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ABSTRACT

We present a taxonomy-driven approach to requirements specifica-
tion in a large-scale project setting, drawing on our work to develop
visualization dashboards for improving the quality of healthcare.
Our aim is to overcome some of the limitations of the qualitative
methods that are typically used for requirements analysis. When
applied alone, methods like interviews fall short in identifying the
full set of functionalities that a visualization system should support.
We present a five-stage pipeline to structure user task elicitation and
analysis around well-established taxonomic dimensions, and make
the following contributions: (i) criteria for selecting dimensions
from the large body of task taxonomies in the literature,, (ii) use
of three particular dimensions (granularity, type cardinality and
target) to create materials for a requirements analysis workshop
with domain experts, (iii) a method for characterizing the task space
that was produced by the experts in the workshop, (iv) a decision
tree that partitions that space and maps it to visualization design
alternatives, and (v) validating our approach by testing the decision
tree against new tasks that collected through interviews with further
domain experts.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Medium- to large-scale visualization projects present a number of
challenges to the research community. These challenges stem from
a need to steer the design and evaluation of visualization systems
toward supporting a diverse user population and heterogeneous data
sources. Qualitative techniques are typically adopted in the visual-
ization literature to identify user tasks and prioritize requirements
that cater to those tasks. The aim is to obtain a small number of
requirements that offers feasibility, given a project’s limited time
and resources, while also offering generalizability to a large number
of users and tasks.

To this aim, visualization researchers seek to answer questions
such as: (i) What abstract task categories cater to a diverse group
of users? (ii) What are the features/dimensions that characterize
these abstract tasks and allow for the elicitation and generation of
similar ones? (iii) How to map these task features/dimensions to
visualization features? To address these questions, a number of multi-
dimensional task taxonomies and typologies have been presented in
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the literature [2, 3, 6, 29]. They have been proven especially useful
in the later stages of design that map identified task categories to
visualization features [13, 14, 30]. A recent study by Kurzhals and
Weiskopf [15] highlighted the benefits of adding structure to the
earlier stages of design. By adopting a grid technique in interviews,
they were able to capture previously missed knowledge constructs,
and to relate them to specific visualization features.

In this paper, we develop a five-stage pipeline to elicit user tasks
and map them to visualization features, as part of the requirements
analysis phase of a project called QualDash. The aim of QualDash
is to design and develop a visualization dashboard that supports the
use of National Clinical Audit (NCA) data for quality monitoring
in healthcare. NCAs are databases commissioned and managed on
behalf of NHS England by the Healthcare Quality Improvement Part-
nership (HQIP). Our design context is, therefore, one of a large-scale
visualization project, which presents the challenges of numerous
heterogeneous user groups and a vast diversity of tasks.

Figure 1 outlines the five stages of our pipeline. Our contributions
in this paper can be summarized along the different stages as follows:

1. Selection of dimensions: We explain our process for selecting
task space dimensions from the wealth of taxonomies avail-
able in visualization literature (Section 3), and report on three
dimensions that we found useful in a real-world setting.

2. Task generation: How we used those dimensions to design a
workshop activity for user story generation [8, 10] (Section 4).
The workshop brought together 26 participants representing
22 different NCAs.

3. Task space characterization: A method for characterizing
the tasks, to identify the distinct levels of each dimension
(Section 5).

4. Decision Tree construction: A method for partitioning the
task space along the dimensions to obtain a decision tree that
maps a given task to visualization design alternatives (Sec-
tion 6).

5. Validation: We demonstrate the validity of our decision tree
by testing it against new tasks that were collected through two
semi-structured interviews, which used the three task space
dimensions, and resulted in a consolidated list of functional
requirements for QualDash (Section 7).

2 BACKGROUND AND RELATED WORK

Software requirements specification typically encompasses two
views: (i) the user’s view of external system behavior; and (ii) the
developer’s view of the internal system characteristics [9]. In order
to bridge the gap between these views, the Volere template [22] is
widely adopted in the iterative process of requirements engineering
(RE). Sharp et al. noted, however, that in cases where the number of
requirements can grow large, a vast majority of them fall within the
functional requirements (FR) category [28]. This results in a large



Figure 1: A five-stage pipeline for taxonomy-driven requirement specification.

body of FRs remaining in an uncategorized and unstructured format,
which complicates prioritization of relevant functionalities. The re-
mainder of this Section focuses on two approaches that are typically
used to classify FRs and map them to concrete design alternatives:
the agile approach and the task taxonomy-driven approach.

2.1 The Agile Approach to RE

Agile analysts work collaboratively with their users to decompose
requirements in order to allocate priorities at the goal and sub-goal
level. A user story [8] is a short story describing a user role (who),
the task that the user wants to achieve (what) and the reason they
want to achieve it (why). User stories became the de facto standard
in agile RE. The use of facilitated workshops, involving a group
of users with the aim of developing user stories, is an extremely
popular approach for agile projects.

While user stories are effective in capturing the essence of func-
tional requirements, they share the same threats to validity that have
been reported for qualitative techniques [12]. Namely, structuring
methods need to be employed to draw out the detail of the func-
tionality or to provide a coherent view of the, often numerous, user
stories. In this paper we adopt the facilitated workshop technique for
user story generation from the agile approach, and merging it with a
taxonomy-driven approach derived from the visualization literature.

