
HAL Id: lirmm-00651238
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00651238v1

Submitted on 12 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Fault Tolerant Architecture for Robustness
Improvement of Digital Circuits

Ahn Duc Tran, Arnaud Virazel, Alberto Bosio, Luigi Dilillo, Patrick Girard,
Serge Pravossoudovitch, Hans-Joachim Wunderlich

To cite this version:
Ahn Duc Tran, Arnaud Virazel, Alberto Bosio, Luigi Dilillo, Patrick Girard, et al.. A Hybrid Fault
Tolerant Architecture for Robustness Improvement of Digital Circuits. ATS 2011 - 20th IEEE Asian
Test Symposium, Nov 2011, New Delhi, India. pp.136-141, �10.1109/ATS.2011.89�. �lirmm-00651238�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00651238v1
https://hal.archives-ouvertes.fr


A Hybrid Fault Tolerant Architecture 
for Robustness Improvement of Digital Circuits 

D. A. Tran    A. Virazel    A. Bosio    L. Dilillo 
P. Girard    S. Pravossoudovitch 

LIRMM – University of Montpellier / CNRS 
Montpellier, France 

{tran, virazel, bosio, dilillo, girard, pravo}@lirmm.fr 

H.-J. Wunderlich 
 

Institut für Technische Informatik 
Stuttgart, Germany 

 wu@informatik.uni-stuttgart.de 
 

Abstract—In this paper, a novel hybrid fault tolerant architecture 
for digital circuits is proposed in order to enable the use of future 
CMOS technology nodes. This architecture targets robustness, 
power consumption and yield at the same time, at area costs 
comparable to standard fault tolerance schemes. The 
architecture increases circuit robustness by tolerating both 
transient and permanent online faults. It consumes less power 
than the classical Triple Modular Redundancy (TMR) approach 
while utilizing comparable silicon area. It overcomes many 
permanent faults occurring throughout manufacturing while still 
tolerating soft errors introduced by particle strikes. These can be 
done by using scalable redundancy resources, while keeping the 
hardened combinational logic circuits intact. The technique 
combines different types of redundancy: information redundancy 
for error detection, temporal redundancy for soft error 
correction and hardware redundancy for hard error tolerance. 
Results on largest ISCAS and ITC benchmark circuits show that 
our approach has an area cost negligible of about 2% to 3% with 
a power consumption saving of about 30% compared to TMR. 
Finally, it deals with aging phenomenon and thus, increases the 
expected lifetime of logic circuits. 

Keywords-transient error, permanent error, robustness, fault 
tolerance, TMR, power consumption, aging phenomenon. 

I.  INTRODUCTION 
CMOS technology scaling allows the realization of more 

and more complex systems, reduces production costs and 
optimizes performances and power consumption. Today, each 
CMOS technology node is facing reliability problems [1] 
whilst there is currently no alternative technology as effective 
as CMOS in terms of cost and efficiency. Therefore, it 
becomes essential to develop methods that can guarantee a 
high robustness for future CMOS technology nodes. 

A high integration density affects the robustness of a circuit 
during its functioning as well as during its manufacturing. 
Smaller size of transistors makes the circuit more vulnerable to 
soft errors where devices are not permanently damaged. 
Moreover, a high integration density causes a high defect 
density, which results in hard errors and a lower manufacturing 
yield. 

To increase the robustness of future CMOS circuits and 
systems, fault tolerant architectures might be one solution. In 
fact, these architectures are commonly used to tolerate on-line 
faults, i.e. faults that appear during the normal functioning of 
the system, irrespective of their transient or permanent nature 
[2]. Moreover, it has been shown in [3, 4, 5] that they could 
also tolerate permanent defects and thus help improving the 
manufacturing yield. 

Various solutions using fault tolerant techniques for 
robustness improvement have been studied, of which they 
mainly target the tolerance of transient and/or permanent faults. 
While increasing fault tolerance capability, keeping a low area 
overhead is also a main optimization criterion of these works. 
In [3, 4, 5], the authors proposed manufacturing yield 
improvement as a new goal. Beside, other aspects such as 
power consumption, aging and expected lifetime of circuits are 
of the same importance. Although being the subjects of 
research in fault tolerant communication, e.g. in network on 
chip [6], these aspects have not been studied for random logic 
cores. Here for the first time, our study provides a fault tolerant 
architecture that targets different goals: increasing circuit 
robustness, keeping a low area overhead, saving power 
consumption and extending the expected lifetime of logic 
circuits. This paper will focus on the derivation of a scalable 
fault tolerant method, which achieves significant power saving 
with an area overhead comparable to existing solution. The 
aging phenomenon discussed in the last section will be further 
studied in the upcoming paper. 

