
HAL Id: lirmm-00651238
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00651238v1

Submitted on 12 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Fault Tolerant Architecture for Robustness
Improvement of Digital Circuits

Ahn Duc Tran, Arnaud Virazel, Alberto Bosio, Luigi Dilillo, Patrick Girard,
Serge Pravossoudovitch, Hans-Joachim Wunderlich

To cite this version:
Ahn Duc Tran, Arnaud Virazel, Alberto Bosio, Luigi Dilillo, Patrick Girard, et al.. A Hybrid Fault
Tolerant Architecture for Robustness Improvement of Digital Circuits. ATS 2011 - 20th IEEE Asian
Test Symposium, Nov 2011, New Delhi, India. pp.136-141, �10.1109/ATS.2011.89�. �lirmm-00651238�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00651238v1
https://hal.archives-ouvertes.fr

A Hybrid Fault Tolerant Architecture
for Robustness Improvement of Digital Circuits

D. A. Tran A. Virazel A. Bosio L. Dilillo
P. Girard S. Pravossoudovitch

LIRMM – University of Montpellier / CNRS
Montpellier, France

{tran, virazel, bosio, dilillo, girard, pravo}@lirmm.fr

H.-J. Wunderlich

Institut für Technische Informatik
Stuttgart, Germany

 wu@informatik.uni-stuttgart.de

Abstract—In this paper, a novel hybrid fault tolerant architecture
for digital circuits is proposed in order to enable the use of future
CMOS technology nodes. This architecture targets robustness,
power consumption and yield at the same time, at area costs
comparable to standard fault tolerance schemes. The
architecture increases circuit robustness by tolerating both
transient and permanent online faults. It consumes less power
than the classical Triple Modular Redundancy (TMR) approach
while utilizing comparable silicon area. It overcomes many
permanent faults occurring throughout manufacturing while still
tolerating soft errors introduced by particle strikes. These can be
done by using scalable redundancy resources, while keeping the
hardened combinational logic circuits intact. The technique
combines different types of redundancy: information redundancy
for error detection, temporal redundancy for soft error
correction and hardware redundancy for hard error tolerance.
Results on largest ISCAS and ITC benchmark circuits show that
our approach has an area cost negligible of about 2% to 3% with
a power consumption saving of about 30% compared to TMR.
Finally, it deals with aging phenomenon and thus, increases the
expected lifetime of logic circuits.

Keywords-transient error, permanent error, robustness, fault
tolerance, TMR, power consumption, aging phenomenon.

I. INTRODUCTION
CMOS technology scaling allows the realization of more

and more complex systems, reduces production costs and
optimizes performances and power consumption. Today, each
CMOS technology node is facing reliability problems [1]
whilst there is currently no alternative technology as effective
as CMOS in terms of cost and efficiency. Therefore, it
becomes essential to develop methods that can guarantee a
high robustness for future CMOS technology nodes.

A high integration density affects the robustness of a circuit
during its functioning as well as during its manufacturing.
Smaller size of transistors makes the circuit more vulnerable to
soft errors where devices are not permanently damaged.
Moreover, a high integration density causes a high defect
density, which results in hard errors and a lower manufacturing
yield.

To increase the robustness of future CMOS circuits and
systems, fault tolerant architectures might be one solution. In
fact, these architectures are commonly used to tolerate on-line
faults, i.e. faults that appear during the normal functioning of
the system, irrespective of their transient or permanent nature
[2]. Moreover, it has been shown in [3, 4, 5] that they could
also tolerate permanent defects and thus help improving the
manufacturing yield.

Various solutions using fault tolerant techniques for
robustness improvement have been studied, of which they
mainly target the tolerance of transient and/or permanent faults.
While increasing fault tolerance capability, keeping a low area
overhead is also a main optimization criterion of these works.
In [3, 4, 5], the authors proposed manufacturing yield
improvement as a new goal. Beside, other aspects such as
power consumption, aging and expected lifetime of circuits are
of the same importance. Although being the subjects of
research in fault tolerant communication, e.g. in network on
chip [6], these aspects have not been studied for random logic
cores. Here for the first time, our study provides a fault tolerant
architecture that targets different goals: increasing circuit
robustness, keeping a low area overhead, saving power
consumption and extending the expected lifetime of logic
circuits. This paper will focus on the derivation of a scalable
fault tolerant method, which achieves significant power saving
with an area overhead comparable to existing solution. The
aging phenomenon discussed in the last section will be further
studied in the upcoming paper.

