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Abstract—Dyslexia is a neurodevelopmental learning disorder
that affects the acceleration and precision of word recognition,
therefore obstructing the reading fluency, as well as text com-
prehension. Although it is not an oculomotor disease, readers
with dyslexia have shown different eye movements than typically
developing subjects during text reading. The majority of existing
screening techniques for dyslexia’s detection employ features
associated with the aberrant visual scanning of reading text
seen in dyslexia, whilst ignoring completely the behavior of the
underlying data generating dynamical system. To address this
problem, this work proposes a novel self-tuned architecture for
feature extraction by modeling directly the inherent dynamics
of wearable sensor data in higher-dimensional phase spaces
via multidimensional recurrence quantification analysis (RQA)
based on state matrices. Experimental evaluation on real data
demonstrates the improved recognition accuracy of our method
when compared against its state-of-the-art vector-based RQA
counterparts.

Index Terms—Dyslexia screening, multidimensional recurrence
quantification analysis, non-linear data analysis, wearable sensors

I. INTRODUCTION

Dyslexia is a neurodevelopmental learning disability that

adversely affects between 5-10% of the population [1]. Specif-

ically, it affects the way information is processed, stored and

retrieved, with problems of memory, speed of processing,

time perception, organization and sequencing [2]. Early-age

identification and diagnosis of dyslexia is imperative in order

to provide the necessary assistance to dyslexic candidates,

since, as individuals grow older, compensatory mechanisms

develop that help alleviate the symptoms of dyslexia [3].

However, the learning gap that has been developed is fol-

lowed by poor school performance, causing psychological and

emotional distress, low self-esteem, lack of motivation and

depression [4], [5].

Although dyslexia is not a primary oculomotor disease,

eye movements differ during reading between typical and

dyslexic readers [6], [7]. Typically, in readers with dyslexia,

fixation duration and number of fixations increase, average

saccade length gets shorter and the number of regressions (i.e.,

short backward eye movements targeting text that has already
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been read) increases [8], [9]. The observed differences can be

attributed to abnormal linguistic or cognitive processing [10].

The majority of existing screening techniques for dyslexia’s

detection employ features associated with the aberrant visual

scanning of reading text seen in dyslexia [1], [11]. In [12],

the one-dimensional counterpart of RQA [13] is applied on

dyslexia’s data for investigating dyslexic and non-dyslexic

word-naming performance in beginning readers. Although

such methods can lead to high-precision results in the one-

dimensional case for relatively smooth data, they lack the

capability of concurrently processing multiple dimensions. To

overcome these limitations, this work proposes an alternative

approach for the accurate detection of dyslexia, which exploits

the temporal variability of the underlying dynamical system

that generates the data. To this end, a generalization of the

multidimensional recurrence quantification analysis (mdRQA)

framework [14] is proposed to perform a sophisticated non-

linear analysis of multiple sensor streams by exploiting both

the intra- and inter-sensor correlations. Apart from the capa-

bility of an mdRQA-based approach to treat non-stationary

and short data series, furthermore, it comprises of a set of

appropriate quantitative measures for the quantification of

recurrent, typically small-scale, structures, and the detection of

critical transitions in the systems dynamics (e.g. deterministic,

stochastic, random). To the best of our knowledge, there is no

prior work in the literature that employs mdRQA to detect

dyslexia from multidimensional data.

The contributions of this paper are the following:

(i) the underlying multidimensional data generating pro-

cesses are modeled concurrently and directly in a higher-

dimensional phase space, identifying more accurately the

time-evolving dynamics of sensor streams;

(ii) our proposed generalized multidimensional RQA (Gm-

dRQA) method exploits the correlations not only within

a stream but also between pairs of streams;

(iii) an efficient feature extraction scheme is designed for the

discovery of information-rich patterns that best capture

the underlying data dynamics;

(iv) a totally self-tuned architecture is designed for unsuper-

vised dyslexia’s detection.

The rest of the paper is organized as follows: In Section II,

the dataset employed by our study is overviewed. Section III

analyzes our proposed generalized multidimensional RQA
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framework, based on state matrices, for feature extraction. Sec-

tion IV evaluates the performance of our method and compares

its accuracy with its vector-based mdRQA counterpart. Finally,

Section V summarizes the main outcomes of this work and

gives directions for future extensions.