Our hybrid fault tolerant architecture uses three types of 
redundancy: information redundancy for error detection, 
temporal redundancy for transient error tolerance and hardware 
redundancy for permanent error correction. Similar to TMR, 
this architecture consists of implementing three times the 
combinational logic part of the circuit. However, only two of 
them are running in parallel during functional mode of 
operation. A Finite State Machine (FSM) performs the 
selection of the running logic parts. It changes the architecture 
configuration with respect to the error detection made by a 
comparator. This architecture is compared to the classical TMR 
structure in terms of area overhead and power consumption. 
Results on ISCAS’85, ISCAS’89 and ITC’99 benchmark 
circuits show that our approach has negligible area cost of 
about 2% to 3% while TMR consumes 30% more power. 

 The remaining parts of this paper are organized as follows: 
Section II briefly reviews different fault tolerant techniques. 
Section III provides the principle as well as the functioning of 
the hybrid fault tolerant architecture. Comparisons with the 
TMR approach in terms of area and power consumption are 
discussed in Section IV. Section V analyzes impacts of our 
architecture on aging phenomenon. Finally, Section VI 
concludes the paper and provides some perspectives. 

II. FAULT TOLERANT TECHNIQUES 
Existing fault tolerant techniques are commonly used to 

tolerate on-line faults [7]. They use redundancy, i.e., the 
property of having spare resources that perform a given 
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function and tolerate defects. These techniques are generally 
classified by the type of redundancy used. Basically, three 
types of redundancy are considered: information, temporal and 
hardware [2]. 

In information redundancy, additional data are used. For 
example, the use of error-correcting codes requires extra bits 
that need to be added to the original data bits [2]. Error-
correcting codes are widely used in memories, but their 
application to logic cores requires a significant design effort 
associated with a high area overhead used for code prediction 
and computation [8, 9, 10]. 

Temporal redundancy consists of forcing the system to 
repeat a given operation and then compare the result obtained 
with that of the previous operation [11, 12]. Such a redundancy 
is able to tolerate soft and timing errors but not permanent 
errors. 

Finally, hardware redundancy consists of modifying the 
design by adding extra hardware. For example, instead of 
having a single processor, three processors are embedded to 
perform the same operation. The failure of one processor is 
tolerated thanks to a voter that chooses the majority outputs [2]. 

Each presented redundancy has different pros and cons with 
respect to the tolerance of soft and hard errors. For example, 
temporal redundancy targets only soft error while hardware 
redundancy is too expensive to target such error type. 
Consequently, it is judicious to use combination of 
redundancies in order to take advantage of each one. In this 
context, authors in [13] have proposed a hybrid fault tolerant 
architecture that uses information and hardware redundancies. 
In the same way, we build our hybrid fault tolerant structure in 
order to target robustness improvement (soft and hard error 
tolerance), manufacturing defect tolerance, power saving and 
circuit expected lifetime enhancement (aging phenomenon). 

III. THE HYBRID FAULT TOLERANT ARCHITECTURE 
Our goal is to increase the robustness of emerging CMOS 

circuits and systems by tolerating transient and permanent 
faults. While solutions for timing violations and soft errors in 
sequential elements can be found in the literature such as razor 
register proposed in [14, 15], this paper targets only robustness 
improvement in combinational part of digital circuits. 

Based on the redundancy types presented in Section II, we 
present a new hybrid fault tolerant architecture. It uses three 
types of redundancy: information redundancy for error 
detection, temporal redundancy for transient error tolerance 
and hardware redundancy for permanent error correction. In 
the following sub-sections we present the principle and the 
possible configurations of the architecture. 

A. Principle 
Information redundancy for error detection coupled with 

temporal redundancy for error correction is a solution to 
tolerate transient errors. This first level architecture is shown in 
Figure 1. The information redundancy module is running in 
parallel with the Logic Circuit (LC). The Checker enables the 
error detection. Its output signal is used to activate the temporal 
redundancy module, which enables/disables the input/output 
registers. Consequently, in case of error detection, the logic 
computation could be re-run with the same input data and only 
transient errors are tolerated.  