Our hybrid fault tolerant architecture uses three types of
redundancy: information redundancy for error detection,
temporal redundancy for transient error tolerance and hardware
redundancy for permanent error correction. Similar to TMR,
this architecture consists of implementing three times the
combinational logic part of the circuit. However, only two of
them are running in parallel during functional mode of
operation. A Finite State Machine (FSM) performs the
selection of the running logic parts. It changes the architecture
configuration with respect to the error detection made by a
comparator. This architecture is compared to the classical TMR
structure in terms of area overhead and power consumption.
Results on ISCAS’85, ISCAS’89 and ITC’99 benchmark
circuits show that our approach has negligible area cost of
about 2% to 3% while TMR consumes 30% more power.

 The remaining parts of this paper are organized as follows:
Section II briefly reviews different fault tolerant techniques.
Section III provides the principle as well as the functioning of
the hybrid fault tolerant architecture. Comparisons with the
TMR approach in terms of area and power consumption are
discussed in Section IV. Section V analyzes impacts of our
architecture on aging phenomenon. Finally, Section VI
concludes the paper and provides some perspectives.

II. FAULT TOLERANT TECHNIQUES
Existing fault tolerant techniques are commonly used to

tolerate on-line faults [7]. They use redundancy, i.e., the
property of having spare resources that perform a given

2011 Asian Test Symposium

function and tolerate defects. These techniques are generally
classified by the type of redundancy used. Basically, three
types of redundancy are considered: information, temporal and
hardware [2].

In information redundancy, additional data are used. For
example, the use of error-correcting codes requires extra bits
that need to be added to the original data bits [2]. Error-
correcting codes are widely used in memories, but their
application to logic cores requires a significant design effort
associated with a high area overhead used for code prediction
and computation [8, 9, 10].

Temporal redundancy consists of forcing the system to
repeat a given operation and then compare the result obtained
with that of the previous operation [11, 12]. Such a redundancy
is able to tolerate soft and timing errors but not permanent
errors.

Finally, hardware redundancy consists of modifying the
design by adding extra hardware. For example, instead of
having a single processor, three processors are embedded to
perform the same operation. The failure of one processor is
tolerated thanks to a voter that chooses the majority outputs [2].

Each presented redundancy has different pros and cons with
respect to the tolerance of soft and hard errors. For example,
temporal redundancy targets only soft error while hardware
redundancy is too expensive to target such error type.
Consequently, it is judicious to use combination of
redundancies in order to take advantage of each one. In this
context, authors in [13] have proposed a hybrid fault tolerant
architecture that uses information and hardware redundancies.
In the same way, we build our hybrid fault tolerant structure in
order to target robustness improvement (soft and hard error
tolerance), manufacturing defect tolerance, power saving and
circuit expected lifetime enhancement (aging phenomenon).

III. THE HYBRID FAULT TOLERANT ARCHITECTURE
Our goal is to increase the robustness of emerging CMOS

circuits and systems by tolerating transient and permanent
faults. While solutions for timing violations and soft errors in
sequential elements can be found in the literature such as razor
register proposed in [14, 15], this paper targets only robustness
improvement in combinational part of digital circuits.

Based on the redundancy types presented in Section II, we
present a new hybrid fault tolerant architecture. It uses three
types of redundancy: information redundancy for error
detection, temporal redundancy for transient error tolerance
and hardware redundancy for permanent error correction. In
the following sub-sections we present the principle and the
possible configurations of the architecture.

A. Principle
Information redundancy for error detection coupled with

temporal redundancy for error correction is a solution to
tolerate transient errors. This first level architecture is shown in
Figure 1. The information redundancy module is running in
parallel with the Logic Circuit (LC). The Checker enables the
error detection. Its output signal is used to activate the temporal
redundancy module, which enables/disables the input/output
registers. Consequently, in case of error detection, the logic
computation could be re-run with the same input data and only
transient errors are tolerated.