II. DATASET DESCRIPTION

The dataset provided by [1] consists of a sample of 97 (76

males and 21 females) high-risk subjects with early identified

word decoding difficulties and a control group of 88 (69

males and 19 females) low-risk subjects. These subjects were

selected from a larger population of 2165 school children

attending second grade (age 8-9). Eye movement recordings

are made while the subjects are reading a short natural passage

of text adapted to their age. A goggle-based infrared corneal

reflection system, namely, the Ober-2TM (Formerly Permobil

Meditech, Inc., Woburn, MA), is used to track eye position

over time, by sampling the horizontal and vertical position of

both eyes at a frequency of 100 Hz. All subjects read one and

the same text presented on a single page of white paper with

high contrast. The text is distributed over 8 lines and consists

of 10 sentences with an average length of 4.6 words.

III. PROPOSED ARCHITECTURE

The vector-based version of mdRQA introduced by [14] ex-

tracts the underlying dynamics of an ensemble of recorded data

streams by mapping the time series in a higher-dimensional

phase space of trajectories. More specifically, given a mul-

tidimensional time series of length N we reconstruct the

corresponding phase space representation as follows,⎛
⎜⎜⎜⎝

v1

v2

...

vNs

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1,1 x2,1 · · · xD,1

x1,2 x2,2 · · · xD,2

...
... · · · ...

x1,Ns
x2,Ns

· · · xD,Ns

⎞
⎟⎟⎟⎠ , (1)

where D is the number of dimensions of the streams’ en-

semble, xi,j = (rj , rj+τ , . . . , rj+(m−1)τ ), i = 1, . . . , D,

j = 1, . . . , Ns, with m being the embedding dimension, τ
the delay and Ns = N − (m− 1)τ the number of states.

Recurrence plots (RPs) [13] have been proposed as an

advanced graphical technique of visual non-linear data analy-

sis, which reveals all the times of recurrences, that is, when

the phase space trajectory of the dynamical system visits

roughly the same area in the phase space as shown in Fig. 1.

Accordingly, the multidimensional recurrence plot (mdRP) is

defined by,

mdRi,j = Θ(ε− ||vi − vj ||p), i, j = 1, . . . , Ns , (2)

where vi, vj denote the state vectors, ε is a threshold, || · ||p
denotes a general �p norm, d is a distance metric and Θ(·)
is the Heaviside step function, whose discrete form is defined

by,

Θ(n) =

{
1, if n ≥ 0

0, if n < 0
, n ∈ R . (3)

Fig. 1. The time series is time delay embedded into a reconstructed phase
space. Then, around each point in the embedded phase space, a recurrence
neighbourhood of radius ε is created. All recurrences into this neighbourhood
are tracked.

The disadvantage of the conventional mdRQA is that it

does not capture the correlations between pairs of distinct

streams. To address this limitation, our proposed GmdRQA

framework relies on state matrices instead of state vectors, to

represent the time-delay embedding of a streams’ ensemble.

State matrices are considered more appropriate for describing

multidimensional signals from a mathematical perspective,

enabling them to model the correlations not only within a

signal but also between different signals. Specifically, we

define a state matrix Xi as follows,

Xi =

⎛
⎜⎜⎜⎜⎜⎝

x1,i x2,i · · · xk,i

xk+1,i xk+2,i · · · x2k,i

x2k+1,i x2k+2,i · · · x3k,i

...
...

...
...

x(l−1)k+1,i x(l−1)k+2,i · · · xlk,i

⎞
⎟⎟⎟⎟⎟⎠ , (4)

where i = 1, . . . , Ns , k = �√D� and l = �D/k�.
In our implementation, the optimal time delay τ is estimated

as the first minimum of the average mutual information (AMI)

function averaged over all the dimensions in the data [15].

Concerning the embedding dimension m, a minimal sufficient

value is estimated using the method of false nearest neighbours

(FNN) [16]. Finally, following the empirical rule proposed

in [17], the threshold ε is set equal to the 15th percentile

of the distribution of all the pairwise distances between the

state matrices.

Subsequently, our proposed generalized multidimensional

recurrence plot (GmdRP) is defined by

GmdRi,j = Θ(ε− d(M(Xi),M(Xj))) , (5)

where ε is a threshold, M is an operator, d refers to a proper

distance metric and Θ(·) is the Heaviside step function whose

discrete form is defined by (3).

