municating Hardware Processes) [5], which is similar
to CSP [4]. The CHP specification of an asynchronous
circuit corresponds very closely to its implementation;
for each assignment, communication, function evalua-
tion executed by the CHP program there will be a cor-
responding assignment, communication, function eval-
uation computed by the CMOS implementation. The
CMOS implementation will dissipate energy only dur-
ing the execution of the assignment, etc.. This energy
can be assimilated to the energy required to execute
the corresponding CHP statement. To calculate the
energy required to execute a CHP program, we add
the energy required to execute each statement in the
trace of that program.

We would like to be able to map each statement
into an energy performance index, independently of
the other statements in the program. In general, it
is not possible to do so; layout constraints make that
the length—and therefore capacitance—of wires is af-
fected by the connectivity of the whole circuit, not
just the local connections. A detailed energy model
would have to take into consideration the program as
a whole, instead of individual statements.

The purpose of the model is, however, to study
architectural trade-offs (e.g. compare bit-serial and
parallel implementation of a function) or determine
architectural parameters (e.g. determine the optimal
width of a cache memory). A very detailed model,
with a large number of parameters can be intractable,
and not that much more accurate if those parameters
are layout-dependent (and therefore not well known
before the layout is finished). At the architectural de-
sign stage a simpler model is desirable.

The model proposed is based on the energy perfor-
mance index. To each type of statement, we assign a
capacitance that is representative of the energy that
we would expect that operation to cost in a typical
implementation. A full discussion of the possibilities
and limitations of this model can be found in [10]

3.1 Communication

A CHP data communication involves two actions:
first, copying the data into the wires that implement
the communication channel, and second, copying the
data from the communication channel into a register;
the second part may not be present if the data is to
be tested on the channel wires.

We assume that data communications are imple-
mented with a four phase, dual-rail encoded protocol.
The first action involves two transitions per bit; the
second action involves one transition per bit in aver-
age. If the channel is one-to-one, the energy index of
this communication will be proportional to the num-
ber of bits. If the channel is a bus (i.e. the channel has
three or more ports), the capacitance of the wires will
increase with the number of connections. To incorpo-
rate this effect, we scale the capacitance of the send
action proportionally to the number of senders, and
the capacitance of the receive action proportionally to
the number of receivers.

3.2 Shared Variables

Variables shared by many processes are more ex-
pensive to implement than local variables. The value
of those variables have to be known in many places,
which increases the capacitance of all the related wires.
To represent this cost, we scale the cost of writing into
a variable proportionally to the number of processes
that can read or write from that variable.

This cost has a number of important consequences.
Even though the original specification of the circuit
may not contain shared variables, some will appear
after process decomposition. Also, guard evalua-
tion may involve several tests on the same variable.
The process decomposition presented above for choice
statements will make that cost explicit by distribut-
ing the guard evaluation, one process per guard. The
actual cost of an assignment is therefore not known un-
til after process decomposition. We can, nevertheless,
make an estimate of the worst case implementation of
the assignment by scaling its cost proportionally to the
number of times the variable is used in the program
text.

3.3 Selection

The cost of selection is the difference in energy con-
sumption between executing one statement from each
of the following two programs:

PAR=(|i:1.N: *[[G;— A; 11)

and,

CHOOSE =*[[{(0i:1.N: G — A;)11

The second program can be transformed into the first
program by adding state variables and an extra pro-
cess:

CHOOSE =
(|| i:1..N:
*[[mu A G — w;l; Lul; Ag;ug] 1]
) |l
*[[(V i:1.N:u]1;ul;
LA i:1.N:—ul;ul
]

Because this implementation of a selection is com-
pletely general, the cost of selection is at most the
cost of an Or-gate. This cost scales proportionally to
the log of the number of inputs.

3.4 Function evaluation

Function evaluation can hide part of the computa-
tion executed by the program; to incorporate that cost
into the energy model, we have to make the evaluation
of that function explicit in the CHP specification, or
otherwise use a worst case cost for the evaluation of
an arbitrary boolean function.

Given the program:

G Pf(2); .

we want to express the cost of the evaluation of f(z).
To estimate the worst case cost we give a specific im-
plementation for f and calculate the cost of that im-
plementation based on the energy model described so
far; that way we know that the cost of evaluating a
function is consistent with the rest of the model.