Figure 1. Architecture for transient error tolerance

Information redundancy for logic circuits has been studied
in [8, 9, 16] where authors targeted low hardware code
predictors. Although effective, these techniques require
structural modifications of the original logic circuit. In [10], a
synthesizing flow is proposed to generate parity code
predictors without modification on the logic circuit structure.
However, the main conclusion of this study is that parity code
prediction for logic circuit is costly (in terms of area
comparable to the area of the logic circuit) and not sufficiently
effective in terms of error detection (in case of multiple errors).
Accordingly, we use the duplication and comparison as
information redundancy for our hybrid architecture. Therefore,
the information redundancy module in Figure 1 will be
replaced by a duplication of LC, while an output comparator
replaces the checker.

As we have discussed in Section II, hardware redundancy is
necessary for permanent error tolerance. A third circuit must be
embedded to tolerate the malfunction. The global architecture
is presented in Figure 2. As for TMR architectures, the LC is
implemented three times (LC1, LC2 and LC3) but only two of
them are working in parallel and are selected with the help of
two multiplexors (MUX_IN, MUX_OUT). Consequently,
three configurations are possible.

The comparator verifies the good functioning of the current
configuration and its output (Ok signal) controls the enable
input of the registers. During fault free operations, the Ok
signal is true and the current configuration does not change. As
long as no error is detected, only two circuits are running. The
third one is in standby state. Since only two circuits are active
our architecture will consume less power than classical TMR.

Figure 2. Functional scheme of the hybrid architecture

If the comparator detects an error, the OK signal becomes
false and the registers are disabled. The Finite State Machine
(FSM) changes the configuration to tolerate the detected error
by controlling the multiplexors. Different configuration

procedures allowed by the FSM will be discussed in the next
sub-section. Note that, the architecture does not modify the
original LC structure compared to the hybrid solution proposed
in [13].

B. Configurations
As mentioned above, the FSM manages the configuration

of the architecture by selecting a couple of circuits to run in
parallel. When an error is detected, two tolerant schemes are
possible:

- FSM1: the FSM does not change the configuration
when the first error occurs. The two running circuits re-
compute the same input data. If the error still remains at
the second computation, the FSM changes the
configuration. This solution puts priority in the
tolerance of transient errors and requires more time for
tolerating permanent faults.

- FSM2: the FSM changes the configuration each time an
error is detected. This solution focuses on tolerating
permanent faults and needs more time for tolerating
transient faults.

The procedures for FSM1 and FSM2 are illustrated by
diagrams in Figure 3 and Figure 4 and examples in Table I (for
FSM1) and Table II (for FSM2).

Figure 3. State diagram of FSM1

For each diagram, the initial state is in gray while the final
state (the one indicating that no more correction/tolerance is
possible) is in black. The branches correspond to the three
configurations (1-2, 2-3 and 3-1). The edges illustrate the
transitions in the graph for each new clock period. Continuous
edges correspond to the case of error detection while dotted
edges are used for no error occurrence.

In Table I and II, the first row indicates the clock period;
the second one provides the architecture configuration, for
example 1-2 means that only LC1 and LC2 are running; the
third row highlights the input sequence; the last row indicates
the current state in the corresponding diagram. In the two
examples, when the first error occurs (error1), the same input
vector V3 is repeated during the next clock period. For FSM1,
the configuration still remains at branch 1-2 (state A1 and B1).

For FSM2, the configuration changes from state A2 of the
branch 1-2 to state B2 of the branch 2-3. When two
consecutive errors occur (error2 and error3), the input vector
V5 is repeated during the two next clock periods. FSM1 only
changes the configuration (from state B1 of the branch 1-2 to
state C1 of the branch 2-3) at the second error detection
(error3) while FSM2 reconfigures the architecture twice (from
state C2 of the branch 2-3 to state D2 of the branch 3-1, then to
state E2 of the branch 1-2).

