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Abstract—The metadata aspect of Domain Names (DNs) en-
ables us to perform a behavioral study of DNs and detect if
a DN is involved in in-browser cryptojacking. Thus, we are
motivated to study different temporal and behavioral aspects
of DNs involved in cryptojacking. We use temporal features
such as query frequency and query burst along with graph-
based features such as degree and diameter, and non-temporal
features such as the string-based to detect if a DNs is suspect to
be involved in the in-browser cryptojacking. Then, we use them
to train the Machine Learning (ML) algorithms over different
temporal granularities such as 2 hours datasets and complete
dataset. Our results show DecisionTrees classifier performs the
best with 59.5% Recall on cryptojacked DN, while for unsuper-
vised learning, K-Means with K=2 perform the best. Similarity
analysis of the features reveals a minimal divergence between
the cryptojacking DNs and other already known malicious DNs.
It also reveals the need for improvements in the feature set of
state-of-the-art methods to improve their accuracy in detecting
in-browser cryptojacking. As added analysis, our signature-based
analysis identifies that none-of-the Indian Government websites
were involved in cryptojacking during October-December 2021.
However, based on the resource utilization, we identify 10 DNs
with different properties than others.

Keywords-Blockchain, Cryptojacking, Domain Name, Security,
Machine-Learning

I. INTRODUCTION

Cryptojacking is a distributed mining approach in which
cyber-criminals perform cryptocurrency mining activities il-
legally over the Internet by infecting a user’s device. Here,
Crypto-miners illegally control the user’s device computational
resources for cryptocurrency mining purposes either by (a)
installing malware that performs mining activities or (b) when
a user visits some URL/website, till the time user is active on
the URL, in the background execute mining scripts on the user
devices. Such techniques facilitate the miners to get financial
benefits without compromising their computational resources,
cost, and sharing of the mining rewards with the compromised
user. Ameliorated with sanctions of a state on the mining
processes, environmental concerns [1], and the adoption of
cryptocurrencies, cryptojacking is increasing at an alarming
pace and becoming a concern for cyber security experts [2],
[3]. To limit cryptojacking, some security companies such as
Norton have started to provide mining pool services to their
users officially.

Besides cryptojacking malware, one of the most common
and easy ways to perform cryptojacking is via in-browser
cryptojacking. Here, cyber-criminals use JavaScript (JS) and
WebAssembly (WASM) to perform cryptojacking. Such a type
of cryptojacking is easy to implement but hard to detect. Now

defunct, one of the most popular mining scripts was developed
by CoinHive [4]. Many website owners (especially those
involved in gaming and multimedia content) use such mining
scripts on their websites for alternate revenue [S)]. In [6],
the authors investigated if the discontinuation of CoinHive
impacted cryptojacking. Using CMTracker [7], they concluded
that attackers evolved and introduced new mining scripts.
Thus, it does not impact cryptojacking.

In-browser cryptojacking detection techniques mainly crawl
the source code of the websites to extract explicit keywords or
signatures [8], [9]. Further, some techniques analyse (a) com-
putational resource utilization (CPU, GPU, memory, disk) [8]],
[10l, (b) scripting code [8], [L1], (c) opcode [12]], [13l], (d)
trace network packets [[14], [15]], and (e) hash function [7], [16]]
of mining script. On the contrary, for evasion, cryptojackers
now use different techniques such as CPU limiting, code
obfuscation, payload hiding, and changing the used script
Jfrequently to evade naive detection approaches.

Websites also have a unique signature on their metadata.
Such metadata includes Domain Name (DN) and Domain
Name System (DNS) records (including IP address, NS ad-
dress, location, and others). Thus, can such metadata (DN
and DNS records) help detect websites performing/involved
in in-browser cryptojacking? In one of the state-of-the-art
approaches [17] (for details, refer to Section , the authors
presented an approach to detect suspicious domains using
temporal and non-temporal properties of DNS records in the
blockchain ecosystem. They analyzed the DNS traffic records
and identified temporal (i.e., time-series based) and non-
temporal (i.e., non-time series based) properties to understand
the actual behavior of DNs on two temporal granularities
(i.e., 2H (sub-datasets of 2 hour duration) and ALL (complete
dataset)). As in-browser cryptojacking is one type of mali-
cious/illicit activity, it motivates us to check if the approaches
such as [17] can be used to detect in-browser cryptojacking.
Here, we check the impact of the metadata information on
the detection of cryptojacking websites in two ways, (i) we
study and analyze the similarity between the features of in-
browser cryptojacking DNs and other malicious DNs and (ii)
we validate if existing state-of-the-art methods can detect the
in-browser cryptojacking. We observe DecisionTrees classifier
performs the best with 59.5% Recall among other supervised
ML algorithms, and 228 DNs show high similarity with
malicious DNs across different temporal granularities using
K-Mean with K=2.