As in the one-dimensional case, a major advantage of multi-

dimensional RPs is that they can also be applied to rather short

and even non-stationary data. In general, RPs are consisted

of isolated points, diagonal as well as vertical lines that form

several structures. Therefore, it is often difficult and subjective

771



to analyze. Along these lines, the visual interpretation of RPs,

is enhanced by means of several numerical measures for the

quantification of the structure and complexity. The following

ten measures are utilized to form our feature matrix (ref. [18]

for the mathematical definitions):

• Recurrence rate: Measures the density of points in the

RP or in other words, the probability that a similar state

recurs to its neighbourhood in phase space.

• Determinism: The ratio of the number of recurrence

points forming diagonal structures to the total number

of recurrence points is regarded as determinism or pre-

dictability of the system. Determinism is close to unity

in a periodic system and close to zero in systems with

no time-dependence.

• Average diagonal length: This average length is actually

the mean time that we can predict the next recurrence

of states from the state we observe now. Intuitively, a

diagonal line of length l means that trajectories are co-

evolving during l samples but they correspond to different

times of the system evolution. These lines indicate how

different trajectories diverge during the evolution of the

system and as time passes by.

• Length of longest diagonal/vertical line: Refers to the

maximum length of the diagonal/vertical lines in the

recurrence plot that represent the maximum time that the

system evolves or remains in a certain state respectively.

• Entropy of diagonal/vertical length: Indicates the com-

plexity of the recurrence plot in respect of the diago-

nal/vertical lines. The entropy of vertical lines reflects

the distribution of time-periods for which the system

abides in laminar phases. Signals with no time depen-

dence present diagonal entropy≈0, i.e., the diagonal lines

distribution is fully concentrated on very short lines (e.g.,

single dots).

• Laminarity: Provides information about the occurrence

of the laminar states in the system. However, it does not

describe the length of the laminar states. The value of

laminarity decreases if an increased number of single

recurrence points are present in the recurrence plot than

the vertical structures.

• Trapping time: The average length of vertical lines is

called trapping time and it is related with laminarity time.

This value contains information about the frequency and

the length of laminar states.

Finally, a linear-kernel support vector machine (SVM) is ap-

plied on the feature matrix for discriminating between the two

classes, namely, dyslexia and control. Fig. 2 shows the overall

architecture of our proposed GmdRQA-based dyslexia’s de-

tection system.

IV. PERFORMANCE EVALUATION

A. Distance Metrics and Operators

1) Vector-based mdRQA: The choice of the �p norm de-

pends on the nature of the data. The most commonly used

norms include the (i) Euclidean, (ii) maximum and (iii)

Fig. 2. Proposed generalized GmdRQA-based feature extraction and
dyslexia’s detection architecture.

TABLE I
CLASSIFICATION ACCURACY AND STANDARD DEVIATION AVERAGED

OVER 100 REPETITIONS.

Mean Classification
Accuracy±std (%)

State-of-the-art Vector-based mdRQA 92.30±3.14
Proposed Euclidean Distance Metric of
State Matrix Eigenvalues 92.77±3.32

Proposed Correlation Matrix Distance Metric 92.39±3.45

minimum norm. Our extensive evaluation on real data showed

that the Euclidean norm performs best for the specific type of

dyslexia’s data.

2) Proposed matrix-based GmdRQA: Given the two-

dimensional nature of our state matrices, appropriate distance

metrics d must be defined for our GmdRQA method. Specifi-

cally, the following distance metrics and matrix operators are

utilized and tested for the construction of GmdRPs:

• Euclidean norm of state matrices eigenvalues: Setting

the operator M to be the calculation of the eigenvalues

vector of a state matrix using the singular value decom-

position (SVD) [19], (5) takes the following form,

GmdRi,j = Θ
(
ε− ‖xi

eig − xj
eig‖2

)
, (6)

where xi
eig and xj

eig are the eigenvalues vectors of the

state matrices Xi and Xj , respectively, i, j = 1, . . . , Ns.

• Correlation matrix distance: In order to measure the

change of spatial second-order statistics, the correlation

matrix distance (CMD) [20] between correlation matrices

is employed, which is defined by

d(Ci,Cj) = 1− tr{CiCj}
||Ci||F ||Cj ||F ∈ [0, 1] (7)

where Ci and Cj are the correlation matrices of the

state matrices Xi and Xj , respectively, tr{·} is the trace

operator and ||·||F denotes the Frobenius norm. The CMD

becomes zero if the correlation matrices are equal up to a

scaling factor and one if they differ to a maximum extent.