Figure 4. State diagram of FSM2

TABLE I. FSM1 FUNCTIONING EXAMPLE

Clock period 1 2 3� 4� 5� 6� 7 8 9
Configuration 1-2 1-2 1-2� 1-2� 1-2� 1-2� 1-2 2-3 2-3
Input vector V1 V2 V3� V3� V4� V5� V5 V5 V6
Current State A1 A1 A1 B1 A1 B1 C1 D1 D1
 � � �
 error1 error2 error3

TABLE II. FSM2 FUNCTIONING EXAMPLE

Clock period 1 2 3� 4� 5� 6� 7 8 9
Configuration 1-2 1-2 1-2� 2-3� 2-3� 2-3� 3-1 1-2 1-2
Input vector V1 V2 V3� V3� V4� V5� V5 V5 V6
Current State A2 A2 A2 B2 C2 C2 D2 E2 A2
 � � �
 error1 error2 error3

IV. COMPARISONS WITH THE TMR ARCHITECTURE
In order to evaluate our fault tolerant architecture, we

compare it with the classical TMR solution using bit-wise voter
in terms of power consumption and required area. Logic
circuits used in these comparisons are ISCAS’85 benchmark
circuits and combinational parts of ISCAS’89 and ITC’99
benchmark circuits.

A. Power consumption
In this sub-section we compare TMR and the hybrid fault

tolerant architecture regarding power consumption. In order to
perform such comparison, both architectures were synthesized
using a 90nm technology with RTL Compiler™ [18]. Then, the
power consumption of each architecture was evaluated with

A1

D1

B1

C1

A2

B2

C2

D2

E2

NanoSim™ [19]. Note that, our power saving relies on the fact
that only two out of three logic circuits are running in parallel
while the third one is in standby. Therefore, we consider only
dynamic power in this comparison. Results are summarized in
Table III. The first four columns present the LC characteristics:
name, number of input, number of output and transistor count.
The last column show the additional power required by the
TMR implementation, expressed in percentage of the new
architecture’s power consumption.

TABLE III. POWER SAVING WITH THE HYBRID ARCHITECTURE
COMPARED TO TMR

Circuit n m NLC Power saving

c5315 178 123 4183 19%

c6288 32 32 8846 57%

c7552 206 107 4960 25%

s15850 611 684 9851 9%

s35932 1763 2048 25976 13%

s38417 1664 1742 27717 11%

s38584 1464 1730 34546 9%

b14s 277 299 13328 33%

b15s 485 519 27347 27%

b17s 1452 1512 81557 25%

b18 3357 3342 210655 28%

b19 6666 6669 424235 27%

b20s 522 512 27397 32%

b21s 522 512 28523 35%

b22s 767 757 42330 35%

As shown in Table IV, for largest circuits, the hybrid

architecture save about 30% of power consumption compared
to TMR except for ISCAS’89 benchmark circuits. In fact, these
circuits have many more inputs/outputs than other circuits of
the same size. Consequently, for these circuits, the
consumption of the logic part does not dominate the overall
architecture power consumption. Therefore, the fact that only
two LCs are running instead of three does not reduce the power
consumption as expected.

B. Area
The second evaluation of the hybrid architecture is related

to its silicon area compared to TMR. To perform this
comparison we first have to estimate the cost of each module
used by each architecture. Synthesis tools mentioned in the last
sub-section use an optimized module to realize the voter of
TMR, while no such optimization is provided for the
comparator of the hybrid architecture. Therefore, for fairness,
we use the transistor count method (i.e. the area of each module
is estimated by the number of required transistors) instead of
synthesis tools to evaluate the area of both architectures. In the
following calculations, we consider LC with n inputs and m
outputs.

1) Transistor count of a TMR architecture

The transistor count NTMR of a TMR architecture is defined
in the following equation:

 NTMR = 3× N LC + N REG + NVOTER (1)

where NLC, NREG and NVOTER are the transistor count of the LC,
the input/output registers and the voter respectively.

NLC is computed for the targeted circuit given the transistor
count of each logic gates.

