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Abstract—Intuition tells us that highly complex structure
should be strongly correlated with highly complex behavior. In
this work, we show that, while complex behavior does require
complex structure, the converse is not necessarily true. Indeed,
structural complexity can be also used to implement robust
behavior, or even a variety of different relatively simple behaviors.
To obtain these results, we explored the spaces of sign Boolean
networks (SBNs) containing 2, 3, and 4 nodes, and we used
complexity measures introduced in our previous work to study
the relationship between structural and behavioral complexities
of these networks.

I. INTRODUCTION

When one observes a mechanical or an electronic device,
or even a natural system that we consider complex, common
sense suggests its function or behavior should be too. However
this is not necessarily always the case. Complexity can also
support robustness, or it can be allocated to obtaining multiple
behaviors. Error correction, spatial probes and rovers, protein
folding, gene regulatory networks, all need robustness, often
based on redundancy but also on the re-usability of some
functional parts [1]–[4]. Finally, a complex structure can
carry out multiple different functions, neither of which is
particularly complex nor robust. One wonders whether the
unstructured protein p53 can be seen as an example of such a
structure, since it may function as a relatively simple switch
for multiple cellular processes [5], [6].
To properly consider the relation between the complexity
of the structure of a system and its behavior, we rely
on Sign Boolean Networks or SBNs. Boolean networks
can be used to represent gene regulation, but can also be
viewed as good abstraction of any system of interconnected
entities whose states can actually be classified into “on” and
“off” groups [7]–[11]. In this context, the behaviour of the
modelled system can be reasonably associated with the entire
asymptotic dynamics (attractors) of the Boolean network,
or a part of it, i.e. limited to the dynamics of only few
entities. Various aspects of dynamics can be precisely defined
and measured for Boolean networks, such as the number of
attractors—which may correspond in biological interaction
systems to multiple behaviors, the average size of the basins
of attraction—which can be viewed as a source of robustness,

or the average complexity of the attractors themselves. SBNs
are a particular class of Boolean networks, in which every
node is a 0-threshold function, called signed Boolean function
(SBF): the new state of an SBF is computed by comparing
the weighted sum of its inputs to 0. This particularly
homogeneous structure is very useful for formal analysis,
as it allows for computing a natural measure of structural
complexity by combining the individual complexities of the
participating SBFs, capturing the local functionality, with
the global complexity of their interactions, or the layout of
the network. For a detailed discussion on the methodology
for computing BN dynamics and the structural and dynamic
complexity of SBNs we refer to [12]–[15].
In this paper, we consider the relationship between the
structure and the behavior of SBNs. More precisely, we focus
on the connection between the local (related to the SBFs
themselves) and global (related to the connections between
SBFs) structural complexities of SBNs and their number
of attractors (i.e. multiplicity of behaviors), the average
size of the basins of attraction (i.e. robustness), as well as
the average complexity of the attractors (i.e. complexity of
behaviors). Our goal is to investigate how these 3 observables
of the dynamics are correlated with the structural complexity,
e.g. to evaluate whether the most complex behaviors are
observed in the most structurally complex SBNs. Considering
the influence of structural complexity on various aspects of
dynamic complexity helps understand the organisation of
complex systems, of which the living organisms are a typical
example. Intuitively, one would consider that structurally
complex parts of an organism implement complex behaviors.
In this work we suggest that this intuition may not always
correspond to reality, as high structural complexity may also
give rise to simpler but very robust behavior, or to multiple
different behaviors, as illustrated in Figure 1. Furthermore,
local complexity of individual SBFs and the global complexity
of the layout of the SBN may have unequal contributions to
the behavioral complexity.
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Fig. 1. How does structural complexity distribute in different kinds of behaviors? This figure illustrates 3 typical extreme situations in which structural
complexity distributes differently into the 3 parameters of the dynamics evaluated in this work: the number of attractors (i.e. multiplicity of behaviors), their
average complexity, and the average size of their basins of attraction (i.e. robustness). In the transition graphs, the red arrows indicate transitions belonging
to an attractor, while the black ones indicate transitions not belonging to an attractor. A number of parameters are shown for each of the 3 SBNs, notably
their structural data, i.e. the rarity of their SBFs and the centrality of the SBN. (A) illustrates an SBN and its transition graph containing a relatively complex
3-state attractor. In (B), the SBN generates multiple simpler attractors with small basins of attraction. (C) shows a robust behavior with its rather simple
attractor consisting only of the state 111, but whose basin of attraction covers the rest of the network, with the exception of the state 000.