 
Figure 1. Architecture for transient error tolerance 

Information redundancy for logic circuits has been studied 
in [8, 9, 16] where authors targeted low hardware code 
predictors. Although effective, these techniques require 
structural modifications of the original logic circuit. In [10], a 
synthesizing flow is proposed to generate parity code 
predictors without modification on the logic circuit structure. 
However, the main conclusion of this study is that parity code 
prediction for logic circuit is costly (in terms of area 
comparable to the area of the logic circuit) and not sufficiently 
effective in terms of error detection (in case of multiple errors). 
Accordingly, we use the duplication and comparison as 
information redundancy for our hybrid architecture. Therefore, 
the information redundancy module in Figure 1 will be 
replaced by a duplication of LC, while an output comparator 
replaces the checker. 

As we have discussed in Section II, hardware redundancy is 
necessary for permanent error tolerance. A third circuit must be 
embedded to tolerate the malfunction. The global architecture 
is presented in Figure 2. As for TMR architectures, the LC is 
implemented three times (LC1, LC2 and LC3) but only two of 
them are working in parallel and are selected with the help of 
two multiplexors (MUX_IN, MUX_OUT). Consequently, 
three configurations are possible. 

The comparator verifies the good functioning of the current 
configuration and its output (Ok signal) controls the enable 
input of the registers. During fault free operations, the Ok 
signal is true and the current configuration does not change. As 
long as no error is detected, only two circuits are running. The 
third one is in standby state. Since only two circuits are active 
our architecture will consume less power than classical TMR. 

 
Figure 2. Functional scheme of the hybrid architecture 

If the comparator detects an error, the OK signal becomes 
false and the registers are disabled. The Finite State Machine 
(FSM) changes the configuration to tolerate the detected error 
by controlling the multiplexors. Different configuration 



procedures allowed by the FSM will be discussed in the next 
sub-section. Note that, the architecture does not modify the 
original LC structure compared to the hybrid solution proposed 
in [13]. 

B. Configurations 
As mentioned above, the FSM manages the configuration 

of the architecture by selecting a couple of circuits to run in 
parallel. When an error is detected, two tolerant schemes are 
possible: 

- FSM1: the FSM does not change the configuration 
when the first error occurs. The two running circuits re-
compute the same input data. If the error still remains at 
the second computation, the FSM changes the 
configuration. This solution puts priority in the 
tolerance of transient errors and requires more time for 
tolerating permanent faults. 

- FSM2: the FSM changes the configuration each time an 
error is detected. This solution focuses on tolerating 
permanent faults and needs more time for tolerating 
transient faults. 

The procedures for FSM1 and FSM2 are illustrated by 
diagrams in Figure 3 and Figure 4 and examples in Table I (for 
FSM1) and Table II (for FSM2). 

 
Figure 3. State diagram of FSM1 

For each diagram, the initial state is in gray while the final 
state (the one indicating that no more correction/tolerance is 
possible) is in black. The branches correspond to the three 
configurations (1-2, 2-3 and 3-1). The edges illustrate the 
transitions in the graph for each new clock period. Continuous 
edges correspond to the case of error detection while dotted 
edges are used for no error occurrence. 

In Table I and II, the first row indicates the clock period; 
the second one provides the architecture configuration, for 
example 1-2 means that only LC1 and LC2 are running; the 
third row highlights the input sequence; the last row indicates 
the current state in the corresponding diagram. In the two 
examples, when the first error occurs (error1), the same input 
vector V3 is repeated during the next clock period. For FSM1, 
the configuration still remains at branch 1-2 (state A1 and B1). 

For FSM2, the configuration changes from state A2 of the 
branch 1-2 to state B2 of the branch 2-3. When two 
consecutive errors occur (error2 and error3), the input vector 
V5 is repeated during the two next clock periods. FSM1 only 
changes the configuration (from state B1 of the branch 1-2 to 
state C1 of the branch 2-3) at the second error detection 
(error3) while FSM2 reconfigures the architecture twice (from 
state C2 of the branch 2-3 to state D2 of the branch 3-1, then to 
state E2 of the branch 1-2). 