If the range of is {x1,...,x,}, and f(x;) = fi, we
can express the function evaluation as:

sl ton: =%, — P

The cost of this program scales with n, which can be
a large number. To obtain a more efficient implemen-
tation, we encode z as an array of N = [log, n] bits,
and eliminate one bit from the function evaluation by
currying:

[2[0] — XJla[1..N — 1]; FI(F?)
0 —z[0] — Xplz[1..N — 1]; FI(Ff?)
1;...

|| *[X:7y; Filfi(y)]

|| *[Xf?y; Frlfi(y)l

From the previous decomposition we see that the cost
of evaluating a function of N bits, C;(N), is, at worst,
the cost of communicating N — 1 bits (X;; channel),
K. x (N —1)) plus the cost of evaluating an N — 1 bit
function, C¢(N — 1) plus the cost of merging the F;
and F; channels, Kjps:

Cf(N):I(CX(N—l)—i—Cf(N—l)—f—[(M (9)
Solving for C;(N),

N(N —1)

Cr (V) = K, ——

+Cf(0)+NI(M (10)
This equation can be further refined. If the range of
the function f has m different values, that can be ex-
pressed as an array of M = [log, m] bits, the cost of
merging F; and Fy can be expressed as Ky = M Ky,
and we have:

N(N

G A C(0)+ NMK,, (11)

C(N) = K, ——

In general, the cost of evaluating a function of N
inputs and M outputs, K¢(N, M) can be expressed as:

K;(N,M)~ KiN* + KaNM (12)

4 Memory array

In CHP, a memory is an array, and reading from
memory is one of the two operations: z := M]Ja] or
X!'M[a]; writing to memory is one of the two opera-
tions M[a] := y or Y ?M|[a], where M|[a] is an array of
n words of b bits. A program that describes a memory
array with one read port and one write port is:

MEM =*[[R — A?a; R'M[d]
0 W— A?a; W?M][a]
1]

The indexing M][a] is removed by breaking up the
memory array into a decoder and an array of regis-
ters:

DECODER = (|| i:0.n—1:
*[[R/\(ﬁ:z) — A7, R;!
0 WA(A?=1) — A7 W,
11

)
ARRAY = (|| i:0.n—1:

*[[R, — R; e Rlz; 11
|| *[[W; — W; e W?z; 11
)

Channel | Type | Width | Cost

A 1-to-n | logan | Kanlogsn
R n-to-1 | b Kgnb

w 1-to-n | b Kwnb

Table 1: Cost of the communications involved in ac-
cessing an n X b memory array.

To read one word from the array, we have to ex-
ecute an A communication (one sender, n receivers,
log, n bits wide), an R; communication (one sender,
one receiver, data-less), and an R communication (n
senders, one receiver, b bits wide). These costs are
summarized in Table 1. The energy cost of reading
one word is the sum of the energy costs of executing
each of these communications, that is:

ElD’R(TL,b) :KAnlog;gn—i—KRl +1{R7’Lb (13)

where K4, Kg;, and Kg are layout-dependent pro-
portionality constants.

A one dimensional array is a viable solution only
for small arrays; for large n, the energy cost scales like
nlog, n . One way of improving on this cost is by map-
ping the one-dimensional array into a two-dimensional
array (we verify this fact later). We represent the dou-
ble indexing by splitting the address in two:

MEM =*[[R — A?(ay, a1); R'M[a;])[a]
0 W— A?(aw, w); W?M[a]][aw)
1]

The first indexing is removed by extracting a row de-
coder:

DEC=(] i:0..1—1:
*[[(W:z) — Al?7]| S;! 1]
)

The second indexing is removed by extracting a col-
umn decoder:

MUX =
(| j:0.w—1:
*[[RA(Aw? =j) — Aw?|| RY(R,;?)
0 WA(Aw? =j) — Aw? || W;I(W?)
11
)

where [and w are such that | x w = n. Finally, the
register processes:

ARRAY = (|| i:0.1—1:7:0.w—1:
*[[E/\R_j—>SZ‘ORj!:EZ‘]' 1]
H *[[E/\W]‘—>SZ‘O VVj?[Ez‘j 1]
)

T T
‘ ARRAY00 }‘ ‘ ARRAY01 }‘

| DECO

T T
‘ ARRAY10 }‘ ‘ ARRAY11 }‘

] DEC1

I : I H !
0 |

R Suy 'R
e | g -
A
PR I I 1
Aw MUxo | mMuxi | -t MUX(w-1) |

,,,,,, [R

Figure 2: Process decomposition of MEM as a two-
dimensional array. Only the channels corresponding
to a read operation are shown.