Further, in the past Indian Government websites have wit-
nessed in-browser cryptojacking [18]]. Thus, apart from the



above validations, we also perform an analysis of Indian
Government websites from the cryptojacking perspective to
know if any Indian Government website is under attack. This
analysis includes signature crawling and resource utilization
analysis (i.e., CPU, device, disk, and network) and whois
record. Here, we perform K-Mean clustering (because of
the unavailability of ground truth) using resource utilization
features to identify the DNs with distinct resource utilization.
Note that we understand that cryptojacking is dynamic (source
code of websites may change over time), and Wayback Ma-
chine archives may provide old snap-shots of source codes.
Still, Wayback Machine does not log associated scripting
codes, which is essential to us. Due to this unavailability
of associated scripting codes and associated DNS for all In-
dian Government websites, we cannot use any state-of-the-art
method such as [17] for the analysis. Our analysis reveals that
none-of-the website contains a cryptojacking signature in their
code. Most of the websites are clustered in one cluster based
on our feature set (based on resource utilization, cf. Table [[).
Our analysis also identifies the distinct resource utilization by
10 Indian DNs, which should be investigated further. From
this point forward, we refer to in-browser cryptojacking as
cryptojacking interchangeably.

In short, our main contributions are:

o Comparative study: We present a comparative study
of the various state-of-the-art techniques used to detect
in-browser cryptojacking. Here, we compare these state-
of-the-art techniques based on the features used, classi-
fier/method, dataset with the size, reported performance,
and limitations. We identify that no technique uses DNS
records for the in-browser cryptojacking detection.

o Similarity analysis between cryptojacking DNs and
other malicious DNs revealed the minimal divergence
between temporal features of malicious DNs and crypto-
jacking DNss.

o Effectiveness of the state-of-the-art methods such
as [17] towards identifying cryptojacked DNs: Our
validations reveal the need for improvement in the feature
set of the state-of-the-art methods such as [[17] to improve
their performance in detecting in-browser cryptojacking.

o Analysis of Indian Government websites reveals that
none-of-the Indian Government websites were involved
in cryptojacking during October-December 2021, and the
distinct resource utilization by 10 Indian Government
DNs.

This paper is structured as follows. The state-of-the-art
associated with the detection of cryptojacking is presented
in Section Section presents our methodology with an
in-depth validation accompanied by the result analysis in
Section Finally, we conclude with Section

II. RELATED WORK

This section presents the state-of-the-art works related to
the detection of in-browser cryptojacking. In [24], the authors
presented a survey of the cryptojacking malware detection
techniques and an overview of two cryptojacking datasets

and 45 significant cryptojacking attack instances. They clas-
sified the related techniques as static, dynamic, and hybrid
approaches. A static technique uses signature search (or
crawling) of known malware’s signature in scripting code. It
analyzes the script code, opcode (machine level binary code),
and hash algorithm to detect cryptojacking. Static tools such as
MinerRay [16] infer signatures of the hash function and use
an intermediate representation (IR) of both JS, and WASM
and inspect interactions between the client and cryptojacking
module for detection. A static technique suffers from the
obfuscated or unseen signatures problem and requires up-to-
date signatures for detection.

Dynamic techniques analyze the computational resources
(i.e., processor/CPU, memory, disk, power, and others) and
network traffic. These techniques are robust against evasion
techniques such as scripting code and throttling and can cap-
ture any behavioral changes [7]]. In [20], the authors proposed
a CPU usage metrics-based detector. In contrast, in [21]], the
authors proposed an approach-based on the host performance
counter-based features (i.e., CPU, memory, network usage,
and running processes within a host) and network flow-
based features (i.e., inbound/outbound flows from port 80
and 443 as Stratum mining protocol utilizes them). Another
dynamic approach-based tool called WebTestbench [[19] uses
system resources, energy consumption, network traffic, device
temperature, and user experience. While other approaches
such as [12] analyze the CPU instruction during the opcode
execution, and [[I1] analyze the execution patterns of JS and
WASM code and CPU utilization for detection. Similarly,
Crypto-Aegis [22] analyzes the network traces generated by
the node of Bitcoin, Monero, and ByteCoin under (i) no
VPN, (ii) Nord VPN, and (iii) Express VPN, to identify the
cryptomining activities (such as pool mining, solo mining,
and full active node). Apart from the aforementioned dynamic
techniques, MINOS [13] uses image-based classification and
deep learning techniques to distinguish between benign and
cryptojacked (i.e., those that have WASM script) opcode.