2.2 The Task Taxonomy-Driven Approach to RE

Much like agile analysts do, visualization researchers collaborate
with domain experts and end users to understand and prioritize
user tasks and goals. At a high level, models like the nine-stage
design methodology [27] guide the iterative phases of requirements
analysis, design, prototyping and evaluation. Others like the nested
model [20] and nested blocks [19] allow researchers to strategically
ground identified requirements and design decisions in theory. They
provide structure to these decisions. Specific to the requirements
analysis phase are several task taxonomies that have been introduced
in the visualization literature [1, 3, 4, 6, 12, 19, 25, 30]. Amar and
Stasko [3] and Sediq and Parsons [26] advocate the use of these
classifications as a systematic basis for thinking about the design
process. Use of task classifications as a “checklist” of design items
to consider has been repeatedly advocated [11, 16].

Recently, Kerracher et al. [12] promoted the usefulness of classifi-
cation for task understanding, data abstraction and technique design.
They argued that by setting out the range of potential tasks of interest
(i.e. the task space), one may overcome known problems associated
with simply asking people to introspect. Namely, the collected tasks

may be incomplete due to the users’ limited ability to articulate their
needs, or they may be skewed towards a specific user group. The
taxonomy-driven approach we present addresses these threats by
adding taxonomic structure to the task space creation process.

3 SELECTION OF TAXONOMY DIMENSIONS

This section describes how we chose dimensions from established
taxonomies to structure our requirements analysis in a real-world
project setting. Our work draws on the learn and discover stages of
the nine-stage design study methodology [27], to identify a set of
dimensions that “informs the data and task abstraction” [27]. The
criteria that we used prioritized dimensions that:

1. Cater to the application domain, e.g. all dimensions relating to
graph structures are removed.

2. Provide a clear separation between tasks in terms of their data
requirements.

3. Separate tasks that require different sets of visual encodings.

An iterative selection process begins with retrieving the set of
dimensions in relevant task spaces and taxonomies in the literature,
excluding dimensions that did not satisfy the criteria, and retaining
dimensions that were needed to preserve the distinctions that were
made in other criteria. Our survey of task taxonomies focuses on
addressing this goal, while a more extensive survey is beyond the
scope of this work.

Table 1S (see Supplemental Material) summarizes the taxonomies
we considered and lists the dimensions in each, along with the corre-
sponding levels of each dimension. After listing all the dimensions,
we went through a few iterations. At the first iteration, we excluded
taxonomies that targeted specific domain problems like Murray et
al. [21], which was specific to the area of visualizing biological
pathways. Next, we excluded taxonomies and typologies which
were designed to specific data structures (e.g. network or graph
visualization). Therefore, we excluded the taxonomies by Saket
et al. [23], Ahn et al. [1], Lee et al. [17] and Kerracher et al. [13].
We were then left with the more relevant taxonomies to our design
context. Within which few dimensions were inside the scope of
eliciting visualization design features for the quality monitoring
dashboard that we seek to design and develop for QualDash. Section
1 in Supplemental Material further details the process for filtering
these dimensions.



Three dimensions were found to satisfy the criteria and facilitate
RE. We label these dimensions as: granularity, type cardinality and
target. In the remainder of this Section, we describe each dimension
and the rationale for its selection. We also describe initial levels
for each dimension that were derived from the literature. These
levels are used as a starting point for task generation (Section 4) and
characterization (Section 5), to identify ones that are most relevant
to QualDash’s requirements.

In addition to the three dimensions, we considered the Goal
dimension presented by Schulz et al. [25], which distinguishes tasks
that are pursued by users in an exploratory, confirmatory or presenta-
tion setting. This dimension aligns with the “why” dimension of the
Brehmer and Munzner typology [6]. The levels of this dimension
were used to divide groups in the workshop activity and design the
corresponding guiding scenarios for each group, as will be discussed
in Section 4.

3.1 The Granularity Dimension

The Andrienko and Andrienko (AA) model defines two different
levels for task granularity [4]: elementary (involving individual
elements) and synoptic (involving sets as a whole). Bertin defined
three levels for this dimension (with an additional intermediate
level for subsets as a whole) [5]. Recent taxonomies by Kerracher et
al. [12,13] found this three-level approach to be useful within specific
visualization contexts. For example, for network visualization, it was
found useful to separate tasks that require the analysis of clusters or
groupings of nodes versus those that targeted the network as a whole.
Schulz et al.’s design space [25] also defines a granularity dimension
which aligns with Ben Shneidermans information seeking mantra:
(i) Overview all instances for a complete view; (i) Zoom and filter
on multiple instances for putting data in context; and (iii) Details on
demand for highlighting details.

All of the above have one thing in common, which is that they
distinguish between tasks that have different data aggregation re-
quirements: individual elements, aggregated subsets, or aggregation
of the whole dataset.

Granularity dictates the appropriateness of certain choices for
a visualization design. For example, a visualization of individual
patients would show many more data points than one that visualizes
aggragations of the same data for a whole organisation (e.g. a
hospital). Similarly, visualizations that cater to time as a continuum
are different from ones that use an ordinal scale to visualize time
blocks.

