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Abstract

Machine learning algorithms and traditional data mining process usually require a large volume of 

data to train the algorithm-specific models, with little or no user feedback during the model 

building process. Such a “big data” based automatic learning strategy is sometimes unrealistic for 

applications where data collection or processing is very expensive or difficult, such as in clinical 

trials. Furthermore, expert knowledge can be very valuable in the model building process in some 

fields such as biomedical sciences. In this paper, we propose a new visual analytics approach to 

interactive machine learning and visual data mining. In this approach, multi-dimensional data 

visualization techniques are employed to facilitate user interactions with the machine learning and 

mining process. This allows dynamic user feedback in different forms, such as data selection, data 

labeling, and data correction, to enhance the efficiency of model building. In particular, this 

approach can significantly reduce the amount of data required for training an accurate model, and 

therefore can be highly impactful for applications where large amount of data is hard to obtain. 

The proposed approach is tested on two application problems: the handwriting recognition 

(classification) problem and the human cognitive score prediction (regression) problem. Both 

experiments show that visualization supported interactive machine learning and data mining can 

achieve the same accuracy as an automatic process can with much smaller training data sets.
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I. Introduction

Visualization, particularly multi-dimensional data visualization, has been playing an 

increasing important role in data mining and data analytics. This transformation of 

visualization from data viewing to being an integrated part of the analysis process led to the 

birth of the field of visual analytics [1]. In visual analytics, carefully designed visualization 

processes can effectively “decode” the insight of the data through visual transformations and 

interactive exploration. Many successful applications of visual analytics have been published 

in recent years, ranging from bioinformatics and medicine to engineering and social science. 
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These success examples demonstrate that visualization is a powerful tool in data analytics 

that needs to be seriously considered in any big data application. On the other hand, 

automatic data mining and data analytics have made tremendous progress in the past decade. 

Machine learning, particularly deep learning, has become the mainstream analytics method 

in most big data analysis problems. The effective integration of visualization and machine 

learning / data mining is a new challenge in big data research.

Machine learning algorithms such as neural networks and support vector machines use data 

to build computational models that are representations of nonlinear surfaces in high 

dimensional space. The trained models can then be used for analysis tasks such as 

classifications, regressions and predictions. Recent progress in deep learning has further 

empowered machine learning as an effective approach to a large set of big data analysis 

problems. As an automatic method, machine learning algorithms act mostly as a black box, 

i.e. the users have very little information about how and why the algorithm work or fail. The 

underlying machine learning models are also designed primarily for the convenience of 

learning from data, but they are not easy for the users to understand or interact with. 

Interactive machine learning aims to provide a mechanism through visualization to allow 

users to understand and interact with the learning process [2]. It has several important 

potential benefits.

1) Understanding

It is often difficult to improve the efficiency and performance of the algorithms without a 

clear understanding of how and why the different components work in machine learning 

algorithms. It is even more so in deep learning where there are large number of layers and 

interconnected components.

2) Knowledge Input

Human knowledge input can significantly improve the performance of machine learning 

algorithms, particularly in areas involving professional expertise such as medicine, science 

and engineering. Human instinct from visual perception can also outperform computer 

algorithms. Hence, it is important to develop a visualization supported user feedback 

platform to allow user input to the machine learning system in the form of feature selection, 

dimension reduction, parameter setting, or addition / revision of rules and associations.

3) Data Reduction

Automatic machine learning usually requires a large volume of data to train the underlying 

computational model. This strategy sometimes is not realistic for applications in which data 

collection, labelling or processing is very expensive or difficult (for example, in clinical 

trials). Interactive visualization of the machine learning process allows the user to iteratively 

select the most critical and useful subset of data to be added to the training process so that 

the model building process is more data efficient (Figure 1). This is also our primary focus 

in this paper.

Our goal is to develop a visualization supported user interaction platform in a machine 

learning environment such that the user can observe the evolution and performance of the 
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internal structures of the model and provide feedback that may improve the efficiency of the 

algorithm or correct the direction of the model building process. Although the visualization 

platform we develop can be used to support “understanding” and “knowledge input” 

functions, we focus specifically in this paper on “data reduction”. In our approach, the 

interactive system will allow the user to identify potential areas (in some visual space) where 

additional data is needed to improve or correct the model (as shown in Figure 1). This way, 

only the necessary amount of data is used for learning a model.