 
Figure 4. State diagram of FSM2 

TABLE I.  FSM1 FUNCTIONING EXAMPLE 

Clock period 1 2 3� 4� 5� 6� 7 8 9
Configuration 1-2 1-2 1-2� 1-2� 1-2� 1-2� 1-2 2-3 2-3
Input vector V1 V2 V3� V3� V4� V5� V5 V5 V6
Current State A1 A1 A1 B1 A1 B1 C1 D1 D1 
   �  �          �  
  error1 error2     error3  

TABLE II.  FSM2 FUNCTIONING EXAMPLE 

Clock period 1 2 3� 4� 5� 6� 7 8 9
Configuration 1-2 1-2 1-2� 2-3� 2-3� 2-3� 3-1 1-2 1-2
Input vector V1 V2 V3� V3� V4� V5� V5 V5 V6
Current State A2 A2 A2 B2 C2 C2 D2 E2 A2 
   �  �          �  
  error1 error2     error3  

 

IV. COMPARISONS WITH THE TMR ARCHITECTURE 
In order to evaluate our fault tolerant architecture, we 

compare it with the classical TMR solution using bit-wise voter 
in terms of power consumption and required area. Logic 
circuits used in these comparisons are ISCAS’85 benchmark 
circuits and combinational parts of ISCAS’89 and ITC’99 
benchmark circuits. 

A. Power consumption 
In this sub-section we compare TMR and the hybrid fault 

tolerant architecture regarding power consumption. In order to 
perform such comparison, both architectures were synthesized 
using a 90nm technology with RTL Compiler™ [18]. Then, the 
power consumption of each architecture was evaluated with 
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NanoSim™ [19]. Note that, our power saving relies on the fact 
that only two out of three logic circuits are running in parallel 
while the third one is in standby. Therefore, we consider only 
dynamic power in this comparison. Results are summarized in 
Table III. The first four columns present the LC characteristics: 
name, number of input, number of output and transistor count. 
The last column show the additional power required by the 
TMR implementation, expressed in percentage of the new 
architecture’s power consumption.   

TABLE III.  POWER SAVING WITH THE HYBRID ARCHITECTURE 
COMPARED TO TMR 

Circuit n m NLC Power saving 

c5315 178 123 4183 19% 

c6288 32 32 8846 57% 

c7552 206 107 4960 25% 

s15850 611 684 9851 9% 

s35932 1763 2048 25976 13% 

s38417 1664 1742 27717 11% 

s38584 1464 1730 34546 9% 

b14s 277 299 13328 33% 

b15s 485 519 27347 27% 

b17s 1452 1512 81557 25% 

b18 3357 3342 210655 28% 

b19 6666 6669 424235 27% 

b20s 522 512 27397 32% 

b21s 522 512 28523 35% 

b22s 767 757 42330 35% 

 
As shown in Table IV, for largest circuits, the hybrid 

architecture save about 30% of power consumption compared 
to TMR except for ISCAS’89 benchmark circuits. In fact, these 
circuits have many more inputs/outputs than other circuits of 
the same size. Consequently, for these circuits, the 
consumption of the logic part does not dominate the overall 
architecture power consumption. Therefore, the fact that only 
two LCs are running instead of three does not reduce the power 
consumption as expected. 

B. Area 
The second evaluation of the hybrid architecture is related 

to its silicon area compared to TMR. To perform this 
comparison we first have to estimate the cost of each module 
used by each architecture.  Synthesis tools mentioned in the last 
sub-section use an optimized module to realize the voter of 
TMR, while no such optimization is provided for the 
comparator of the hybrid architecture. Therefore, for fairness, 
we use the transistor count method (i.e. the area of each module 
is estimated by the number of required transistors) instead of 
synthesis tools to evaluate the area of both architectures. In the 
following calculations, we consider LC with n inputs and m 
outputs. 

1) Transistor count of a TMR architecture 

The transistor count NTMR of a TMR architecture is defined 
in the following equation: 

 NTMR = 3× N LC + N REG + NVOTER  (1) 

where NLC, NREG and NVOTER are the transistor count of the LC, 
the input/output registers and the voter respectively. 

NLC is computed for the targeted circuit given the transistor 
count of each logic gates. 

NREG is computed with respect to the number of LC 
input/output and with the transistor cost of a D flip-flop. From 
the classical transistor view of a D flip-flop with an enable 
command, we estimate its cost to 14 transistors. Consequently, 
the transistor count NREG is calculated by the following 
equation: 

 N REG = 14 × (n + m)  (2) 

Outputs of the three LCs are voted separately by m one-bit-
voters. Each one-bit-voter receives three signal a, b, c and 
provides the output signal v as follows: 

 v = f (a,b,c) = ab + bc + ca = ab.bc.ca  (3) 

Therefore, a one-bit-voter can be built by three 2-input 
NAND gates and one 3-input NAND gate. So, the cost of a 
one-bit-voter is 18 transistors. The transistor count NVOTER is 
calculated by the following equation: 

 NVOTER = 18 × m  (4) 

Finally, we have: 

 NTMR = 3× N LC +14 × (n + m) +18 × m  (5) 

 
2) Transistor count of the hybrid architecure 

The transistor count NHFT of the hybrid fault tolerant 
architecture for robustness improvement is defined by the 
following equation: 

 N HFT = 3× N LC + N REG + N MUX _ IN  

  +N MUX _OUT + NCOMP + N FSM  (6) 

where NMUX_IN, NMUX_OUT, NCOMP and NFSM  are the transistor 
count of the input multiplexors, the output multiplexors, the 
comparator and the FSM respectively. 