II. METHODOLOGY

We computed the structural complexity of all sign Boolean
networks (SBNs) of a given dimension d (60 SBNs for
d = 2, 31065 SBNs for d = 3, and about 3.6 109 for d = 4)
by combining the local complexities of the individual SBFs
with the global complexity of the network structure. In [13],
we thought the local complexity of an SBF as related to its
rarity—the inverse of the probability of randomly picking
the d particular SBFs that compose the SBN according to a
uniform probability distribution, and the global complexity
of the layout as a centralization index, aggregating the
centralities of the nodes of the SBN—the probabilities that
they influence each other. For each of these networks, we
also computed the complexity of their behaviors, according
to the following reasoning.
SBNs feature a deterministic evolution, necessarily ending
up in a cyclic attractor or in a stable state. Therefore, the
significant part of the dynamics is described by the sequence
of states corresponding to a period of the attractor. In

addition, some nodes may be designated as observers, and
the dynamics of the non-observer nodes may be discarded.
In our work, we say that a binary sequence s ∈ {0, 1}∗ is
a behavior of an SBN if this binary sequence is generated
by at least one node during exactly one period of the cyclic
attractor. We sometimes refer to a behavior of an SBN as a
music it plays, since Boolean networks seem to play repeated
binary musics. Observing the music played by only a subset
of nodes makes a lot of sense biologically speaking, because
only a subset of variables defining an observed living system
is generally accessible.
Since the behaviors we consider in our work are at most of
length 24, we use the Coding Theorem Method (CTM) in
conjunction with the Block Decomposition Method (BDM),
both described in [16], to compute their complexities. CTM
essentially consists in enumerating all small Turing machines
and counting how many of them produce the given binary
sequence. BDM consists in splitting a longer sequence into
blocks, computing the complexity of every block using CTM,



and then aggregating individual block complexities to obtain
the complexity of the entire string. The combination of BDM
with CTM was shown to approximate well the Kolmogorov
complexity of the string.
For more details, we refer the reader to our previous
works [13]–[15]).

III. RESULTS

We exhaustively explored the space of 2-, 3-, and 4-
node networks (d ∈ {2, 3, 4}) and measured their structural
complexity indices—average node centrality, average SBF
rarity, as well as behavioral complexity indices—the number
of attractors, average size of the basins of attraction, the
complexity of the exhibited behaviors. We also complemented
the structural complexity indices with the average number of
inputs of the SBFs (arity). We explored the spaces of 2- and 3-
node networks exhaustively, and the space of 4-node networks
by sampling every 100th equivalence class. Figure 2 shows a
number of 2D-histograms relating structural and behavioral
complexities of 3-node networks (d = 3). The appendix also
includes the histograms relating the same parameters for 4-
node networks (d = 4).

Figure 2 (A) shows that networks covering the entire
spectrum of centralities may generate simple behaviors. In fact,
there are more than 104 3-node networks with centrality index
equal to 1, but whose behavior is very simple. On the other
hand, the higher the complexity of the behavior, the higher the
centrality needs to be. In particular, the majority of complex
behaviors (complexity > 250) are generated by networks with
centrality index equal to 1.

One remarks in Figure 2 (A) that networks of high centrality
tend to employ SBFs of lower rarity. Figure 2 (B) zooms in on
the relation between arity, rarity, and centrality. It follows from
this plot that rarer SBFs tend to have lower arity, and therefore
belong to SBNs of lower centrality. On the other hand, high-
centrality networks are moderately to highly frequent, and tend
to have higher average arity.

Figures 2 (C) and (D) both illustrate the strong connection
between the number of attractors of a network and the average
size of their basins of attraction. Indeed, since the size of the
state space is fixed (23 = 8 states for 3-node networks), larger
basins of attraction imply fewer attractors. The distribution of
SBF rarity and SBN centrality in these plots is in accordance
with plot (B): more attractors with smaller basins of attraction
tend to employ rarer functions in networks of lower centrality,
while the largest basins of attraction employ moderately rare
functions in high centrality networks.

Figures 2 (E) and (F) focus on the connection between
the average number of attractors and behavioral complexity.
It follows that higher complexity requires fewer attractors,
and numerous attractors tend to produce simpler behavior on
average. Remarkably, however, there exist networks with 3
attractors which produce behaviors as complex as those of
some of the networks with 2 attractors. Average SBF rarity and
SBN centrality is distributed in these graphs as expected from

the previous histograms. In particular, attractors producing the
most complex behavior employ SBFs of moderate rarity, but
of high SBN centrality.

Figures 2 (G) and (H) complement the previous pair of plots
by highlighting the connection between the average size of
the basins of attraction and behavioral complexity. It turns
out that highly complex behavior is generally produced by
SBNs having attractors with larger basins, employing functions
of moderate rarity, but having quite high SBN centrality.
In fact, even moderately complex behaviors (of complexity
approaching 50 from below) tend to require high centrality,
while the arity of the SBFs involved in producing such
behaviors covers almost the whole spectrum. We recall that,
formally, the states of the attractor are part of the basin of
attraction; attractors associated with complex behavior may
occupy most of their respective basins of attraction. However,
it is also noticeable that some SBNs including rare SBFs (i.e.
with low arity), although having a low centrality, may display
quite important complex behaviors, for example those that
are shown in Figures 2 (G) and (H), and have a behavior
complexity of 80 and 4 states in their basin of attraction.