We aim to solve a big data problem using a small data solution. In practice, this approach 

can not only save costs for data acquisitions / collections in applications such as clinical 

trials, medical analyses, and environmental studies, but also improve the efficiency and 

robustness of machine learning algorithms as the current somewhat brute-force approach 

(e.g. in deep learning) may not be necessary with smaller and higher quality data. To achieve 

this goal, we will need to overcome the following two challenges:

1. How to visualize the dynamics of a machine learning model is technically 

challenging. Previous works often depend on the specific machine learning 

algorithms. But in this paper, we will develop an approach and a general strategy 

that can be applied to most machine learning algorithms. In our test applications, 

support vector machines will be used as an example to demonstrate the 

effectiveness of this approach.

2. How to identify problematic areas from the visualization to revise the model, and 

how to efficiently and effectively provide user feedback to the algorithm are 

challenging. This is because machine learning features are often non-trivial 

properties of the data which cannot be easily used to pre-screen potential data 

collection target in real world applications.

In this paper, we will present a solution to these two challenges. Our approach will be tested 

on two practical applications with real world datasets.

In the following, we will first, in Section 2, discuss previous work related to interactive 

machine learning and other visual analytics solutions. The interactive visualization platform 

along with our general visualization and interaction techniques will be described in Section 

3. The two application problems: handwriting recognition and cognitive score prediction 

using human brain data will be presented in Section 4. Conclusions and future work will be 

given in Section 5

II. Related Work

Although interactive machine learning has been previously proposed in the machine learning 

and AI communities [2, 3], applying visualization and visual analytics principles in 

interactive machine learning has only been an active research topic in recent years. Most of 

the existing studies focus on using visualization for better understanding of the machine 

learning algorithms. There have also been some recent works on using visual analytics for 

improving the performance of machine learning algorithms through better feature selection 

or parameter setting.
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While there have been many literatures on using interactive visualization to directly 

accomplish analysis tasks such as classification and regression [4, 5], we will focus mostly 

on approaches that deal with some machine learning models [6]. Previous works on using 

visualization to help understand the machine learning processes are usually designed for 

specific types of algorithms, for example, support vector machines, neural networks, and 

deep learning neural networks.

Neural Networks received the most attention due to its “black box” nature of the learning 

model and the complexity of its internal components. Multi-dimensional visualization 

techniques such as scatterplot matrix have been used to depict the relationships between 

different components of the neural networks [7, 8]. Typically, a learned component is 

represented as a higher dimensional point. The 2D projections of these points in either 

principal component analysis (PCA) spaces or a multi-dimensional scaling (MDS) space can 

better reveal the relationships of these components that are not easily understood, such as 

clusters and outliers. Several techniques have applied graph visualization techniques to 

visualize the topological structures of the neural networks [9, 10, 11]. Visual attributes of the 

graph can be used to represent various properties of the neural network models and 

processes.

Several recent studies tackle specific challenges in the visualization of deep neural networks 

due to the large number of components, connections and layers. In [12]. Liu et al. developed 

a visual analytics system, CNNVis, that helps machine learning experts understand deep 

convolutional neural networks by clustering the layers and neurons. Edge bundling is also 

used to reduce visual clutter. Techniques have also been developed to visualize the response 

of a deep neural network to a specific input in a real-time dynamic fashion [13, 14]. 

Observing the live activations that change in response to user input helps build valuable 

intuitions about how convnets work.

There are several literatures discussing visualization’s roles in support vector machines. In 

[15], visualization methods are used to provide access to the distance measure of each data 

point to the optimal hyperplane as well as the distribution of distance values in the feature 

space. In [16], multi-dimensional scaling technique is used to project high-dimensional data 

points and their clusters onto a two-dimensional map preserving the topologies of the 

original clusters as much as possible to preserve their support vector models.