To consider these possibilities, we subdivided the granularity
dimension into three axes (population, time and space), which corre-
spond to the three types of referrers (i.e. independent variables) in
the AA model [4]. The levels of each axis that were appropriate for
the present research are shown in Table 1.

The population axis determines whether a task requires access
to individual level data (e.g. patient-level or physician-level), an
aggregate at an intermediate level (organisation or network of collab-
orating organisations), or aggregates at a global level (e.g. national)
without loss of information that is important for a given task. Given
the sensitive nature of healthcare data, it is crucial to understand
what data needs to be requested from providers, where and when
to capture the data, and what parts of it can be made accessible to
different users. The match between the granularity that users wish
to explore in their tasks and that which could be made accessible is
constrained by data governance. Typically, individual-level data can
be accessed only inside an organization, whereas aggregated data
can be shared within a network of institutions or individuals (e.g.
trust boards and professional bodies). It can also be made accessible
via the audit on a national scale.

The time axis discriminates between tasks that require real-time
data (that means daily, in the context of NCAs), an intermediate
aggregation (monthly) or aggregated periodic data that is made

available from the corresponding audit’s annual report. These levels
map to the three levels defined by Bertin [5].

Finally, the space axis specifies whether data should be collected
within a specific region or whether a location-agnostic dataset is
sufficient to address the task.

3.2 The Type Cardinality Dimension

The AA model defines a functional view of datasets and tasks [4]. In
this view, a dataset can be described mathematically as a function:

f(x1,x2, ...,xM) = (y1,y2, ...,yN) (1)

where M is the number of referrers (i.e. independent variables) and
N is the number of characteristics (i.e. dependent variables). The
cardinality of the set of M referrers and N characteristics considered
can determine the dimensionality of the visualization alternatives
to consider. We must stress here that our use of the word “cardi-
nality” is different from that of Schulz et al. [25], as their use of
the term is similar to our “granularity” dimension. Our task space
uses “cardinality” to describe the number of variables (i.e. referrers
and characteristics) involved in a task. We further include in our
definition of “cardinality” the data types for the elements of the
variable set in a given task. We refer to this dimension as the “type
cardinality” dimension and let it describe the number of variables
that fall within each variable type for a given task. We adopt here
the same data types that were defined in the Vega-Lite grammar [24]:
Quantitative, Nominal, Ordinal and Temporal.

Deciding on the right type cardinality for a task is crucial for
identifying visualization design alternatives. For example, a bar
chart is suitable for a task that involves one quantitive and one
nominal variable (1Q,1N), whereas a scatter plot is more suitable
for tasks that involve two quantitive variables (2Q), and if there is
a nominal variable as well (2Q,1N) then that may be encoded in a
scatter plot using color or shape.

3.3 The Target Dimension

In their faceted approach for task space characterization, Schulz
et al. [25] described a task as a combination of five smaller com-
ponents: (goal,means,characteristics, target,cardinality). Two of
these dimensions (characteristics and target) concern the facets of
data which are sought by users in a task and the relational constructs
among them. To facilitate the discussion around these constructs, we
combine these two axes and simplify them under a target dimension.
We choose to label this dimension as target in order to facilitate
the discussion with users. Intuitively, asking users what pieces of
information they target when looking at a visualization is easier than
asking them to reflect on data characteristics they seek after.

Combining the levels of the target and characteristics dimensions
by Schulz et al. [25] yields a set of nine levels (specific values, data
objects, trends, outliers, clusters, frequency, distribution, correlation,
association) that affect the choice of visualization techniques as will
be demonstrated in Section 5. The specific value and data object
levels distinguish between tasks in which users wish to identify a
specific value (characteristic) given a number of independent vari-
ables (referrers) from those in which users search for data objects
given certain data characteristics. This distinction is in-line with
the data function dimension of the AA model which classifies the
former as direct lookup and the latter as inverse lookup tasks.

4 GENERATION OF USER TASKS

We designed a user story generation activity [10] with the aim to
collect a diverse set of user tasks that provides a balanced coverage
of the space. The activity was presented to a group of 26 domain
experts working on a variety of national clinical audits, during one
session of a requirements specification workshop. We used the
identified dimensions of our task space to structure the conversation



Table 1: The three axes of granularity

Axis Tax. Levels Rationale

Population Individual, organisational, Users may have access to patient-level data or data aggregates within their organisations,

network, global across different collaborating organisations or data at from a global scale.

Time Daily, monthly, annual Users may access timely (e.g. monthly) data or only periodic (e.g. annual) data.

Space Regional, location-agnostic Data from specific locations may have limited availability.

with the workshop participants. This section describes the workshop
procedure, materials and results.

Procedure Participants were divided into five groups of 5-6
experts. Each group was presented with the three dimensions chrono-
logically in the form of an example scenario. To account for different
contexts of use for QualDash, two of the groups were assigned an
exploratory analysis scenario, two were assigned a confirmatory
analysis scenario and one group was given an information presen-
tation scenario. These three types of scenarios were inspired from
the levels of the Goal dimension of the task space in [25]. In each
group, participants were presented with a paper-based activity sheet
(see Supplemental Material) that described the example scenario in
a step-wise fashion and asked them to write down similar details
that were relevant to their audit(s). After developing their own indi-
vidual scenarios, the group discussed their scenarios. A QualDash
team member was responsible for facilitating the discussion in each
group. The purpose of the discussion was to elicit more information
about the answers that were given on the activity sheet and to elicit
functional requirements that users felt were crucial to their analysis.