Hybrid approaches are more prominent than the static
and the dynamic approaches. Among hybrid approaches,
MineSweeper [8] uses signature crawling, WebSocket traffic
analysis, CPU usage analysis, code analysis of WebAssembly
script, and memory cache events during the execution. While
CapJack [10]] uses the CapsNet (Capsule Network) technol-
ogy to measure the abnormal resource utilization. Similarly,
approaches in [14]] and [15] perform static analysis based
on content-based, currency-based, and code-based, while dy-
namic analysis is based on CPU and battery consumption. A
content-based analysis is used to find the nature of websites
such as entertainment and sports; a currency-based analysis
is used to find the type of cryptocurrencies being mined
through in-browser cryptojacking. In contrast, the code-based
analysis is based on the code complexity of the script. Here,
the code analysis includes cyclomatic complexity, cyclomatic
complexity density, Halstead complexity, line of code, and
maintainability score. The approach’s results reveal 10-20
times higher CPU usage and =8 times more battery drainage



TABLE I: Summary of related studies

Technique Based On Method Datasets Performance / Limitation
Ref. S P M D N C O H DNS Oth Source Size Results
o Unable to handle
g [16] X X X x X x v v X X Crawling Alexa 1.2M 901 TLDs obfuscation techniques
n and Memory overhead
m | x x x x x x x v x o | Threshold Alexa 853K 2770 TLDs Detects only hash
based modeled signatures
Acc=>99.0%
VirusShare Recall=99.2% Performance validated
12 X X X X X X v X X X RF OpenDNS 1K Precision=99.2% on limited data
TPR=99.2%
FPR=0.9%
Alexa
BlackLists, Profit~5.5x |
PublicWWW, CPUR59% 1 Performance
[19] X v vV X / X X X X v Crawling CoinHive, 200K Tempa:52.8 X 1 and Time
CryptoLoot, Power~2.0x 1 overhead
JSEcoin,
E CoinHave
5 Acc=98.7% Address exclusively
5‘ [L1) X v X X Xx vV X X X v CNN Alexa 47K TPR=97.87% browser-based mining
FPR=0.74%
TLC, SMO, 1837 TLDs Performance validated
MISVM, Precision=1.0% on limited data
201 | x v X X X X X X X X Random Alexa 1.2K Recall=1.0%
SubSpace
K-Means Hybrid dataset, Precision, Recall, Limited
1211 X v vV X vV X X X X X DBSCAN CIC-IDS2018 - F1-Score= mining samples
Agglomerative >92.0
Self F1-Score=96.0% Solely relying on
el M RE Generated - AUC=99.0% the network traffic
Acc=98.97% Considers only WASM
1130 X X X Xx X X v X X X CNN PublicWWW - Precision=93.07% modules and does not
F1-Score=95.04% support JS modules
Detect only CryptoNight
(8] v V /X v /X X X X Crawling Alexa M - miners, Do not support
JS miners
[ 114l FCM Pixalate Acc=96.4% Scalability issue,
115] v Vv X X vV /O X X X v SVM Netlab360 5.7K FPR=3.3% Code obfuscation and
- RF FNR=3.7% WASM are not considered
£ Self DR=87.0% Address exclusively
f 110] v Vv Vv VvV VvV X X X X X CNN Generated 1.8K DR=99.0% browser-based mining
(after 11 sec.)
Alexa, . Exclusively depends
] VX X X v X X x X X Crawling M'fljestic, 1.8M 204 Campaigns on vulnerabi!ities of
PublicWWW, 48.9M 1136 TLDs CMS providers-
23] : such as WordPress

o Based on: ° Signature, P Processor / CPU, M Memory, D Disk, N Network Analysis, € Code Analysis, o Opcode, H Hashing Algorithm, DNS Domain Name

System, Oth Others, ® Method: ¥ Random Forest, “~*~ Convolutional Neural Network, 7 ~€ Two-Level Classification,
Multiple-Instance Support Vector Machine, S © Sequential Minimal Optimization, F@mdomSubSpace Random Subspace Method, @ * not used, ¥

specific mention,* times

by cryptojacking scripts. Further, in [9], the authors introduced
a cryptojacking campaigns detector based on the crawling
and NetFlow data traffic. They used WebAssembly, asm.js
(a technique translating high-level code, like C and C++
to JavaScript), WebSockets, and Stratum Mining Protocol to
detect cryptojacking.