Channel | Type Width Cost

Al 1-to-l | logsy! Kallog, 1
Aw 1-to-w | log, w Kaywlog, w
S; 1-to-w | dataless | Ksw

R]' [-to-1 b I{Rj b

R w-to-1 | b Krwb

W; 1-to-l | b Kw,1b

w 1-to-w | b Kwwb

Table 2: Cost of the communications involved in ac-
cessing an [x w X b memory array.

The process decomposition and channel interconnec-
tion are shown in Fig. 2.

In the following section we show how to choose [
and w from a simple energy model.

4.1 Energy model and optimization

The energy cost of accessing one element of the ar-
ray is calculated as the sum of the costs of the com-
munications executed by the DEC, MUX, and AR-
RAY processes. A read from memory requires exe-
cuting communication R (w senders, one receiver, b
bits wide), communication Al (one sender, [receivers,
log, ! bits wide), communication Aw (one sender, w
receivers, log,w bits wide), communication S; (one
sender, w receivers), and communication R; (I senders,
one receiver, b bits wide). Table 2 summarizes the en-
ergy costs for all communication actions in MEM .

The total energy cost E, of reading a memory lo-
cation is:

EQDVR(TL, b) = I{Azllogz l+ Kppw 10g2 w +
Ksw+ Kg,lb+ Krwb (14)
We simplify Eq. 14 by assuming all constant equal

to one. This approximation is acceptable for most
technologies; if a more accurate model is needed, the

parameters can be calculated from the layout, and the
optimization is done with those values of the parame-
ters.

Esp r(n,b) =llogy | + wlogy w + (w+)b+ w (15)

We minimize Eap g with respect to [and w under the
constraint ! x w = n, using Lagrange multipliers:

U =llog,l+wlogyw+(w+Db+w+ A(n—Ilw) (16)

We take derivatives with respect to [, w, and A:

aa—? = logyl+logye+b—Aw (17)
ou = logyw+logye+b+1—-Al (18)
ow
ou

Assuming that %log2 n+b+log, e > 1, we solve for [,
w, and A, and l,ps = wepy = 4/n. The optimum energy
per access, Esxp gr(n,b) is:

Esp r(n,b) =+/n(logyn+2b+ 1) (20)

A memory designed for speed usually has | = b x w
[1]. A completely square bit-array optimizes the access
time per bit, but does not take into account the energy
savings derived from selecting only the bits that are
part of the desired word. This extra selection step
takes time and area, and saves energy.

If we compare the optimal energy for a two dimen-
sional array with the energy used by a one-dimensional
array (assuming that all constants are equal to one)
we get:

Ep n(logon +b+1)
Esp n(logan+2b+1) Vi (21)

The number of words in a memory chip is usually very
large, in the order of 22°, making the two dimensional
arrangement far better in energy. We can, in princi-
ple, generalize this argument to multidimensional ar-
rays, to get an even greater improvement in energy
per access. This cannot be done, however, by simply
increasing the number of indices in the array. The
memory has to be laid out on a 2-dimensional surface;
mapping a multidimensional array on this surface will
make all wires much longer, and the results will not
be comparable with Eq. 20. In the next section we
make that mapping explicit in the CHP program for
the memory, so that a realistic energy model can be
derived from that program.

4.2 Multi-bank memory array

We can further reduce the energy per access by
breaking up the memory into several sub-arrays, so
that only one of the smaller sub-arrays is accessed in
each memory reference; this technique is also known
as the divided word-line method [13]. We obtain
the CHP for the multi-banked memory by applying
a divide-and-conquer strategy to the MEM program.