The input multiplexor allows the selection of which couple 
of LCs is running. In addition, it keeps the third LC in a 
standby state by simply connecting its inputs to the ground. 
Using transmission gates, this module requires 9 transistors per 
output. 

 N MUX _ IN = 9 × n  (7) 

The output multiplexors allow the selection of two LC 
outputs to make the comparison. This is simply done by using 
two one-bit multiplexors (2:1) for each LC output. The 
transistor count for output multiplexors is therefore: 

 N MUX _OUT = 8 × m  (8) 

The comparator is made of two stages. The first one 
performs m bit–comparisons of the running LCs output. These 
comparisons are done by XOR functions, which can be realized 



with a low area gate of 4 transistors [17]. The second stage 
consists of building the global comparison signal (Ok signal in 
Figure 2). This can be done by an OR tree. For different LC 
output number, we evaluated the transistor count to build the 
comparator function. Results obtained show a linear relation 
between m and NCOMP: 

 NCOMP = 6.67 × m  (9) 

Finally, the two versions of the FSM (FSM1 and FSM2 
presented in Section III) were synthesized. As the transistor 
count obtained for FSM1 and FSM2 were respectively 320 and 
366, we use the following average cost: 

 N FSM ≈ 340  (10) 

As a result, we have: 

 N HTF ≈ 3× N LC + 9 × n +14.67 × m + 340  (11)
 

3) Area comparisons 

With the help of Equations (5) and (11), we compared the 
area cost of our architecture with TMR for ISCAS’85 
benchmark circuits and combinational parts of ISCAS’89 and 
ITC’99 benchmark circuits used as LCs. Results are reported in 
Table IV. 

TABLE IV.  AREA OVERHEAD OF THE HYBRID ARCHITECTURE 
COMPARED TO TMR 

Circuit n m NLC NTMR NHFT Overhead 

c5315 178 123 4183 18977 20509 7% 

c6288 32 32 8846 28010 28531 2% 

c7552 206 107 4960 21188 23026 8% 

s15850 611 684 9851 59995 63556 6% 

s35932 1763 2048 25976 168146 177533 5% 

s38417 1664 1742 27717 162191 171706 6% 

s38584 1464 1730 34546 179494 187249 4% 

b14s 277 299 13328 53430 55267 3% 

b15s 485 519 27347 105439 108416 3% 

b17s 1452 1512 81557 313383 321756 3% 

b18 3357 3342 210655 785907 805331 2% 

b19 6666 6669 424235 1579437 1617563 2% 

b20s 522 512 27397 105883 109216 3% 

b21s 522 512 28523 109261 112594 3% 

b22s 767 757 42330 161952 166674 3% 

 
The three first columns present respectively the name 

(Circuit), the number of input (n) and the number of output (m) 
of each LC. The three next columns show the transistor count 
of the LC (NLC), of the TMR architecture (NTMR) and of the 
hybrid architecture (NHFT). Finally, the last column gives the 
area overhead of our architecture with respect to the TMR 
architecture. This overhead is expressed in percentage of the 
new architecture’s area. For all cases, the overhead required is 
trivial. 

C. Discussion 
In the sub-section above, we have compared the hybrid 

fault-tolerant architecture with the traditional TMR structure 
using bit-wise voter. The result showed that for large circuits, 
the hybrid architecture can save in average 30% dynamic 
power consumption while requiring only 3% more silicon area. 

We can also reduce static power consumption of the 
architecture by keeping the non-running logic circuit at standby 
using a specific input vector instead of the vector all zero. This 
additional feature requires only a small change in the “Input 
Multiplexor” (MUX_IN in Figure 1), which will not affect the 
area overhead or the dynamic power consumption of the 
architecture.  

With regard to the performance, the hybrid architecture 
guarantees that at least two logic circuits have the same output 
vector before providing this vector. This guarantee can only be 
achieved with TMR using word-wise voter, whose voter is 
larger and consumes more power than that of TMR using bit-
wise voter. 