These state-of-the-art approaches are summarized in Table [[]
with the reported features, classifier/method, dataset used
with the size, reported performance, and approach limitations.
Our study identifies that none-of-the discussed approaches
use DNS records/DNS-based techniques to detect in-browser
cryptojacking.

III. METHODOLOGY

Our approach follows the standard ML pipeline steps,
including data collection, data pre-processing, feature engi-
neering, ML algorithm, validation, and is motivated by [17],
which identifies illicit DNs using temporal (i.e., time-series
based) and non-temporal features. The non-temporal features

cM Fuzzy C-Means, MISV M
used, ~ no

include the string-based and DNS query/response-based fea-
tures. While the temporal features include the DNS query burst
and DNS dynamic graph-based (such as degree and diameter)
features. A burst is defined as an over-the-threshold value
for a given feature. Consider a graph that links all IPs and
NS addresses to the DN. A degree is thus defined as the
number of edges (IPs and NS addresses) associated with a
DN. Similarly, diameter is the largest shortest path of the
graph component in which that DN exists. These temporal
features are extracted using two temporal granularities: 2H (2
hours based data segments) and ALL (complete data). On these
datasets, we then apply both supervised and unsupervised ML
models to detect illicit DNs.

In the pre-processing step, we collect the data, label it (as
benign, malicious, and cryptojacking) using publicly available
sources, and segment it into different temporal granularities.
Here, we extract all 48 temporal and non-temporal features
(same as those in [[17], due to space constraints, we do not
list those features) and analyze the similarity (by comparing



the probability distribution) between the temporal properties
of the cryptojacking DNs and other malicious DNs. For the
unsupervised ML, we first apply the reported unsupervised
algorithm (as in [[17]]) to each 2H data segment and identify
the illicit DNs that have a >99.0% probability of being
malicious (computed as a ratio of the number of times a DN
behaves maliciously and the total number of times the DN
occurs). Then we identify the number of cryptojacked DNs
present in our suspicious list identified in the first step. For
the supervised ML models, we apply the reported supervised
ML model (DecisionTree Classifier in [17]) on ALL data
granularity to identify cryptojacked DNs. We also identify the
best performing ML model along with the hyperparameters by
configuring AutoML tools such as TPOT [25] with 11 different
supervised ML algorithms with multiple combinations of
their hyperparameters. We use unsupervised learning on 2H
temporal granularity datasets as behavioral changes are better
captured here than in the All dataset. Applying unsupervised
learning to All dataset will only provide one class to the DN,
while in the other case, for each dataset in 2H granularity,
we will get a class for each DN. As these classes would be
associated with time, behavioral changes are captured over
time.

To analyze the Indian Government websites, we crawl the
list of URLs present in [26]. We crawl the source code of the
page behind the listed URL. Our crawler performs a signature
search in the source code of the URL and all script codes
associated with the URL. If a signature is found in the source
code during crawling, we mark/label it as cryptojacked. Then,
we perform resources monitoring (using the “iostar” Linux
command) and capture the resource utilization for different
URLs. Further, we use the PyShark wrapper to capture differ-
ent measures from the network traces for each URL. Table
summarizes all list of resources we monitor. We do resource
monitoring two times at an interval of 150 seconds and take
the average of each measure we capture. We then analyze the
collected data based on clustering and graph connectivity. We
perform clustering to identify the DNs with distinct resource
utilization and graph connectivity to analyze the association
between the DNS records.

IV. VALIDATION AND RESULT ANALYSIS

We analyze the similarity between the cryptojacked DNs
and malicious DNs and validate the effectiveness of the DN-
based state-of-the-art such as [[17] to detect the cryptojacking
DNs. We use Python and supporting libraries such as Beautiful
Soup, Selenium Webdriver, PyShark, tldextract, whois, and
DNS Resolver to build our approach. Our methodology is
tested on a Linux machine with 1 TB storage, 64 GB RAM,
and an I7 Intel core 3.2GHz CPU.

A. Dataset

Our approach is validated on the Cisco Umbrella top 1
million dataset [23]] for January 2020. Our month choice is due
to the limited computing power available to us and to keep the
data the same as [17]]. It contains ~335 million DNS queries.