Materials Three versions of the paper-based activity sheet were
handed out to participants according to their group membership
(Group 1: Explorers, Group 2: Confirmers, and Group 3: Pre-
senters). Each sheet presented a short example that illustrated to
participants a potential scenario in their assigned setting. These short
scenarios were inspired from previous discussions with a clinical
lead working with an Intensive Care Unit (ICU) NCA. The scenarios
described a situation at a high-level of detail to avoid steering the
discussion toward the specific audit. Participants were asked to read
the example then think in terms of their own audit(s). They were
asked to provide details on relevant metrics and come up with a
similar analysis/ presentation scenario that fits their audit’s needs
(Step 1). To elicit their knowledge along the granularity dimension,
they were presented with possible levels of detail within the given
example and were asked to select the levels which are relevant to
their own scenario (Step 2). Next, a similar format was used to elicit
their knowledge along the target and type cardinality dimensions
(Steps 3 and 4, respectively).

Results We collected 49 unique tasks from workshop partici-
pants, involving 78 different variables. The diversity of the tasks and
the pieces of information they included stemmed from the variety of
audits with which our participants work. We created a unified array
of JSON objects that stored all of the tasks in one file and dissected
them into their constituent dimensions. This format facilitated our
analysis and enabled us to explore different ways to cluster the tasks.

Figure 2 shows an anonymised example. The first items are a
participant’s name, audit(s), and the metrics that are most relevant to
their audit. Next are all of the tasks that were listed by the participant,
population and time granularity levels described in their answers
and whether they required mixing different levels of granularity.
Following that are the targets and variables that the participant listed
for their tasks, and the variable types determined by ourselves for
each of the variables. The “comparison” field reports on whether
the participant described as useful the comparison against a bench-
mark. The “against” field reports on whether they warned against
something (e.g. some participants warned against showing an out-
lier without providing supplementary information). Finally, the

Figure 2: JSON format to store tasks from one participant. The fields
reflect the dimensions used to characterize each task.

“notes” field reports on any comments they wrote or mentioned in
the discussion.

The steps to generate the JSON entry in Figure 2 begin by consid-
ering an individual participant’s responses on an activity sheet along
with any comments written down by the group’s facilitator. After
information about the participants is filled out (first four items), the
tasks written by the participant (second half of Step 1) are copied
in the tasks array and each task is assigned a unique ID. Next, the
granP, granT and mixing gran entries are populated with responses
to the Step 2 questions, in which the participant selects levels of
granularity of population and time in each task and indicates whether
it requires mixing different levels of granularity.

The targets and variables entries are populated from the par-
ticipant’s answers to questions in Step 3 and Step 4, respectively.
Occasionally, a participant’s answer did not explicitly state targets
or variables but these could be derived from the tasks. For example,
for task 10 in Figure 2, the participant did not specify patient count
in her answer. Since engagement strategies are considered referrers
in this task, we consider as characteristics the counts of patients
affected by the individual strategies and the levels of engagement for
both patients and carers within each strategy. Therefore, a decision
was made to add patient count as a variable.

As a general rule, we limited the changes to participants’ answers
to cases where the main referential components did not include
patients or time. In these cases, patient counts or time intervals were
added as variables.



Figure 3: Task clusters based on population granularity. Letters I, O,
N and G represent clusters having Indvidual, Organisational, Network

and Global levels, respectively. Two clearly separable clusters emerge
when considering individual versus other aggregate tasks.

5 CHARACTERIZATION OF THE TASK SPACE

This section lays the collected tasks along each dimension. The
goal is to derive a set of levels that can be used to characterize and
discriminate a task, by positioning it at a constrained location in
the task space. To achieve this, we observe the distribution of tasks
along each dimension separately, based on the initial levels that were
determined from the literature in Section 3. We then observe the
groupings of tasks in the space and decide whether the levels need
to be modified (i.e. by splitting or merging existing levels) to yield a
clear separation of tasks. This allows us to then partition the space
at the individual levels and map different partitions to a narrow set
of visualization alternatives.

5.1 Levels of the Granularity Dimension

As described in Section 3.1, we break down task granular-
ity into three main axes: population, time and space. For
the population axis, we extracted fourteen unique granular-
ity terms that were listed by the workshop participants, and
merged terms ontologically based on data governance consid-
erations (see Section 3.1) to produce a granularity feature vec-
tor fG(Individual,Organisational,Network,Global) for each task.
Terms like patients, physicians and patient cohorts were merged
into the individual feature. Terms like unit, organisation, site
and ward were mapped to the Organisational feature. Terms like
trust, patient network and pro f essional body were mapped to the
network feature, and terms like audit and national were mapped to
the global feature.