MEM2B = (MERGE || MEMO || MEME)

MERGE =
*[[R — A%a;
[odd(a) — Aola/2 || R!(Ro?)
0 even(a) — Aela/2 || RI(Re?)
]
0 W— A?a;
[odd(a) — Aola/2|| Wol(W?)
0 even(a) — Aela/2|| Wel(W?)
]
11
MEMO =
*[[Ro — Ao?a; Ro!MO|a]
0 Wo— Ao?a; Wo?MO[a]
11
MEME =
*[[Re — Ae?a; Re!ME[d]
0 We— Ae?a; We? ME[a]
11

where ME and MO are n/2 x b arrays.

To read one word from MEMZ2B, we have to execute
communication A (one sender, one receiver, log, n bits
wide), communication R (two senders, one receiver, b
bits wide), plus we have to execute either MEMO or
MEME. The energy cost of reading one word from a
memory of size n x b can therefore be expressed as:

EZB,R(”, b) =2KRrb+ K4 10g2 n—I—EQB’R(n/Q, b) (22)
Or, for n = 2V,
Eop r(2V,b) = Bap p(2N 71 0) + 2KRb+ KA N (23)

We apply the same transformation to the sub-arrays,
until the indexing is completely removed. We get:

N(N +1
Esp r(2N,b) = Eap p(1,b) + 2KrNb + [{AQ

(24)
Or, in terms of n,

1 1 -1
Esp r(n,b) ~ 2Kgblogyn + K4 ogy n(logyn — 1)

(25)

Depending on the cost of merging the results from
the two sub-arrays, it may be convenient to stop
the divide-and-conquer process after fewer than N
steps, and implement the remaining array as a two-
dimensional array. After N — J divide steps, the en-
ergy cost is:

Eop r(2V,0) = Eap p(27,b) + 2Kr(N — J)b +

N(N+1)=J(J+1)
2

Ky (26)
Minimizing Eq. 26 with respect to J we obtain the
optimum bank size, 27°P¢,

For example, if all constants are equal to 1, N =
20, and b = 32, we obtain an optimum for J = 3,
Esp r(2%°,32) = 1493. For J = 20 (no break-up in
banks), the energy cost is Eap r(22°,32) = 87040.

Choosing the optimum number of banks requires
more accurate knowledge of the constants in the en-
ergy equation. Some feed-back from the layout can
help in determining those constants with sufficient ac-
curacy.

5 Address prediction

The techniques described above try to minimize the
energy cost of a single access to memory, under the
assumption that all addresses are equally probable. In
most applications, long address sequences are far from
random: the past history of the address sequence is
used to increase memory throughput [8, 9, 3]. The
same type of information can be used to decrease the
average energy per access.

The assumptions we make about the address se-
quence are spacial and temporal locality [2]. Spacial
locality indicates that, once an address has been ac-
cessed, there is a strong probability that nearby ad-
dresses will be accessed in the near future. Tempo-
ral locality indicates that, once an address has been
accessed, there is a strong probability that the same
address will be accessed again in the near future.

Spacial locality is used by pre-fetch mechanisms.
The cost per word of fetching a multi-word line from
memory decreases with the number of words on the
line (the energy cost of decoding the address is shared
among more words). If we can predict that a sufficient
number of words on a line will be used, we will be able
to decrease the average cost of accessing a word in
memory.

Temporal and spacial locality can be used to store
a copy of the contents of the memory locations most
likely to be needed in the future, in a small, fast, en-
ergy efficient memory. If the locality is strong enough,

most of the memory references will be serviced by the
small memory, with a corresponding improvement in
energy performance.

5.1 Sequential access memory: spacial lo-
cality

Instruction memory accesses are, most of the time,
accesses to consecutive memory locations. This fact
can be exploited in two ways to make a more efficient
memory in terms of speed and energy cost. First, the
address does not need to be communicated all of the
time, it can be calculated locally. Second, several con-
secutive words can be read in parallel at one time, thus
reducing the number of memory references.

The following program describes a read-only mem-
ory with sequential access:

MEMS =

«[[A — A% 0D — D'M[a++] 11

where M is an n x b array (a++ means post-increment
a with wrap-around). After an address a is sent to the
memory, several data requests are executed. Sequenc-
ing between the A and D communications is main-
tained by the environment.