The more the signal spaces of Ci and Cj overlap, the

higher becomes the trace of the product and therefore
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TABLE II
PRECISION, RECALL AND STANDARD DEVIATION FOR BOTH LOW RISK

AND HIGH RISK CLASS AVERAGED OVER 100 REPETITIONS.

State-of-the-art Vector-based mdRQA
Low Risk Class

(LR)
High Risk Class

(HR)
Precision 95.80±4.20 89.68±4.54
Recall 87.49±5.21 96.60±3.40

Euclidean distance norm of state matrix
eigenvalues

Low Risk Class
(LR)

High Risk Class
(HR)

Precision 97.02±2.98 89.61±4.40
Recall 87.23±5.15 97.66±2.34

Correlation matrix disatance
Low Risk Class

(LR)
High Risk Class

(HR)
Precision 97.10±2.70 88.99±4.81
Recall 86.39±5.68 97.71±2.18

the CMD decreases. This property of CMD makes it a

useful measure to evaluate whether the spatial structure

of a signal ensemble, hence, the signals’ statistics have

changed to a significant amount. Subsequently, by setting

M(Xi) = Ci, the associated GmdRP is defined by,

GmdRi,j = Θ(ε− d(Ci,Cj)) , (8)

where d is the correlation matrix distance.

B. Classification

The recorded data and metadata of each participant are

concatenated and then divided randomly into training and

testing subsets containing 70% and 30% of the data, respec-

tively. A non-linear classifier, namely, a linear-kernel SVM,

is applied on the generated feature matrix in order to detect

dyslexia, which is formulated as a classification problem. The

classification process is repeated 100 times and the average

performance is reported. The choice of this classifier is mo-

tivated by its fast execution, as well as by its high accuracy,

especially in the case of a large number of available features.

We emphasize, though, that the classification step is decoupled

from the feature extraction step, thus the overall performance

of the architecture can be further improved by employing a

better classifier.

C. Evaluation Metrics

The performance of our generalized matrix-based GmdRQA

architecture is compared against its vector-based mdRQA

counterpart, in terms of classification accuracy and robustness

to noise. Specifically, saccadic eye movement, which is a fast

random convulsing movement even when the eye fixates on

one point, can be modeled as white noise due to its random-

ness. Moreover, there is no preference to the direction of the

eye movement, therefore, we may claim that the governed

eye movement model is approximated by an additive Gaussian
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Fig. 3. Average classification accuracy of conventional mdRQA and our
GmdRQA (for the Euclidean and CMD distance metrics), as a function of
additive Gaussian noise’s strength.

noise process. Along these lines, we evaluate the robustness of

our proposed method when Gaussian noise is added to the data

with a signal-to-noise ratio (SNR) varying in {10, 20, 40} dB.

D. Evaluation Results

Table I displays the classification accuracy averaged over

100 repetitions, for the vector-based mdRQA approach and our

proposed method. As it can be seen, the Euclidean distance

between the eigenvalues vectors of state matrices outperforms

the rest in terms of classification accuracy. Precision and recall

percentages for each architecture examined are provided in

Table II. Precision expresses the percentage of the results

which are relevant, while recall refers to the percentage of

total relevant results correctly classified by each algorithm.

Fig. 3 depicts the average classification accuracy as a

function of the noise strength, for each one of the afore-

mentioned architectures. For low SNR values, the correlation

matrix distance outperforms the rest, whereas the vector-based

mdRQA architecture presents the worst performance. On the

other hand, for higher SNR values, the Euclidean distance

between the eigenvalues vectors of state matrices presents the

optimal performance, with the other two methods achieving a

comparable accuracy. Overall, our GmdRQA method demon-

strates an increased robustness to additive Gaussian noise,

when compared against its vector-based mdRQA counterpart.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and implemented a fully self-

tuned architecture for the detection of dyslexia based on a

representation of wearable sensor data in higher-dimensional

phase spaces via a generalized mdRQA method based on

state matrices for capturing the underlying dynamics of signal

ensembles. The experimental evaluation on real data revealed

the superiority of our proposed GmdRQA framework, when
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compared against its vector-based counterpart, in terms of

classification accuracy and robustness to noise. As a future

work, we intend to investigate the use of alternative distance

measures and operators tailored to state matrices, in order to

better capture specific characteristics of the dynamical system

under study. Furthermore, we will extend our matrix-based

GmdRQA to a more generic tensor-based framework, in order

to model directly the inherent spatio-temporal dynamics of

sensor streams.
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