Visualization and visual analytics methods have been proposed for the performance analysis 

of machine learning algorithms in different applications [17, 18, 19]. Interactive methods 

have also been proposed to improve the performance of machine learning algorithms 

through feature selection and optimization of parameter settings. Some general discussions 

are given in [6] and [20]. In [21], a visual analytics system for machine learning support 

called Prospector is described. Prospector supports model interpretability and actionable 

insights, and provides diagnostic capabilities that communicate interactively how features 

affect the prediction. In [22], a multigraph visualization method is proposed to select better 

features through an interactive process for the classification of brain networks. Other 

performance improvement methods include training sample selection and classifier tuning 

[23] and model manipulations by user knowledge [24, 25, 26].
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The incremental visual data classification method proposed in [23] has some similarities 

conceptually to what we propose in this paper. In [23], neighbor joining tree is used to 

classify 2D image data. The model building process is done incrementally by adding 

additional images that are visually similar to the test samples that were misclassified. This 

approach puts a very heavy burden on the user as finding similar images by the user from a 

large image database or other sources is difficult and time-consuming. Our approach is a 

more general framework that works for all machine learning algorithms and all data types. It 

is designed to allow incremental addition of training data with any user defined 

characteristics (attributes) that are easy to identify and collect.

III. A Framework

In this section, we present a framework of interactive machine learning by visualization. The 

application of this framework to two test examples will be discussed in Section 4.

A. System Overview

Our goal is to develop a new interactive and iterative learning technique built on top of any 

machine learning algorithm so that the user can interact with the machine learning model 

dynamically to provide feedback to incrementally and iteratively improve the performance 

of the model. Although there can be many different forms of user feedback, such as 

knowledge input, features selection and parameters setting, in this paper we focus primarily 

on adding the optimal subset of training data samples such that the added training samples 

can provide maximal improvement of the model using minimum number of additional 

training points. Hence, the problem statement can be formulated as follows:

Let F be the feature space of a machine learning algorithm, X ={x1, x2, …, xn} ⊂ F be the 

starting training set, and Y = {y1, y2, …, ym} ⊂ F be an internal test set. We define U as user 

space of the same dataset containing some user defined attributes. These user defined 

attributes are selected based on two criteria: (1) they are part of the attributes of the original 

dataset; and (2) they can be used to identify data points (to be collected) easily. Let Z = {z1, 

z2, …, zm} ⊂ U be set Y represented in the user space U, and M0(y): F → C be the learned 

model using the initial training set X, where C is the application value range (e.g. class 

labels or regression function values).

We want to find a set of k new data points (where k is a constant), X’ ⊂ F, such that points in 

X’ satisfy a set of user defined conditions of attribute values in U. These conditions in U is 

defined interactively from the visualization of the model and its test results on set Z in the 

user space U. The user’s goal is to provide additional training samples such that the learned 

model M1(y) using training set X ∪ X’ ⊂ F is an improved model over M0(y).

The above process can continue iteratively until the performance of the model is satisfactory 

or until the model can no longer be improved.

This framework can be summarized by the structural flowchart in Figure 2. At each 

iteration, a machine learning model is constructed using the current training set. The model 

will be tested on an internal test set. The visualization engine will then visualize the model 
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along with the labeled internal test results. Based on this visualization, the user can decide to 

add new samples in the areas where the model performed poorly. These new samples will be 

added to the current training set to enter the next iteration.

B. User Space and User Interactions

A critical idea in our interactive machine learning framework is the separation of feature 

space and user space. During each iteration of the learning process, the additional training 

data is often not readily available, and needs to be acquired separately using some easy to 

use attributes.

A machine learning algorithm learns a model based on the features of the training samples. 

These features are either precomputed by some dimension reduction methods (e.g. PCA) or 

selected through some feature selection algorithms. It is generally not feasible to obtain 

features of any data item before the data is collected. This is particularly true for complex 

datasets where the collection of each data item requires significant effort and cost. For 

example, in medical analysis, the collection of detailed medical and health data for each 

patient or a control individual is very expensive and time-consuming.

In our approach, a specific subset of conditions for data is identified through the interactive 

visualization process and targeted for collection. Thus, the attribute conditions for this subset 

of data need to be something that are easy to be used for the identification and collection of 

data. For this reason, we define user space as a data representation space containing 

attributes that can be used as the identifiers of the target data subset for iterative data 

collection. This also means that the interactive visualization also needs to be presented in 

this user space so that the user can interactively define the attribute conditions for additional 

data samples.