The vector fG(Individual,Organisational,Network,Global) po-
sitions each of the collected tasks at one or more level(s) along the
granularity dimension. For example, some participants indicated
interest in viewing data at both a network- and global-level for some
of the tasks. The goal of our task space characterization then is to
map the user-specified levels of granularity into levels that yield a
unique position for each task along this axis. Once a clear segrega-
tion of tasks is achieved, the resulting levels can inform our choice
of visualization design alternatives. To achieve this, we cluster the
tasks by their population granularity vector fG. Figure 3 shows the
results of hierarchical clustering and reveals two broad categories of
tasks: (i) tasks that require one or two levels of aggregation but no
individual-level details; (ii) tasks that require details at the individ-
ual level. The separation between these two clusters enables us to
position any given task at either one of the two levels: individual or
aggregate, which also map back to the AA model’s elementary and
synoptic levels. Backed by this finding, we declare the final levels
of granularity in our task space as: individual and aggregate.

For the time axis of granularity we inspected the data and found
that all tasks involving individual-level data also required that the
data was recent (daily or monthly). By contrast, tasks involving
aggregates were looser about their timeliness requirement, indicating
that annual was sufficient. Therefore, we combine this axis with the
two levels of the population axis without adding any new ones.

The space axis was less expressed in the data collected through
our workshop. Only two of the tasks involved interest in location-
specific data, whereas the majority of our participants agreed that
organisations are compared based on resources and demand rather
than based on geographical location. We, therefore, concluded that
incorporating spatial information is not a requirement for QualDash.

5.2 Levels of the Type Cardinality Dimension

This characterization was performed by grouping tasks according to
their data types and cardinalities (the number of variables of a given
type). This reduced the 49 tasks to 14 unique combinations of type
cardinality ((1Q,1N), (1Q,2N), etc.).

We investigated several ways of further grouping those combina-
tions. For that, we could not find an ontological grouping that would
merge them into coarse-level features the same way we did with gran-
ularity. Automated hierarchical clustering did not yield promising
results either because it combined task groups that do not necessarily
yield similar visualization requirements. For example a task group
that has one quantitative and one nominal variable (1Q,1N) and
one that has two quantitative and one nominal (2Q,1N) variables
may be clustered together because their feature vectors have high
similarity: < 1,1,0,0 > and < 2,1,0,0 > respectively. However,
when thinking in terms of visualization design, the former group is
best served with a histogram, whereas the latter can use a colored
scatter plot, for example. Therefore, we decided to keep all 14 levels
of this dimension for the decision tree approach that is described in
Section 6.

5.3 Levels of the Target Dimension

The targets collected from workshop participants were quite diverse.
They covered all of the levels: specific values, data objects, trends,
outliers, clusters, frequency, distribution, association and correla-
tion. Many participants warned against the latter, however, in a
quality improvement context. They stressed that QualDash should
afford association rather than correlation as a target. We, therefore,
merged the correlation level with association. Some participants
suggested new targets, providing examples of specific values like
average and aspects of distributions like variance. We chose not
to add more levels for these as they fit into our specified levels. By
contrast, a few participants mentioned interest in proportions (i.e.
parts of a whole) as a target, for which we added an extra level
called proportion. These findings resulted in the following levels:
specific values, data objects, trends, outliers, clusters, frequency,
distribution, association and proportion.

Figure 4 shows visualization alternatives for each target. We note
here that the list of visualizations is not exhaustive because, during
the workshop dicussion, participants advised us to use well-known
types of visualization because they were more likely to be familiar
to users. Trends and frequencies were often mentioned together
by our participants and are typically explored using line, area and
bar charts in the healthcare quality monitoring context. We merge
these two into one level. This leaves us with a final list with six
target levels, which includes: trends/ frequencies, clusters, outliers,
specific values, association, proportion. These levels along with the
levels of the two other dimensions are fed to the next stage of the
pipeline (see Figure 1), which aims to partition the task space and
explore visualization alternatives for each partition.



Figure 4: Mapping targets to possible visualizations.

6 DECISION TREE CONSTRUCTION

This section describes the derivation of a decision tree that can map
a user task (see Section 4) to a set of visualization alternatives. Gen-
erally speaking, decision tree construction methods tend to prioritize
splitting decisions along dimensions that are expected to reduce het-
erogeneity in a dataset. We use a similar logic to build our reasoning
around the user tasks and mappings to visualization alternatives.
Namely, we begin with splitting the most heterogeneous dimension,
which is the Type Cardinality dimension. First, we describe the
derivation for two-variable tasks. Then we describe the derivations
for tasks with three variables and 4+ variables, both of which utilize
the two-variable decision tree.

6.1 Two-variable Tasks

Tools such as Tableau Show Me [18] and Vega-Lite [24] provide
rules for mapping the number and type of variables to different sets
of visual marks and encodings. We adopted Show Me’s “automatic
marks” rules [18] because they provide clear guidelines for two-
variable tasks, but the decision tree could just as easily be based on
an alternative set of rules.

The decision tree is constructed in three steps. First, the rules are
used to identify the visualization alternatives that are appropriate
for each type cardinality combination (see Figure 5 top). Second,
we expand the space of alternatives by linking our data to the 97
visualization specification files released with Vega-Lite [24] to fetch
any possibly missed alternatives for the given type cardinality level.
Third, we seek to answer the question: how to narrow down the
number of alternatives for each level to the most informative subset?