TABLE II: Resources measures

[ Measures [ Description
cpu_user % CPU used by user level applications
cpu_nice % CPU used by user level nice priority
cpu_system % CPU used by system level process
cpu_iowait % CPU idle time during which system had an
outstanding disk I/O request
cpu_steal % time spent in involuntary wait by the virtual CPU
cpu_idle % time that CPU was idle and the system did not have
an outstanding disk I/O request
sda_tps # transfers per second that were issued to sda

amount of blocks read/sec from sda
amount of blocks written/sec to sda

sda_kB_read/s
sda_kB_wrtn/s

sda_kB_read # blocks read
sda_kB_wrtn # blocks written
disk_read disk reads
disk_write disk writes
net_recv network receive
net_send network send
pkt_total total packets
pkt_send packets send
pkt_rec packets received
pkt_oth other packets

Of these, ~1.77 million DNS queries are distinct, and 42002
DNS queries have the malicious tag (from [17]]). For ground
truth on cryptojacking DNs, we use CoinHive BlackList [27],
CoinHive Domains [28], CoinHive Pixalate [29], Cryptocur-
rency Mining List [30], Cryptojacking Campaign List [31],
KnownCryptoURL [32], MinerBlock List [33]], NoCoin Black-
List [34]], Top Web Mining Sites [35], and the other websites
such as [9]. We understand that some of these lists might be
outdated, but we use them for the sake of completeness. There
are 29777 unique cryptojacked DNs/TLDs (top-level domains)
present in these lists. Only 1188 cryptojacked DNs are present
in our dataset with corresponding 21743 DNS queries. Out of
these 21743 DNS queries, 9681 DNS queries were unmarked
previously and considered benign in [17].

We use [26] to get a list of 8669 Indian Government URLSs
as of 5** August 2021 for our cryptojacking analysis. Out of
these DNs, only 155 DNs are available in our dataset. Due to
this limitation, we could not analyze the Indian Government
websites using the considered Umbrella dataset. Thus, we per-
form analysis based on signature crawling, resource utilization,
and associated DNS and whois records. We use a list of 66
cryptojacking signatures from studies such as [8]], [LO], [9],
[[1Sl], [6] for signature crawling.

B. Similarity analysis between Cryptojacking DNs and Other
Malicious DNs

We compare the distribution of temporal properties such as
query frequency, query frequency burst, degree, and diameter
associated with cryptojacked DNs and other malicious DNs
for the similarity analysis. Here, we measure the behavioral
similarity between the in-browser cryptojacked DNs (cDNs)
and malicious DNs (mDNs) to decide whether a DN-based
approach such as [17)] can detect cryptojacking DNs. For this,
we use ALL granularity data of the Cisco Umbrella dataset.

First, we study the distribution of the number of query
frequency (#QFreq) and the maximum query frequency
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Fig. 1: Cumulative distribution of different temporal properties and resource measures.

(maxQFreq) to analyze the similarity in query frequency. Fig-
ure [Ta] shows that the exponential distribution fits #QFreq for
the mDN class with x,,;,=1.0 and A=0.0400, while a positive
log-normal distribution fits the cDN class with x,,;,=1.0,
1=1.7092, and 0=1.4067. As the two distributions are dif-
ferent, #QFreq may not be a good feature when detecting
cryptojacking DNs using [17]]. Similarly, for the maxQFreq,
Figure [Ta] shows that the exponential distribution fits for both
classes with x,,;,=1.0 and A\={0.0793, 0.0852}, respectively.
The KL-Divergence (KLD) between the mDN and cDN class
distributions is 0.0026. Thus, it reveals that maxQFreq is a
good feature to detect cryptojacking using [17].

Next, we analyze the query frequency burst (cf. Figure
[[B). A query frequency burst is the frequency of a DNS
query which is more than a predefined value (i.e., 80% of
the maximum number of DNS queries of a DN during a
time frame). We compare the distributions of the number
of query bursts (#bursts) and the maximum size of query
burst (maxBurst) for each mDN and cDN class. We observe

that truncated-powerlaw best fits both classes and for both
the features. For the #bursts, for the both classes, x,,;,=1.0,
a cut-off parameters, B:% where A={0.0415, 0.0426}, and
a={1.0, 1.3878}, respectively. Similarly, for the maxBurst,
for the both classes, pin=3.0, a={3.5325, 3.8962}, and
A={0.2192, 0.1067}, respectively. The KLD in the case of
#bursts is 0.5244, while in the case of maxBurst is 0.0746.
This analysis also indicates that the two classes have the same
statistical property with small divergence and will not impact
the performance of [[17] when detecting cryptojacking DNs.