A user space is typically defined by the user based on the application needs. The attributes in 

the user space may contain:

• Common attributes. These include simple common characteristics of data that 

can be used to identify the data easily. For instance, in medical diagnosis 

applications, these may include common demographic information and behavior 

data such as age, gender, race, height, weight, social behavior, smoking habit, 

etc.

• Special attributes. These are attributes the analysts have special interests in. For 

example, in bioinformatics, certain group of genes or proteins may be of special 

interests to a particular research problem, and can be extracted from a large 

database.

• Visual attributes. Visual data such as images or shape data maybe directly 

visualized as part of the user space so that the user can visually identify similar 

shapes or images as new samples

Through the visualization of the model and the associated labels of the testing samples, the 

user can specify conditions for user space attributes to identify new training samples. This is 

done based on several different principles:
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• Model Smoothness. The visualization will show the shape of the learned model 

at each iteration. Visual inspection of the shape of the model can reveal potential 

problem areas. For example, if the model is mostly smooth but is very 

fragmented in a certain region, it is possible that the learning process does not 

have sufficient data in that region.

• Testing Errors. Errors from the test samples can provide hints about areas where 

the model performs poorly. These may include misclassified samples and 

regression function errors. In areas with significant errors, new samples may be 

necessary to correct the model.

• Data Distribution. There may be a lack of training data in some area in the user 

space. This can affect the model’s accuracy and reliability. For example, a 

medical data analysis problem may lack sufficient data from older Asian female 

patients. To show this type of potential issues, the visualization system will need 

to draw not only the test samples, but also the training samples within the user 

space

C. The Visualization Platform

The visualization platform in our interactive machine learning framework serves as the user 

interface to support user interaction and the visualization of data and the model.

Although there are many different visualization techniques for multi-dimensional data [27], 

we choose scatterplot matrix as our main visualization tool as it provides the best interaction 

support and flexibility. We also choose to use heatmap images to visualize the machine 

learning model within the scatterplots since it treats the machine learning model as a black 

box function and thus allows the approach to be machine learning algorithm independent.

Figure 3 shows a general configuration of the scatterplot visualization interface. The upper-

right half of the matrix shows the feature space scatterplots, the lower-left half shows the 

user space scatterplots and the diagonal shows the errors of the corresponding feature space 

dimensions. Within each scatterplot sub-window, two types of visualizations will be 

displayed: (1) the data (training or testing data points); (2) the current learned model. Each 

of the 2D sub-windows can also be enlarged for detailed viewing and interaction. In 

principle, the dimensionality of the feature space and the dimensionality of the user space 

are not necessarily the same. But for convenience, we may select the same number of 

features and user space attributes to visualize in this scatterplot matrix. It is certainly not 

hard to use different numbers of variables in these two spaces.

The primary challenge in this visualization strategy is the visualization of a machine 

learning model in a 2D subspace of the feature space or user space. A heatmap image filling 

approach will be used to visualize the model. Each pixel of the 2D sub-window will be 

sampled against the model function, and the result will be color-coded to generate a 

heatmap-like image. An example is shown in Figure 4 for a 3-class classification model.

Let the machine learning model be a function over the feature space, M(Y): F → C. where F 

is the feature space and C is the range of the model function. The projection of the model in 
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a 2D subspace is, however, not well defined, and hard to visualize and understand. A better 

way to understand and visualize the model in a 2D subspace is to draw a cross-section 

surface (over the 2D subspace) of the model function that passes through all training points. 

Mathematically, this is equivalent to the following:

For a pixel point P = (a, b) in a 2D subspace where a and b are either two feature values or 

two user space attributes, compute M(y), where the feature vector y ∈ F at P is calculated by 

interpolating the feature vectors of the training samples on this 2D subspace.

Any 2D scattered data interpolation algorithm can be used here to interpolate the feature 

vectors. In our implementation, since we need to interpolate all pixels in a 2D sub-window, a 

triangulation-based interpolation method is more efficient as the triangulated interpolants 

only need to be constructed once. The training data samples are triangulated by Delaunay 

triangulation first. A piecewise smooth cubic Bezier spline interpolant is constructed over 

the triangulation using a Clough-Tocher scheme [28]. An alternative method is to apply 

piecewise linear interpolation over the triangular mesh. But the cubic interpolation provides 

better smoothness. Please note that this interpolation scheme interpolates only the feature 

vectors, which will then be inputted to the model function to generate model output values 

for color coding.