NREG is computed with respect to the number of LC
input/output and with the transistor cost of a D flip-flop. From
the classical transistor view of a D flip-flop with an enable
command, we estimate its cost to 14 transistors. Consequently,
the transistor count NREG is calculated by the following
equation:

 N REG = 14 × (n + m) (2)

Outputs of the three LCs are voted separately by m one-bit-
voters. Each one-bit-voter receives three signal a, b, c and
provides the output signal v as follows:

 v = f (a,b,c) = ab + bc + ca = ab.bc.ca (3)

Therefore, a one-bit-voter can be built by three 2-input
NAND gates and one 3-input NAND gate. So, the cost of a
one-bit-voter is 18 transistors. The transistor count NVOTER is
calculated by the following equation:

 NVOTER = 18 × m (4)

Finally, we have:

 NTMR = 3× N LC +14 × (n + m) +18 × m (5)

2) Transistor count of the hybrid architecure

The transistor count NHFT of the hybrid fault tolerant
architecture for robustness improvement is defined by the
following equation:

 N HFT = 3× N LC + N REG + N MUX _ IN

 +N MUX _OUT + NCOMP + N FSM (6)

where NMUX_IN, NMUX_OUT, NCOMP and NFSM are the transistor
count of the input multiplexors, the output multiplexors, the
comparator and the FSM respectively.

The input multiplexor allows the selection of which couple
of LCs is running. In addition, it keeps the third LC in a
standby state by simply connecting its inputs to the ground.
Using transmission gates, this module requires 9 transistors per
output.

 N MUX _ IN = 9 × n (7)

The output multiplexors allow the selection of two LC
outputs to make the comparison. This is simply done by using
two one-bit multiplexors (2:1) for each LC output. The
transistor count for output multiplexors is therefore:

 N MUX _OUT = 8 × m (8)

The comparator is made of two stages. The first one
performs m bit–comparisons of the running LCs output. These
comparisons are done by XOR functions, which can be realized

with a low area gate of 4 transistors [17]. The second stage
consists of building the global comparison signal (Ok signal in
Figure 2). This can be done by an OR tree. For different LC
output number, we evaluated the transistor count to build the
comparator function. Results obtained show a linear relation
between m and NCOMP:

 NCOMP = 6.67 × m (9)

Finally, the two versions of the FSM (FSM1 and FSM2
presented in Section III) were synthesized. As the transistor
count obtained for FSM1 and FSM2 were respectively 320 and
366, we use the following average cost:

 N FSM ≈ 340 (10)

As a result, we have:

 N HTF ≈ 3× N LC + 9 × n +14.67 × m + 340 (11)

3) Area comparisons

With the help of Equations (5) and (11), we compared the
area cost of our architecture with TMR for ISCAS’85
benchmark circuits and combinational parts of ISCAS’89 and
ITC’99 benchmark circuits used as LCs. Results are reported in
Table IV.

TABLE IV. AREA OVERHEAD OF THE HYBRID ARCHITECTURE
COMPARED TO TMR

Circuit n m NLC NTMR NHFT Overhead

c5315 178 123 4183 18977 20509 7%

c6288 32 32 8846 28010 28531 2%

c7552 206 107 4960 21188 23026 8%

s15850 611 684 9851 59995 63556 6%

s35932 1763 2048 25976 168146 177533 5%

s38417 1664 1742 27717 162191 171706 6%

s38584 1464 1730 34546 179494 187249 4%

b14s 277 299 13328 53430 55267 3%

b15s 485 519 27347 105439 108416 3%

b17s 1452 1512 81557 313383 321756 3%

b18 3357 3342 210655 785907 805331 2%

b19 6666 6669 424235 1579437 1617563 2%

b20s 522 512 27397 105883 109216 3%

b21s 522 512 28523 109261 112594 3%

b22s 767 757 42330 161952 166674 3%

The three first columns present respectively the name

(Circuit), the number of input (n) and the number of output (m)
of each LC. The three next columns show the transistor count
of the LC (NLC), of the TMR architecture (NTMR) and of the
hybrid architecture (NHFT). Finally, the last column gives the
area overhead of our architecture with respect to the TMR
architecture. This overhead is expressed in percentage of the
new architecture’s area. For all cases, the overhead required is
trivial.

C. Discussion
In the sub-section above, we have compared the hybrid

fault-tolerant architecture with the traditional TMR structure
using bit-wise voter. The result showed that for large circuits,
the hybrid architecture can save in average 30% dynamic
power consumption while requiring only 3% more silicon area.