We can reduce the number of accesses to the array
M by reading several words in parallel. We replace
M by an (n/m) x mb array, M P. After receiving an
address, the variable line is read from the array, and
subsequent data requests are satisfied with data from
line, until a.w overflows, and new data is read into

line.
MEMR = (PREF || MEMP)
PREF =
*[[A— Aw?a.w, B'AI?, v]
0 DAv— Dllinela.w++];
[a.w=0—v]
0 aew#0— v
]
0 DA-v — L?line, vl
11
MEMP =

*s[L B — B% 0T — LIMP[b++] 11

Notice that MEMP has the same form as MEMS.
We compute next the average energy cost of read-
ing a word from MEMR, and compare that cost with
the energy cost of reading a word from a memory
array. Let k& be the number of consecutive mem-
ory references. To satisfy those k requests, the pro-
gram MEMR has to execute: one A.w, A.l, and B-
communication; k& D-communications; about [%] L-
communications; about [£] reads from an (n/m)xmb

array (MP); and k reads from a m x b array (line).
The energy cost of executing those k requests is:

kx Es = Kalogyn+ Kplog, — +
m
k(ER(m, b) + IX’D) +
k
’VE-‘ (Er(n/m,mb)+ Kr) (27)

where Egr(n,b) is the energy cost of reading an n x b
array. We take expected value on both sides of the
equation, to obtain the expected energy cost of reading
one word from MEMR, Es(n,m,b):

Egs(n,m,b) =
(KA log, n + K log, % + F(Eg(m,b) + Kp) +

E(Eg(n/m,mb) + KL))/E (28)

To optimize the previous equation, we use Eq. 26 for
Egr(n/m,mb); k and {%] are determined from pro-
gram traces.
For example, if all constants are equal to 1, n = 229,
=32, k = 8, we obtain the minimum energy cost for
m = 8, Es = 1134. Compared to the minimum energy
cost of accessing a memory array, Er = 1493, we do
not obtain a significant improvement. However, the
optimal block size for this parameter set is 8 words
per block; with this block size, most of the silicon area
occupied by the memory will be dedicated to routing
of data and address, resulting in very poor memory
density. We can choose a sub-optimal block size to
improve in density; for a block size of 2'° words, we get
Er =3195, and Fs = 2590. The pre-fetch mechanism
allows us to use a denser memory with a smaller energy
penalty.

5.2 Memory with cache: temporal local-
ity

If the energy per access of a memory of size n is
En(n), and h is the hit ratio of the cache (that is, the
fraction of addresses that are found in the cache), then
the average energy per access of a system consisting
of a memory of size n and a cache of size ¢ is:

By, = Epn(e)+ (1= h)Ep(n) (29)
and the reduction in energy per access, p, is
Es EM(C)
= =1—h+ 30
#= Tl oy Y

We can replace Epy; with one of the energy models

previously derived. We use as a model for h, h = (%)p,

0 < p < 0.5, The shape of this curve corresponds
approximately to the dependency of the hit ratio with
cache size [8]; p is a parameter to be determined from
measurements of cache statistics.

According to Egs. 20 and 25, login < Ep(n) <
nlogsn. We calculate next the possible energy
savings derived from the use of a cache in the case

Ey(n) = Vn.
p:1—(£)p+\/§ (31)

Using r = -, and taking derivatives with respect to r,

we find pop¢:

_2p _1
popt = 1 — (2p)T=2 + (2p) ™77 (32)

Usual values of p are in the range 0.01 < p < 0.1 [8].
In this range, we get 0.1 < popy < 0.5.

From the previous results we conclude that a cache
designed for low-energy has to optimize the hit ratio at
relatively small cache sizes, to make p as small as pos-
sible. In general, caches with good hit ratios use very
complicated architectures, which make the energy cost
of a cache access high. Fully associative caches, for ex-
ample, require that a comparison be made for each line
in the cache for every access, thus cancelling the en-
ergy advantage of a higher hit ratio. The hit ratio can
be increased at the expense of added delay, or by spe-
cializing the cache to specific address sequence types
(instruction memory references, vectors, I/0, etc.).

6 Conclusions

In this paper we have shown how to estimate the
energy-per-operation cost of a CMOS asynchronous
circuit from its CHP specification. This technique al-
lows us to exploit early in the design process the trade-
off between energy, area, and delay. Ultimately, it al-
lows us to get to a circuit architecture more suited to
low-energy design.

The energy model derived from the high-level spec-
ification of a circuit is, by its very nature, only ap-
proximate. It represents the energy complexity of the
algorithm used to solve the problem at hand, under
the assumption that there is a strong correlation be-
tween this energy complexity and the actual energy
dissipation of the circuit.