Finally, we explicitly remark that most of the values ap-
pearing in these histograms are average: SBF rarities, arities,
and centralities, as well as the sizes of the attractors and their
basins of attraction. This is why all figures include violin plots
showing the distribution of means and standard deviations of
the measures defining the colors. For example, in Figure 2, the
SBNs have average SBF rarity around 0.9, with low variation.
On the other hand, SBNs having large variations of SBF rarity
tend to employ relatively unrare SBFs, and are rather few.
The violin plot in (B) shows that the variations of centralities
in lower-centrality SBNs can be quite noticeable, while at
the same time, in higher-centrality SBNs all nodes tend to
have rather high centrality. In plots (C), (E), and (G), most
SBNs tend to employ functions with rarity around 0.8, with
negligible variations, except for SBNs containing lower-rarity
SBFs. The spectrum of centralities is on the other hand richer
in plots (D), (F), and (H). However, and in a remarkably
similar way to rarity, when SBNs already contain some SBFs
with high arity most of the SBN nodes tend to be of high arity
too.

IV. CORRELATIONS BETWEEN STRUCTURAL AND
BEHAVIORAL COMPLEXITY

The numerical data we present in the previous section give
a rather detailed picture of the connections between different
indices of structural and behavioral complexity. In particu-
lar, they show that while complex structure does sometimes
correlate with complex behavior, it is quite more frequent for
structural complexity to be invested into larger basins of attrac-
tion (higher robustness) or into more attractors (multiplicity
of behaviors). In this work we do not bring forward definitive
conclusions concerning the relationship between the structure
and the function of the networks, but the numerical data and
the observations we presented here lay down future research
directions which will make this relationship clearer and more
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Fig. 2. Parameters of structural and behavioral complexities for d = 3. These histograms illustrate the connections between the structural complexities—
centrality, rarity, and arity—and the number of attractors, the size of the basins of attraction, and the complexity of the behaviors, for all 3-node networks.
Average values are shown. Each histogram is accompanied by a violin plot giving the distribution of the mean and the standard deviation of the corresponding
measure. (A) shows that most networks produce simple behaviors, even the most structurally complex ones. (B) illustrates the relationship between rarity, arity,
and centrality. (C) and (D) indicate that the number of attractors and the sizes of their basins of attraction are inversely related, and also show distributions
of centrality and rarity. Finally, (E) and (F) show how rarity and centrality are connected to the number of attractors and the behavioral complexity, while
(G) and (H) illustrate the relation with the size of the basins of attraction.



usable in the study of living systems. As an important example,
it would be relevant to identify structural patterns leading
specifically to high behavioral complexity, multiplicity of
behaviors, and high robustness.

While the strategy of exhaustive exploration of the SBN
space allows for making comprehensive observations, it is
not necessarily representative of the networks which appear
in concrete biological systems. For example, a gene in a
regulatory network is typically influenced by a small number
(< 10) of other genes (e.g. [17]), while neurons in neural
networks tend to integrate many more inputs (often tens to
hundreds, or even thousands in the case of Purkinje cells,
e.g. [18]). Therefore, subspaces of the SBN space should
instead be considered, based on the observed organisation
of the systems of interest. In these subspaces, structural and
behavioural complexity may be correlated differently, and new
specific connections may emerge.

In this work, we focus on a particular set of structural and
behavioral complexity measures, which are well suited for
generic SBNs. Different new complexity measures may be
introduced to capture the particularities of classes of SBNs
sharing some properties with real-life networks. In fact, these
measures should be stated explicitly as part of the modelling
framework, and should be targeted towards a specific objec-
tive, as complexity is always a formal representation of a part
of a question or problem.

Our observations have a number of methodological impli-
cations. One typically studies a complex living system part
by part, trying to tackle its inherent complexity by identifying
modules. Our work confirms the intuition that this approach
is not always viable: Figures 2 (F) and (H) show for example
that many behaviors, even the simplest ones, may be imple-
mented in networks with high average node centrality. Finding
modules in such structures may be hard or even impossible,
as all nodes may contribute in some ways to all exhibited
behaviours.

In fact, in many modelling scenarios, the actual structure
is hard to identify correctly due to the complex interplay of
different factors in the production of the behavior of interest.
In these cases, one typically designs an ersatz structure, which
is meant to represent the partially unknown mechanisms at a
high level of abstraction. This is often the case with Boolean
approaches, in which the structure of the network is derived
from the observed time series (e.g., [17]). A finer-grained
understanding of how structural complexity distributes into
various aspects of behavioral complexity for the modelled
networks may therefore help design better models.
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[17] J.G.T. Zañudo, S.N. Steinway, and R. Albert, ”Discrete dynamic network
modeling of oncogenic signaling: Mechanistic insights for personalized
treatment of cancer.” Current Opinion in Systems Biology, vol 9, pp 1–10,
2018

[18] K.E. Joyce, P.J. Laurienti, J.H. Burdette, S. Hayasaka, ”A New Measure
of Centrality for Brain Networks.” PLoS ONE, vol 5, no 8, e12200, 2010



APPENDIX
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Fig. 3. Parameters of structural and behavioral complexities for d = 4. As in Figure 2 in the main text of the paper, these histograms illustrate
the connections between the structural complexities—centrality, rarity, and arity—and the number of attractors, the size of the basins of attraction, and the
complexity of the behaviors, for all 4-node networks. Average values are shown. Each histogram is accompanied by a violin plot giving the distribution of
the mean and the standard deviation of the corresponding measure.