We can also reduce static power consumption of the
architecture by keeping the non-running logic circuit at standby
using a specific input vector instead of the vector all zero. This
additional feature requires only a small change in the “Input
Multiplexor” (MUX_IN in Figure 1), which will not affect the
area overhead or the dynamic power consumption of the
architecture.

With regard to the performance, the hybrid architecture
guarantees that at least two logic circuits have the same output
vector before providing this vector. This guarantee can only be
achieved with TMR using word-wise voter, whose voter is
larger and consumes more power than that of TMR using bit-
wise voter.

V. IMPACT OF THE HYBRID FAULT TOLERANT
ARCHITECTURE ON AGING PHENOMENON

In this section we discuss the ability of the hybrid
architecture to deal with aging phenomenon. In fact, since only
two LCs are running, the remaining one does not compute any
data and hence has no activity. Consequently, for a fault free
functioning, the two running circuits are those that suffer the
most from the aging phenomenon. The one in standby mode
normally will have a higher expected aging time and may even
recover from previous activity. Let us consider an example
where 1-2 is the initial configuration. After a long fault-free
running period, LC1 and LC2 will become older than LC3.
When both LC1 and LC2 suffer from errors due to aging
phenomenon, LC3 will not be able to tolerate such problem
since the hybrid architecture require two fault-free operations
to be compared.

Our architecture must be modified in a way to balance the
using time period of each LC. This can be done by modifying
the FSM in a way to change the configuration periodically
using one of the following methods:

- Time: The configuration is changed after a certain
number of fault-free clock periods. This solution
requires a simple counter.

- Pattern: The configuration is changed each time specific
input patterns are applied. This solution requires a small
memory to store these patterns.

As second discussion on aging phenomenon, we analyze
further the impact of using FSM1 or FSM2 to control the
configuration. Remember that FSM1 changes the configuration
when two consecutive errors are detected while FSM2 changes
the configuration each time an error occurs. Let us consider the
following notations:

- Pi means that there is a permanent fault affecting LCi.
- Sjk means that a transient fault occurs for the first period

of use of j-k configuration.
Tables V and VI present the fault tolerance capability of

FSM1 and FSM2 for seven error scenarios. These scenarios
cover some single error cases and also combinations of two

errors (soft/permanent). In each table, the first row indicates the
LC configuration used at each clock period and the remaining
rows indicate the simulated scenarios. For example, scenario
P1-S23 means that LC1 is affected by a permanent fault and that
a soft error occurs when changing the configuration to 2-3.

TABLE V. FAULT TOLERANCE CAPABILITY OF FSM1

 1-2 1-2 2-3 2-3 3-1 3-1
S12 SE* OK*

P1 HE* HE OK

P2 HE HE HE HE OK

P3 OK

P1-S23 HE HE SE OK

P2-S31 HE HE HE HE SE OK

P3-S12 SE OK
*SE: Soft Error detection OK: Error tolerated
 HE: Hard Error detection

TABLE VI. FAULT TOLERANCE CAPABILITY OF FSM2

 1-2 2-3 3-1 1-2 2-3 3-1
S12 SE OK

P1 HE OK

P2 HE HE OK

P3 OK

P1-S23 HE SE HE HE OK

P2-S31 HE HE SE HE HE OK

P3-S12 SE HE HE OK
*SE: Soft Error detection OK: Error tolerated
 HE: Hard Error detection

From these results, it appears that FSM1 tolerates soft

errors in presence of hard errors faster (i.e. in less clock
periods) than FSM2. At the end of the manufacturing process,
LCs can be affected by some manufacturing defects (i.e.
permanent faults). Therefore, the probability of having a
combination of hard and soft errors is higher than the
probability of having hard error only. Therefore, using FSM1
to control the configuration seems to be the best solution for
the beginning life cycle of the circuit.

During subsequent life cycles, aging phenomenon will
increase the number of permanent faults in the circuit. Then,
the probability to have hard errors will increase. FSM2
becomes more suitable in this case as it enables the tolerance of
hard errors faster than FSM1.