To answer this question, we separately consider each type cardi-
nality, and filter the visualization alternatives that get passed from
parent node to child node in the decision tree (see Figure 6). To
decide which visualization alternatives travel down each branch in
the tree, we relied on both our own experience and the default views
in Tableau Show Me. A filter that is based on the population granu-
larity (see Section 3.1) separates the visualization alternatives into
those that are suitable for individual data (for QualDash that only
occurs for (1Q,1N) tasks) vs. aggregated data. The visualization
alternatives are then filtered again, using the target dimension (see
Section 3.3) of the tasks to produce the decision tree that is shown
in Figure 6.

6.2 Three-variable Tasks

For three-variable tasks we seek to determine a base case that exists
in the two-variable decision tree. In QualDash, all of the three-
variable user tasks can be mapped to a base case by subtracting one
of the nominal variables (see Figure 7), and color or shape encoding
makes it straightforward to add a nominal variable to any of the
two-variable visualization alternatives. Once the base case has been

identified, the population granularity and target dimension filters are
applied in the same way as for two-variable tasks (see Section 6.1)

An example can clarify this concept. Consider a task with the type
cardinality (1Q,1N,1T ). This three-variable task can be mapped to
two different branches in the two-variable decision tree (Figure 6).
Namely, we may consider the case (1Q,1N) as the basis of this
combination then add time, or map it to the (1Q,1T ) case and then
add a nominal. Our prioritization scheme favors the latter option.

One of the (1Q,1N,1T ) tasks that our domain experts provided
is: How many patients received treatment(s) in a particular time
scale? In which patient count is a quantitative measure, type of
treatment is a nominal category and time scale is a temporal variable.
This task can make use of a scatter plot, a line chart, area chart or bar
chart. At the granularity axis, this task looks at aggregated data (i.e.
no patient-level detail is necessary) and seeks to specify a specific
value as target which maps down to a bar chart. The path that this
task takes in the decision tree maps it directly to a leaf-level node
containing a bar chart. Therefore, QualDash would plot the number
of patients over discrete points in time (e.g. months or years) in a bar
chart. It may then use shape or color to encode the type of treatment.

6.3 Four- and Five-variable Tasks

Similarly, to determine visualization alternatives for four- and five-
variable tasks we identify a three-variable base case by subtracting
nominal or ordinal variables (see Figure 7). The affinity heuristic in
[18] provides rules for generating a trellis of small multiple displays
for the variable(s) that are subtracted. Other guidance could be
provided by the matching views of Vega-Lite [24] or best practices
for the Add to Sheet command in Show Me [18].

An exception happens with the addition of a quantitative variable
(see (2Q,1N,1O) in Figure 7). Mackinlay et al. [18] consider the
two-variable basis (2Q) for this to be a scatter plot. They note that

“scatter plots (Q,Q) require additional heuristics to handle multiple
fields, particularly when a Q field is being added.” We further
emphasize that our collected data did not include a two-variable
case with two quantitative variables. Interest in more than one
quantitative variable only appeared in tasks in which users wished
to find associations or trends while considering categorical factors.

An example task in this category is“Do organisational factors like
size or configuration play a part in rates of morbidity or mortality?”
In this case, the “or” between the two quantitative variables (morbid-
ity and mortality) implies that users do not wish to see these two in
the same plot, so a scatter plot may safely be ruled out in this case.
Instead, two separate views can be used to associate organisational
factors to morbidity, then separately, to mortality. Alternately, the
two quantitatives may be overlaid in the same view.

The dashed link in Figure 7 is drawn to indicate that information
build up in cases where more than one quantitative variable is con-
sidered are treated as a gray area in our design space, which can



Figure 5: Visualization alternatives for the first 6 levels of the type cardinality dimension for two- and three-variable cases.

Figure 6: Decision tree for the set of two-variable tasks. Numbers in brackets show the number of tasks (from training data) that exist in each
leaf-level node.

Figure 7: Information build up in our identified task cardinalities. Any task can be mapped back to its two-variable basis then the affinity heuristic
applies.



afford mapping to a 2Q case, which is mapped to a scatter plot in
Show Me, with the addition of categorical variables in the form of
encodings or trellis. It also affords mapping to one of the three cases
in Figure 6.

Worth noting is that the tasks in the QualDash project context are
of a specific nature in that they involve no more than 5 variables in
the general case. Analysis tasks that involve high-level inference
using multidimensional dataset are not currently covered in our
space. However, in theory our method could scale well to those
high-dimensional tasks, provided that their diversity does not add
too many levels on each dimension. The branching in our decision
tree (Figure 6) is bound by the number of levels in the space.

6.4 Requirements for QualDash

Our taxonomy-driven approach provides a simple and systematic
mapping from the large variety of tasks we collected from domain
experts (see Section 4) to the small set of visualization techniques
that exist at the leaf-level of the decision tree in Figure 6. The main
benefit of our approach is that it enables us to specify a minimal
set of visualization functionality to include in the first version of
QualDash, by selecting the most prominent visualization alternatives
in the leaf-level of the decision tree. This leads to QualDash having
the following minimum requirements:

FR1: Visualize an aggregate overview in a bar chart view

FR1.1: Functionality to drag a bar and create a linked scatter
plot for individual-level detail

FR1.2: Functionality to switch between bar and line view to
support different temporal granularities

FR2: Visualize individual-level data in a scatter plot view

FR3: Visualize time as a line chart view

FR3.1: Functionality to switch between line and scatter plots to
support different targets

FR4: Functionality to break down a view with one categorical vari-
able using color encoding or a level of detail

FR5: Functionality to extend a view into a trellis by adding up to
one quantitative or up to three categorical variables.