Figure 5 shows two types of cross-sections. For simplicity of illustration, we use a 1D 

analog to the 2D cross-sections. So, the sample points on a 1D axis in the figure should be 

understood as the sampling points on a 2D scatterplot sub-window. Here (f1, f2) is the 

feature space. C is the model value, U is a 1D subspace of the user space. P1 to P5 are the 

training samples we use for interpolation. In Figure 5(a), f1 axis is a subspace we use to 

visualize the model in the feature space. In Figure 5(b), U is a subspace we use to visualize 

the model in the user space. In this figure, we assume U is a linear combination (rotation) of 

the feature dimensions. But U sometimes can be wholly or partially independent of the 

features. In that case, interpolation will just simply be done within the user space similarly 

as in Figure 5(a). Since we have many 2D sub-windows in the scatterplot matrix, the 

combinations of these cross-sections provide a cumulative visual display of the model 

function at every iteration of the learning process.

IV. Test Applications

The framework described in the last section has been implemented using Python and a 

Python 2D plotting library: Matplotlib. In this section, we will apply this framework to two 

different types of test applications: handwriting recognition (classification) and human 

cognitive score prediction (regression) using real world datasets.

A. Handwriting Recognition

In this case study, we apply our interactive machine learning approach to the classification 

(recognition) of handwriting digits. The well-known publicly available MNIST handwritten 

digits dataset from the MNIST database [29] is used. For better illustration effect, we will 

narrow the recognition scope to four classes of digits: 0s, is, 2s, and 3s. For these 4 classes, 
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we have 24673 training points and 4159 testing points. We also picked 123 points (0.5%) out 

of the training set for internal test to guide the interactive process.

Each original data point contains a fixed sized 2D image. Principal Component Analysis 

(PCA) is applied to the pixel arrays of these images. The top 10 principal components are 

used as feature vector in a Support Vector Machines classification algorithm. This SVM 

process is very similar to a typical face recognition system [30].

In this application, the feature space is the principal component space. If we only use the top 

four features (PCs) for visualization and interaction, we will have a 4 by 4 scatterplot matrix. 

Since this is an image dataset, the user space contains the original pixels. It is easier to 

simply display small icons of some of the original images within the user space scatterplots. 

These icons can be enlarged when clicked by the user.

Figure 6 shows an interface for this interactive session with four features. The scatterplot 

matrix is symmetric, but the lower-left sub-windows show icons of some of the original 

images, which serve as a user space. Each diagonal sub-window shows a histogram of the 

distribution of the misclassified points in each feature dimension. It is certainly possible to 

use the shape information of the misclassified points to retrieve similar new samples from 

the large database, which can perhaps be automated. In our experiment, we focus only on 

interactive operations. New samples are added in areas where there are too many 

misclassified samples or the classification boundaries appear fragmented. The process 

started with only 10 training samples. In each iteration, 5 new samples are added at an area 

clicked by the user.

Figure 7 shows a performance chart for this experiment. The orange line represents the 

performance using randomly selected samples, and the blue line represents the performance 

using interactively selected samples. Since this problem is relatively easy, the performance 

curve converges quickly after about 250 points. But the blue line reaches the near-peak 

performance much earlier at about 75 points. Figure 8 shows a sequence of the interactions 

that led to iterative model improvement.

B. Human Cognitive Score Prediction

Understanding the structural basis of human cognition is a fundamental problem in brain 

science. Many studies have been performed to predict the cognitive outcomes from measures 

captured by Magnetic Resonance Imaging (MRI) scans of the brain [31–34]. In this case 

study, we apply our interactive machine learning approach to the prediction of cognitive 

performance using MRI data coupled with relevant demographics and behavior information.