VI. CONCLUSION
In this paper, we have proposed a hybrid architecture to

improve the robustness of logic CMOS circuits. This
architecture combines different types of redundancy to tolerate
transient as well as permanent faults: information redundancy
for error detection, temporal redundancy for transient error
correction and hardware redundancy for hard error tolerance.
Our approach has major benefits in terms of power
consumption compared to classical TMR structure.
Comparison using ISCAS’85, ISCAS’89 and ITC’99

benchmark circuits showed that adding only 2% to 3% of area
compared to TMR, the hybrid architecture can save on average
30% of power consumption. In addition, it has been shown that
its expected lifetime can be improved with regards to that of
TMR fault tolerant structure.

REFERENCES
[1] Semiconductor Industry Association (SIA), “International Technology

Roadmap for Semiconductors (ITRS)”, 2010.
[2] I. Koren and C. Krishna, “Fault Tolerant Systems”, Morgan Kauffman

Publisher, 2007.
[3] L. Fang and M. S. Hsiao, “Bilateral Testing of Nano-scale Fault-tolerant

Circuits”, in Proc. of IEEE Int. Symp. on Defect and Fault-Tolerance in
VLSI Systems, pp. 309-317, 2006.

[4] J. Vial, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A.
Virazel, “Using TMR Architectures for Yield Improvement”, Int. Symp.
on Defect and Fault Tolerance in VLSI Systems, pp. 7-15, 2008.

[5] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault and S.
Pravossoudovitch, “Is TMR Suitable for Yield Improvement?”, IET
Computers and Digital Techniques, vol. 3, No 6, pp. 581-592,
November 2009.

[6] A. Pullini et al. , “Fault Tolerance Overhead in Network-on-Chip Flow
Control Schemes”, in Proc. of Annual Symposium on Integrated Circuits
and System Design, pp. 224-229, 2007.

[7] C. E. Stroud and A. E. Barbour, “Design for Testability and Test
Generation for Static Redundancy System Level Fault Tolerant
Circuits”, Proc. of IEEE Int. Test Conference, pp. 812-818, 1989.

[8] N. A. Touba and E. J. McCluskey, “Logic Synthesis of Multilevel
Circuits with Concurrent Error Detection”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16, No
7, pp. 783-789, July 1997.

[9] S.-B. Ko and J.-C. Lo, “Efficient Realization of Parity Functions in
FPGAs”, Journal of Electronic Testing Theory and Application, vol. 20,
No 3, pp. 489-499, October 2004.

[10] D. A. Tran, A. Virazel A. Bosio, L. Dilillo, P. Girard, S.
Pravossoudovitch and H.-J. Wunderlich, “Parity Prediction Synthesis for
Nano-Electronic Gate Designs”, Int. Test Conference, poster 23, 2010.

[11] S. Laha and J. H. Patel, “Error correction in arithmetic operations using
time redundancy”, Proc. of IEEE Fault Tolerant Computing Symposium,
pp. 298-305, 1983.

[12] Y. H. Choi, M. Malek, “A Tolerant FFT Processor”, in Proc. of Faut
Tolerant Computing Symposium, pp. 814-823, 1985.

[13] S. Almukhaizim and Y. Makris, “Fault Tolerant Design of
Combinational and Sequential Logic Based on a Parity Check Code”, in
Proc. of IEEE Int. Symp. on Defect and Fault Tolerance in VLSI
Systems, pp. 563-570, 2003.

[14] T. Austin et al., “Making Typical Silicon Matter with Razor”, IEEE
Computer, vol. 37, No 3, pp. 57–65, 2004.

[15] S. Das, C. Tokunaga, S. Pant, W-H. Ma, S. Kalaiselvan, K. Lai, D.M.
Bull and D.T. Blaauw, “Razor II: In Situ Error Detection and Correction
for PVT and SER Tolerance”, IEEE Journal of Solid-State Circuits, vol.
44, No 1, pp. 32-48, 2009.

[16] K. De, C. Nataraian, D. Nair and P. Banerjee, “Synthesis of Reliable
Multilevel Circuits”, IEEE Transactions on VLSI Sytems, vol. 2, No 2,
pp. 186-195, 1994.

[17] M. J. Sharifil and D. Bahrepour, “A New XOR Structure Based on
Resonant-Tunneling High Electron Mobility Transistor”, VLSI design
journal, January 2009.

[18] Cadence Inc., RTL Compiler, User Guide 2008.
[19] Synopsys Inc., NanoSim™, User Guide 2006.