We next analyze the degree (cf. Figure [Ic). Here, we com-
pare the distributions of the number of times degree changes
(#chDeg) and the maximum size of a degree (maxDeg) over
time for each class of DNs. Figure [Ic| shows no valid fits for
both classes out of exponential, positive log-normal, truncated-
power-law, and power-law distributions for the #chDeg. Simi-
larly, for the maxDeg, Figure |Ic| shows a positive log-normal
distribution for mDN class with x,,;,=1.0, ©=0.6831, and
0=0.9453, and exponential distribution for cDN class with



Tmin=1.0, and A=0.4683. As the statistical properties are
different here, maxDeg can hamper the performance of [17]]
when detecting cryptojacking DNs.

Next, we analyze the diameter for both classes (cf. Figure
[Id). We study the distributions of the number of times diameter
changes (#chDia) and maximum diameter change (maxch-
Dia). We observe the positive log-normal distribution fits for
both classes of DNs with x,,;,=1.0, u={0.1741, 0.0532},
and 0={0.3773, 0.3986} for the #chDia, respectively. The
KLD between the mDN and cDN classes is 0.05. We also
observe that positive log-normal distribution fits the best both
class with Z;,;,=1.0, p={1.0906, 0.9939}, and 0={0.2856,
0.2499} for the maxchDia, respectively. The KLD between the
distributions of both classes is 0.1036. This small divergence
between the classes means that diameter may not hamper the
performance of [[17] when detecting cryptojacking DNs.

From the above similarity analysis, we observe divergence
in some features of the cDNs and mDNs. Thus, the state-of-
the-art feature vector (used for detecting the malicious DN,
i.e., [17]) can detect cryptojacking DNs, but some improve-
ments are needed, and new features should be included.

C. Effectiveness of a DN-based method [lI7|]

To understand if there is an impact on the performance of
state-of-the-art methods such as [17|] in identifying crypto-
jacked DNs/web pages, we perform validations using reported
unsupervised and supervised algorithms.

1) Validation of an unsupervised model of [I7]: We apply
K-Means (an unsupervised learning method) to each 2H data
segment with different values of K€[7,24]. This range of K is
the same as identified in [17]. The obtained results contain a
series of labels for each granularity representing the number
of times a particular DN showed malicious behavior. Among
the 9681 cryptojacked DNs (those previously unmarked in the
dataset), 9339 DNs show malicious behavior at least once.
While only 228 DNs have the probability of being malicious
>99.0%. Now because we know the ground truth of these
228 DNs is cryptojacked, we can affirmatively say that the
approach in [[17]] is effective and is able to detect cryptojacked
DNS. As in this work, we do not propose any new feature,
we do not quantify the effectiveness.

2) Validation of the supervised model of [I7]: In our
dataset, we have 9681 cryptojacked DNs with unmarked tags
and 12062 cryptojacked DNs with malicious tags in the ALL
data granularity. It means that the reported supervised ML
model (DecisionTrees Classifier) in [17] is already trained
with cryptojacked DNs. To validate the reported model for
detecting the cryptojacked DNs, we perform an 80%-20%
split of the dataset as well as the unmarked and cryptojacked
DNs. The 80% data is used for training while remaining
for testing. This resized dataset has 9681 cryptojacked DNs
and 186205 unmarked DNs (a total of 195886 DNs). We
apply the DecisionTrees Classifier with the same hyperparame-
ters, i.e., criterion=gini, max_depth=10, min_samples_leaf=13,
min_samples_split=12, splitter=best. Here, other hyperparam-
eters have default values used by the Python scikit-learn

TABLE III: Reported results by TPOT

Cryptojacking

DN in Dataset Classifier Results in (%)
Train Test BAcc Pre Rec F1
- 100% DT 67.56 | 86.0 | 35.64 | 50.0
80% 20% DT 72.02 | 85.0 | 44.45 | 58.0
Total 1771626

e Train: Training, Test: Testing, DT: DecisionTree, BAcc:
Balance-Accuracy, Pre: Precision, Rec: Recall, F1: Fl-score
1 criterion=gini, max_depth=10, min_samples_leaf=13,
min_samples_split=13, splitter=best,
1 criterion=entropy, max_depth=7,
min_samples_split=20, splitter=best.

min_samples_leaf=18,

library. It achieves 79.69% Balance-Accuracy. Here for cDN
class Precision is 97.0%, Recall is 59.5%, and FI-score
is 74.0%. Here, a low Recall on the cDN class signifies
the need for improvement in the model [17] for detecting
cryptojacking DNs. These validations tests reveal that reported
models in [17] are able to detect the DNs which are involved
in cryptojacking but with a low Recall. Thus, next, we validate
if there is any other supervised ML model that gives improved
results?