7 REQUIREMENTS VALIDATION

The purpose of validation is to verify that the decisions made by
the tree perform a sound mapping to correctly classify a task into a
group of visualization alternatives. To do this, we consider the data
collected from the workshop and used to build the tree a training
dataset. In this section, we introduce new data points in the space
and trace them through the tree.

To validate our decision tree, we conducted two interviews with
clinical leads working with two different NCAs: a pediatric inten-
sive care unit (PICU) audit and a Myocardial Ischaemia National
Audit. In our interviews, we asked questions specific to their corre-
sponding audits in the same order and structure that was presented
to participants of the workshop activity. This helped us elicit de-
tailed information from the interviewees, which in turn enabled
us to immediately position their tasks along the dimensions of our
three-dimensional space.

We demonstrate the mapping from these tasks to visualization
alternatives by tracing four sample tasks (two from each interview)
down the decision tree in Figure 6. The tasks are:

1. How many patients died in a time period?

• variables: [patient count, time]

• position in space: (1Q,1T,aggregate,speci f ic value)

• Tree outcome: Bar

2. What is the case mix in a time period with a high death rate?

• variables: [diagnosis, patient count, time]

• position in space: (1Q,1T,1N,aggregate, proportion)

• Tree outcome: Bar

3. How many STEMI cases met the “call to balloon target” every
month?

• variables: [patient count, meets target]

• position in space: (1Q,1N,aggregate,speci f ic value)

• Tree outcome: Bar

4. For non-target meeting cases what was the time of call, admis-
sion, cath lab admission and ventilation?

• variables: [patient, meets target, event, time]

• position in space: (1Q,1N,1O,1T, individual,cluster)

• Tree outcome: Scatter + trellis.

8 CONCLUSION

We presented a three-dimensional task space that enables a system-
atic characterization of user tasks. The proposed dimensions were
derived from the wealth of taxonomies in the visualization literature
and used in a five-stage pipeline to structure communication with
domain experts and to provide the appropriate level of abstraction
for requirements specification. We were able to use this approach to
map a diverse set of user tasks to a concise set of requirements. Fur-
thermore, by taking a task through a set of decisions that determine
where the task lies in the space, we greatly simplified the process of
identifying visualization alternatives. Having established a decision
tree that partitions the space of possible tasks for the QualDash
project, identifying design alternatives is also greatly simplified for
new tasks that may arise throughout the life cycle of the QualDash
project. Furthermore, task sequences [7] are easily identifiable by
finding recurrent trajectories through the task space (see Section 2
in Supplemental Material).

One of the strengths of our taxonomy-driven approach is the abil-
ity to highlight not only what is important for users but also what
is not important. This enabled us to prioritize requirements and
discard others. A good example is the space axis of granularity.
Our intuition was to include geographic data visualizations in Qual-
Dash to follow the convention of the annual reports of several audits.
However, our data collection revealed that users have little interest
in geographic information for their analysis purposes. We were able
to elicit this information by explicitly asking them what level of
spatial granularity they required. We were also able to exclude a
large number of visualization alternatives by ruling out multidimen-
sional techniques. This was made possible by explicitly discussing
type cardinality with workshop participants. Similarly, for the tar-
get dimension, participants warned against specific targets that they
consider misleading in practice. We hope that the proposed method
offers a structured and deterministic approach to guide the itera-
tive functional requirements specification for visualization software
design.

ACKNOWLEDGMENTS

This research is funded by the National Institute for Health Re-
search (NIHR) Health Services and Delivery Research (HS&DR)
Programme (project number 16/04/06). The views and opinions
expressed are those of the presenter and do not necessarily reflect
those of the HS&DR Programme, NIHR, NHS or the Department of
Health. The authors would like to thank Professor Justin Keen for
his comments on this paper.



REFERENCES

[1] J.-w. Ahn, C. Plaisant, and B. Shneiderman. A task taxonomy for

network evolution analysis. IEEE transactions on visualization and

computer graphics, 20(3):365–376, 2014.

[2] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic

activity in information visualization. In Information Visualization,

2005. INFOVIS 2005. IEEE Symposium on, pp. 111–117, Oct 2005.

doi: 10.1109/INFVIS.2005.1532136

[3] R. Amar and J. Stasko. Knowledge precepts for design and evaluation

of information visualizations. Visualization and Computer Graphics,

IEEE Transactions on, 11(4):432–442, July 2005. doi: 10.1109/TVCG

.2005.63

[4] N. Andrienko and G. Andrienko. Exploratory analysis of spatial and

temporal data: a systematic approach. Springer Science & Business

Media, 2006.

[5] J. Bertin. Semiology of graphics: diagrams, networks, maps. 1983.