We have presented several memory designs, and we
have shown how to choose the design parameters to
obtain the optimum energy cost. These results show
that commercial memory designs, optimized for delay
and density, can be greatly improved in energy perfor-
mance.

Cache memory and pre-fetch mechanisms also im-
prove the energy cost. Pre-fetch can be particularly
efficient for instruction-memory references; the effec-
tiveness of a cache is a little more limited.

Acknowledgments

The research described in this paper was sponsored
by the Advanced Research Projects Agency, ARPA
Order number 6202, and monitored by the Office of
Naval Research under contract number N00014-87-K-
0745.

References

[1] S. T. Chu, J. Dikken, C. D. Hartgring, F. J.
List, J. G. Raemackers, S. A. Bell, B. Walsh, and
R. H. W. Salters. A 25-ns low-power ful-CMOS 1-
Mbit (128Kx8) SRAM. IEEE J. of Solid-State Cir-
cuits, SC-23(5):1078-1084, October 1988.

[2] P. J. Denning. On modeling program behavior. Proc.
Spring Joint Computer Conference, 40:937-944, 1972.

[3] J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture A Quantitative Approach, chapter 8, pages
404-425. Morgan Kaufmann Publishers Inc., 1990.

[4] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666—677, August
1978.

[5] Alain J. Martin. Compiling communicating processes
into delay-insensitive VLSI circuits. Distributed Com-
puting, 1(4):226-234, 1986.

[6] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen
Borkovic, and Pieter J. Hazewindus. The design of
an asynchronous microprocessor. In Charles L. Seitz,
editor, Advanced Research in VLSI: Proceedings of the
Decennial Caltech Conference on VLSI pages 351—
373, 1989.

[7] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen
Borkovic, and Pieter J. Hazewindus. The first asyn-
chronous microprocessor: the test results. Computer
Architecture News, 17(4):95-110, June 1989.

[8] A. J. Smith. Cache memories. Computing Surveys,
14(3):473-530, September 1982.

[9] H. S. Stone. High-Performance Computer Architec-
ture, chapter 2, pages 21-69. Addison Wesley, 1989.

[10] J. A. Tierno. Architectural Strategies for Low-Energy
Asynchronous Design. PhD thesis, California Insti-
tute of Technology, 1994.

[11] R. R. Troutman. Subthreshold design considerations
for insulated gate field effect transistors. IFEE J.
Solid State Circuits, SC-9:55-60, April 1974.

[12] H. J. M. Veendrick. Short circuit dissipation of static
CMOS circuitry and its impact on the design of buffer
circuits. IFEF Journal of Solid-State Circuits, SC-
19(4):4687473, August 1984.

[13] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshi-
hara, T. Takagi, and T. Nakano. A divided word-line
structure in the static RAM and its application to a
64K full CMOS RAM. IEEFE J. Solid-State Circuits,
SC-18(5):479-485, October 1983.

Appendix: notation

The notation is based on Hoare’s CSP [4]. A full
description of the notation and its semantics can be
found in [5]. We give here a short and informal de-
scription.

Assignment: a := b stands for “assign the value of b
to a.”

Boolean assignments:

b1 stands for b := true,

b| stands for b .= false.

Selection:
[G; — S;0...0G, — 5,1

where the G;’s are boolean expressions (guards)
and the S;’s are program parts (G; — S; is
a “guarded command”). The execution of this
command correspond to waiting until one of the
guards is true, and then executing one of the
statements with a true guard. The notation [G]
is short-hand for [G — skip].

Repetition:
*[G; — S;0...0G, — S,]

The execution of this command corresponds to
choosing one of the true guards, executing the
corresponding statement, and repeating until all
guards are found to be false, in which case the
command terminates. The notation *[S] is
short-hand for *[true — S].

Communication:

Send: X'u means send the value of u over chan-
nel X.

Receive: Y 7v means receive a value over channel
Y and store 1t in variable v.

Probe: The boolean expression X is true iff a
communication over channel X can complete
without suspending.

Composition operators:

Sequential composition: S;;.Ss.
Parallel composition: Sy || Sz.

Coincident composition of communication ac-
tions: X o Y (both communication actions
complete at the same time).