The data studied in this work were downloaded from the Human Connectome Project (HCP) 

database [35–37]. HCP is a major NIH-sponsored endeavor that has acquired and published 

brain connectivity data plus other neuroimaging, behavioral, and genetic data from 1200 

healthy young adults. Its goal is to build human brain network map (i.e., connectome) to 

better understand the anatomical and functional connectivity in relation to cognitive and 

behavior outcomes within the healthy human brain.
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There are four types of attributes from the HCP database: (1) the Mini–Mental State 

Examination (MMSE) score, which is the cognitive outcome studied in this work; (2) 

structural MRI measures, including volume measures and cortical thickness measures of 

regions of interests generated by the FreeSurfer software tool [38]; (3) demographical 

measures such as age, race, weight, height, BMI, etc.; and (4) behavioral measures. Our 

computational task is to predict the MMSE score using the MRI, demographical and 

behavior measures.

A total of 1177 subjects with complete cognitive, imaging, demographical, and behavior 

information were included in our study. 589 subjects are used as test set and 588 subjects are 

used as training set. We selected 5% (about 30 samples) of this training set as internal test 

set to guide the user interaction. A principal component analysis (PCA) is used for feature 

selection. A support vector regression (SVR) technique is applied to the top 10 principal 

components (PCs) to obtain a regression model in each iteration for the prediction the 

MMSE scores [39, 40]. The predicted MMSE scores are then color coded to generate the 

heatmap images in the 2D sub-windows. The iteration starts with 10 initial training samples. 

In each iteration, 5 new samples are added at an area clicked by the user.

Figure 9 shows a screen shot of the interface. The top four principal components are used as 

the features in the scatterplots. The user space attributes used in this visualization include the 

patient’s weight, height, age, and body mass index (BMI). The diagonal sub-windows show 

the histograms of the distributions of the regression errors for the individual feature 

dimensions. We again only focus on adding new samples in areas where there are too many 

mismatches of colors between the model and the samples or the regression heatmap appears 

too fragmented. In practice, experts may also use other professional knowledge to add 

samples that relate to a particular hypothesis. From Figure 9, we can see that the scores are 

very flat in most of the regions but can change quite drastically within some isolated small 

region.

Figure 10 shows the performance chart for this iteratively built model. The orange line 

represents the results using randomly selected samples, and the blue line represents the 

results using interactively selected samples. We first applied the support vector regression 

using the entire 588 training set. The resulting mean error is 0.8. The chart shows that the 

interactive model converge quickly to the optimal performance (0.8 error) after about 80 

training samples while the randomly selected training samples struggle to converge. Figure 

11 shows a sequence of interactions that led to iterative model improvement.

Conclusions

We have presented a general framework for a visualization supported interactive machine 

learning approach, and have tested the framework on two different types of application 

problems using real world datasets: handwriting recognition and human cognitive score 

prediction. The experiments show that interactively selected training samples can reach high 

performance quicker than randomly selected samples. This approach provides a new way to 

train a machine learning model using a small set of training samples. since human 

knowledge and perceptual instincts are used in the selection of the training samples, this 
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approach is potentially smarter and more efficient than traditional “big data” solutions. It is 

particularly useful for applications where high quality “big data” is not readily available or if 

the collection and labeling of the data is too expensive (e.g. in some biomedical data analysis 

applications). on the other hand, since this approach requires human in the learning loop, it 

may not be suitable for applications that require total automation (e.g. in real time robot 

vision).

Although this paper focuses on the “small data” solution, the visual analytics framework 

proposed here can be applied to other types of interactive machine learning problems such as 

human knowledge integration and model optimization. In the future, we would like to 

explore new solutions to interactive machine learning with knowledge (e.g. rules and 

constraints) input, parameter settings and other model optimization functions. We would 

also like to investigate ways to automatically evaluate the models so that the additional 

samples can be added automatically.
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Fig. 1. 
Ail example of iterative model improvement by interactively adding new samples.
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Fig. 2. 
A structural flowchart of the interactive machine learning system.

Li et al. Page 15

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
A configuration of the scatterplot matrix visualization.
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Fig. 4. 
Model visualization example.
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Fig. 5. 
1D illustrations of model visualization as cross-sections (a) in feature space and (b) in user 

space.
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Fig. 6. 
Interactive machine learning interface for 4-class handwriting classification

Li et al. Page 19

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Performance chart for handwriting classification experiment.
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Fig. 8. 
A sequence of model improvement iterations.
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Fig. 9. 
Interactive machine learning interface for human brain data regression.
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Fig. 10. 
Performance chart for brain data regression.

Li et al. Page 23

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
A sequence of model improvement iterations for MMSE score prediction.
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