[6] M. Brehmer and T. Munzner. A multi-level typology of abstract visual-

ization tasks. Visualization and Computer Graphics, IEEE Transactions

on, 19(12):2376–2385, 2013.

[7] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visualizing

dimensionally-reduced data: Interviews with analysts and a character-

ization of task sequences. In Proceedings of the Fifth Workshop on

Beyond Time and Errors: Novel Evaluation Methods for Visualization,

pp. 1–8. ACM, 2014.

[8] M. Cohn. User stories applied: For agile software development.

Addison-Wesley Professional, 2004.

[9] A. Dennis, B. H. Wixom, and D. Tegarden. Systems analysis and

design: An object-oriented approach with UML. John Wiley & Sons,

2015.

[10] L. Girvan and D. Paul. Agile and Business Analysis: Practical guidance

for IT professionals. BCS Learning & Development Limited, 2017.

[11] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.

Queue, 10(2):30, 2012.

[12] N. Kerracher and J. Kennedy. Constructing and evaluating visualisation

task classifications: Process and considerations. In Computer Graphics

Forum, vol. 36, pp. 47–59. Wiley Online Library, 2017.

[13] N. Kerracher, J. Kennedy, K. Chalmers, and M. Graham. Visual

techniques to support exploratory analysis of temporal graph data. In

Eurographics Conference on Visualization (EuroVis)-Short Papers, pp.

1–21, 2015.

[14] Y. Kim and J. Heer. Assessing effects of task and data distribution on

the effectiveness of visual encodings. In Eurographics Conference on

Visualization (EuroVis) 2018, vol. 37. Wiley Online Library, 2018.

[15] K. Kurzhals and D. Weiskopf. Exploring the visualization design space

with repertory grids. In Eurographics Conference on Visualization

(EuroVis) 2018, vol. 37. Wiley Online Library, 2018.

[16] T. Lammarsch, A. Rind, W. Aigner, and S. Miksch. Developing an

extended task framework for exploratory data analysis along the struc-

ture of time. In Proc. Eurographics Intl. Workshop on Visual Analytics

(EuroVA). Citeseer, 2012.

[17] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task

taxonomy for graph visualization. In Proceedings of the 2006 AVI

workshop on BEyond time and errors: novel evaluation methods for

information visualization, pp. 1–5. ACM, 2006.

[18] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic pre-

sentation for visual analysis. IEEE transactions on visualization and

computer graphics, 13(6), 2007.

[19] M. Meyer, M. Sedlmair, P. S. Quinan, and T. Munzner. The nested

blocks and guidelines model. Information Visualization, 14(3):234–

249, 2015.

[20] T. Munzner. A nested model for visualization design and validation.

IEEE transactions on visualization and computer graphics, 15(6),

2009.

[21] P. Murray, F. McGee, and A. G. Forbes. A taxonomy of visualization

tasks for the analysis of biological pathway data. BMC Bioinformatics,

18(2):21, Feb 2017. doi: 10.1186/s12859-016-1443-5

[22] J. Robertson and S. Robertson. Volere. Requirements Specification

Templates, 2000.

[23] B. Saket, P. Simonetto, and S. Kobourov. Group-level graph visualiza-

tion taxonomy. arXiv preprint arXiv:1403.7421, 2014.

[24] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-

lite: A grammar of interactive graphics. IEEE Transactions on Visual-

ization and Computer Graphics, 23(1):341–350, 2017.

[25] H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design

space of visualization tasks. IEEE Transactions on Visualization and

Computer Graphics, 19(12):2366–2375, 2013.

[26] K. Sedig and P. Parsons. Interaction design for complex cognitive

activities with visual representations: A pattern-based approach. AIS

Transactions on Human-Computer Interaction, 5(2):84–133, 2013.

[27] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:

Reflections from the trenches and the stacks. IEEE Transactions on

Visualization and Computer Graphics, 18(12):2431–2440, Dec 2012.

doi: 10.1109/TVCG.2012.213

[28] H. Sharp, J. Taylor, D. Evans, and D. Haley. Establishing require-

ments for a mobile learning system. a MOBIlearn project technical

publication by the Open University, UK, 2008.

[29] S. Wehrend and C. Lewis. A problem-oriented classification of visual-

ization techniques. In Proceedings of the 1st Conference on Visualiza-

tion ’90, VIS ’90, pp. 139–143, 1990.

[30] S. Wehrend and C. Lewis. A problem-oriented classification of visual-

ization techniques. In Visualization, 1990. Visualization’90., Proceed-

ings of the First IEEE Conference on, pp. 139–143. IEEE, 1990.


	Introduction
	Background and Related Work
	The Agile Approach to RE
	The Task Taxonomy-Driven Approach to RE

	Selection of Taxonomy Dimensions
	The Granularity Dimension
	The Type Cardinality Dimension
	The Target Dimension

	Generation of User Tasks
	Characterization of the Task Space
	Levels of the Granularity Dimension
	Levels of the Type Cardinality Dimension
	Levels of the Target Dimension

	Decision Tree Construction
	Two-variable Tasks
	Three-variable Tasks
	Four- and Five-variable Tasks
	Requirements for QualDash

	Requirements Validation
	Conclusion