D. Identification of Improved ML Model

To identify the supervised ML model that provides better
results when identifying the cryptojacking DNs, we perform
two tests using different data configurations (based on the
distribution of cryptojacked DNs in the dataset). Here, we
not only identify which supervised ML algorithm performs
the best in our case but also report its hyperparameters.
For this analysis, we use ALL data granularity. To perform
such validation, we use the AutoML tool called TPOT. We
configure TPOT to use 11 different supervised algorithms
with custom hyperparameters. These supervised algorithms
are GaussianNB, BernoulliNB, DecisionTree, RandomfForest,
ExtraTrees, K-NearestNeighbors, GradientBoosting, Neural-
Network, SupportVectorMachines, LogisticRegression, and En-
sembleBagging. TOPT reports the overall best-identified algo-
rithm in terms of Balanced-Accuracy. We also report Preci-
sion, Recall, and F1-score for the cryptojacking class.

We use two data configurations include: (i) no cryptojacked
DNs is present in the training dataset, and all cryptojacked
DNs (i.e., 21743 DNs) are included in the testing dataset,
and (ii) cryptojacked DNs are distributed in an 80-20 ratio
between training and testing data. TPOT reports DecisionTree
with different hyperparameters as the best classifier in both the
test configurations. The results for both data configurations are
listed in Table along with the respective hyperparameters.
The hyperparameters that have default values used by Python
scikit-learn are not reported here. Here, the results reveal a low
Recall on the cDN class. This is not better than the already
reported DecisionTreee classifier in [17)]. Thus, it certainly
signifies the need for improvements in the feature set of [17]
to better identify the cryptojacked DNs.

E. Analysis of Indian Government websites

Indian Government websites are one of the preferred targets
of cryptojackers because these websites have high traffic and



end-user trust [[18]. In the past, two Government websites
of Andhra Pradesh, a state in India, have witnessed in-
browser cryptojacking/cryptomining activities [[18]]. 7o identify
the Indian Government websites that are compromised for
cryptocurrency mining, we perform our analysis in three parts,
(i) based on the signature crawling, (ii) based on resource
utilization, i.e., CPU, Device, Disk, and Network, and (iii)
based on the association between the DNS records of websites
(i.e., DN, associated IP addresses, Name-Server, and Country).

With signature crawling, we identify the cryptojacking DNs
based on the past reported signatures and mark them as sus-
picious for further analysis. The crawler opens each webpage
associated with a DN using selenium webdriver, reads it, and
searches the existence of 66 cryptojacking signatures in its
HTML code and all associated script codes. Here, against each
webpage, we record the matching signatures present on the
webpage. We identify 47 webpages have monero keyword,
and only 1 URL has a coin keyword. However, none-of-them
are associated with cryptomining. All the monero keywords
are associated with the font family, and the coin is linked
with a widget. This analysis shows that none-of-the Indian
webpages currently contain the cryptojacking signature in their
code during the mentioned period.

Next, we analyze resource utilization for each webpage
using iostat-c to measure the CPU utilization (cf. Figure
lle), iostat-d sda to measure the device utilization (cf. Fig-
ure , and dstat-disk-net to measure the disk utilization
statistics (cf. Figure [Ig). We also use the PyShark wrapper
to analyze live network packets (cf. Figure [Th). We set the
PyShark timeout to 30 sec, the selenium webdriver timeout to
90 sec, and the time gap between two resource measuring
points to 150 sec for resource and network analysis. We
perform this analysis from November to December 2021
and record the 19 resource measures (cf. Table [I). From
Figure we infer that the truncated-powerlaw best fits
cpu_iowait with a=1.54 and A\=0.118 and the positive log-
normal fits for cpu_user, cpu_system, and cpu_idle with
u={-5.08, -5.36, -14.24}, 0={1.57, 1.53, 3.65}, respectively.
Here, ,,in 1s 0.015 for the all four CPU measures. Simi-
larly, from Figure [Ifl we infer that the positive log-normal
distribution fits sda_tps, sda_kB_read/s, and sda_kB_wrtn/s
with 2.,:,={0.01, 0.01, 0.02}, a={1.75, 1.47, 1.71} and
A={0.001, 0.0005, 0.06}, respectively. Next, Figure [l g shows
truncated-powerlaw best fits disk_read with x,,;,=1.0, =2.20
and A=2.72 and a positive log-normal distribution best fits
disk_write with x,,,;,=0.1, ©=0.19, 0=0.54. Similarly, Figure
shows truncated-powerlaw best fits pkt_oth with x,,;,=1.0,
a=1.0 and A=0.006 and the positive log-normal fits best for
pkt_total, pkt_send, and pkt_rec with x.,;,=1.0, p={2.82,
1.58, 1.37}, 0={1.42, 1.26, 1.28}, respectively.