V. IMPACT OF THE HYBRID FAULT TOLERANT 
ARCHITECTURE ON AGING PHENOMENON 

In this section we discuss the ability of the hybrid 
architecture to deal with aging phenomenon. In fact, since only 
two LCs are running, the remaining one does not compute any 
data and hence has no activity. Consequently, for a fault free 
functioning, the two running circuits are those that suffer the 
most from the aging phenomenon. The one in standby mode 
normally will have a higher expected aging time and may even 
recover from previous activity. Let us consider an example 
where 1-2 is the initial configuration. After a long fault-free 
running period, LC1 and LC2 will become older than LC3. 
When both LC1 and LC2 suffer from errors due to aging 
phenomenon, LC3 will not be able to tolerate such problem 
since the hybrid architecture require two fault-free operations 
to be compared. 

Our architecture must be modified in a way to balance the 
using time period of each LC. This can be done by modifying 
the FSM in a way to change the configuration periodically 
using one of the following methods: 

- Time: The configuration is changed after a certain 
number of fault-free clock periods. This solution 
requires a simple counter. 

- Pattern: The configuration is changed each time specific 
input patterns are applied. This solution requires a small 
memory to store these patterns. 

As second discussion on aging phenomenon, we analyze 
further the impact of using FSM1 or FSM2 to control the 
configuration. Remember that FSM1 changes the configuration 
when two consecutive errors are detected while FSM2 changes 
the configuration each time an error occurs. Let us consider the 
following notations: 

- Pi means that there is a permanent fault affecting LCi. 
- Sjk means that a transient fault occurs for the first period 

of use of j-k configuration. 
Tables V and VI present the fault tolerance capability of 

FSM1 and FSM2 for seven error scenarios. These scenarios 
cover some single error cases and also combinations of two 



errors (soft/permanent). In each table, the first row indicates the 
LC configuration used at each clock period and the remaining 
rows indicate the simulated scenarios. For example, scenario 
P1-S23 means that LC1 is affected by a permanent fault and that 
a soft error occurs when changing the configuration to 2-3. 

TABLE V.  FAULT TOLERANCE CAPABILITY OF FSM1 

 1-2 1-2 2-3 2-3 3-1 3-1 
S12 SE* OK*     

P1 HE* HE OK    

P2 HE HE HE HE OK  

P3 OK      

P1-S23 HE HE SE OK   

P2-S31 HE HE HE HE SE OK 

P3-S12 SE OK     
*SE: Soft Error detection        OK: Error tolerated 
 HE: Hard Error detection 

TABLE VI.  FAULT TOLERANCE CAPABILITY OF FSM2 

 1-2 2-3 3-1 1-2 2-3 3-1 
S12 SE OK     

P1 HE OK     

P2 HE HE OK    

P3 OK      

P1-S23 HE SE HE HE OK  

P2-S31 HE HE SE HE HE OK 

P3-S12 SE HE HE OK   
*SE: Soft Error detection        OK: Error tolerated 
 HE: Hard Error detection 

 
From these results, it appears that FSM1 tolerates soft 

errors in presence of hard errors faster (i.e. in less clock 
periods) than FSM2. At the end of the manufacturing process, 
LCs can be affected by some manufacturing defects (i.e. 
permanent faults). Therefore, the probability of having a 
combination of hard and soft errors is higher than the 
probability of having hard error only. Therefore, using FSM1 
to control the configuration seems to be the best solution for 
the beginning life cycle of the circuit. 

During subsequent life cycles, aging phenomenon will 
increase the number of permanent faults in the circuit. Then, 
the probability to have hard errors will increase. FSM2 
becomes more suitable in this case as it enables the tolerance of 
hard errors faster than FSM1. 

VI. CONCLUSION  
In this paper, we have proposed a hybrid architecture to 

improve the robustness of logic CMOS circuits. This 
architecture combines different types of redundancy to tolerate 
transient as well as permanent faults: information redundancy 
for error detection, temporal redundancy for transient error 
correction and hardware redundancy for hard error tolerance. 
Our approach has major benefits in terms of power 
consumption compared to classical TMR structure. 
Comparison using ISCAS’85, ISCAS’89 and ITC’99 

benchmark circuits showed that adding only 2% to 3% of area 
compared to TMR, the hybrid architecture can save on average 
30% of power consumption. In addition, it has been shown that 
its expected lifetime can be improved with regards to that of 
TMR fault tolerant structure. 
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