Further, we apply the K-Means algorithm to the entire
recorded dataset to cluster the DNs with K€[2, 15]. Our choice
(range on K) is based on the data size. We choose the best K
based on the silhouette score. We check the silhouette score for
different values of K and find K=2 provides the best silhouette
score of 0.975 (different silhouette scores obtained for different

TABLE 1IV: Silhouette Scores (S)

K 2 3 4 5 6 7 8
S 1097 | 095 | 094 | 0.72 | 0.70 | 0.65 | 0.67
K 9 10 11 12 13 14 15
S | 066 | 0.66 | 0.66 | 0.39 | 0.34 | 0.32 | 0.23

values of K are listed in Table[[V). After exploring the clusters
obtained for K=2, we find that one cluster has 8624 DNs while
the second cluster has only 10 DNs, indicating that these 10
DNs have different properties than the others and should be
monitored. Note that we do not use supervised ML algorithms
such as DecisionTree for the analysis due to the unavailability
of the ground truth of Indian Government websites.

After the signature crawling and resource utilization, we
extract features for each DN using the whois and tldex-
tract. These features are: subdomain, registered_domain, cre-
ation_date, updated_date, age, last_updated_age, Country, A
Record (IPv4 Address record), AAAA Record (IPv6 Address
record), NS (Name Server), MX (Mail Exchanger), TXT (Text),
CNAME (Canonical Name), DNAME (Delegation Name), SOA
(Start of Authority). Next, we build a graph using IP and NS
addresses. We identify 7 connected components in the graph,
and 8658 out of 8669 webpages lie in the largest component,
where all the DNs are hosted on National Informatics Center
servers. We also find that 1839 DNs do not have the Country
entry, and the remaining DNs have 21 unique countries. Out
of these, DNs of 6728 webpages are hosted in India, DNs
of 48 webpages are hosted in the USA, and DNs of 10
webpages are hosted in Estonia. We find one DN each is
hosted in countries such as Iceland, Canada, United Kingdom,
Singapore, Netherlands, Belize, China, Hong Kong, Hong
Kong, Indonesia, Ukraine, Romania, Japan, Panama, Brazil,
Belarus, France, and Switzerland.

V. CONCLUSION

Detection of in-browser cryptojacking is essential to safe-
guard users’ systems from illegal mining activities. Past ap-
proaches have used various techniques to detect in-browser
cryptojacking, such as signature crawling and resource anal-
ysis. Besides these techniques, meta-information attached
with a domain name also provides valuable inputs to detect
cryptojacking. In this work, we validate a metadata-based
technique [[17] to detect the in-browser cryptojacking DNs.
This technique uses metadata information of DNs and associ-
ated temporal and non-temporal properties for malicious DNs
detection. We also perform a comparative study of various
techniques that detect in-browser cryptojacking DNss.

Our analysis shows behavior similarity exists between the
cryptojacking DNs and other suspicious DNs. At the same
time, there is a need for improvement in the feature set of [[17]]
to improve the results of the approach. Our signature-based
analysis also identifies that none-of-the Indian Government
websites listed in [26] were involved in in-browser crypto-
jacking from October-December 2021. Our resource utilization
analysis finds different resource utilization by 10 DNs. Such
DNs require continuous and detailed behavior analysis before
marking them as suspects. Finally, we conclude that we need



to enhance the feature set of the metadata-based approach with
resources and network analysis-based features.

In the future, we would like to improve the metadata-based
approach and test it in a large dataset to detect in-browser
cryptojacking. We would also like to develop temporal data
of Indian Government websites, which will be helpful for the
metadata-based approach in the future.
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