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Abstract—Extubation failure can occur in 10 to 25% of patients
who were successfully separated from their ventilator. In which
case, patients need to be re-intubated. To reduce the extubation
failure rate, we monitor patients during 48h after extubation
using Electrical Impedance Tomography (EIT). In total, we
recruited 34 patients from which 8 failed their extubation in the
ICU ward. Prediction of extubation success or failure using only
non-invasive EIT data show a sensitivity of 0.80 and a specificity
of 0.73. The prediction for the 8 extubation failures was accurate
for most right after the extubation and achieved 100% accuracy
for the measurement set preceding the failure.

Index Terms—Electrical impedance tomography, Mechanical
ventilation, Weaning, Failure prediction.

I. INTRODUCTION

In the Intensive Care Unit (ICU), a patient can be extu-
bated from the mechanical ventilation once he succeeds the
spontaneous breathing trial (SBT) [1]. Until that moment,
clinicians use the information provided by the ventilator to
monitor the respiratory mechanics of the patient. Once the
patient is extubated, the decision relies on clinical examination
or arterial blood gases, if available. This method relies greatly
on the clinicians experience to detect a potential worsening
that should alert and prompt for preventive therapeutic of
extubation failure.

Electrical Impedance Tomography (EIT) [2] is a non-
invasive and non-ionizing imaging technique that allows ob-
servations of conductivity variation in real-time. Applied to the
thorax, variation seen in the EIT images have been attributed
to conductivity variation induced by the air in the lungs [3]
[4]. Different applications have arisen from this technique,
particularly in the ICU. The principal use by the clinicians are
for positive end expiratory pressure titration [5] [6], monitor
ventilation distribution [7] [8] or the perfusion [9] [10].

The EIT could monitor the evolution of the patient’s ventila-
tion during the weaning phase to predict the extubation failure.
Attempts have already been made to predict the outcome from

EIT measurement [11]. To evaluate the prediction capacity of
usual EIT features, they tested different thresholds to separate
the success from the failed extubation. Measurements were
realized before and after the SBT as well as right after
the extubation and 30 minutes later. The study founds that
the Global inhomogeneity index (GI) [12], yields the best
prediction performance. With the failure defined as 1 and
success as 0, they found an average between the different
measurement to be equal to 0.82 for the sensibility and 0.53
for the specificity.

Our goal is to build an EIT prediction model, by using more
than one EIT feature. This involves including the usual EIT
features already described in the literature, as well as new ones
proposed by our-self. We wants the prediction model to be
consistent with medical practice and thus constructing model
that can be understood by clinicians. The first contribution of
this paper is the integration of new EIT features. The second
focus is on improving the prediction results.

This paper is structured as follow: Section II describes
the clinical study with the patients, the weaning observation
and data acquisition, Section III explains our EIT framework
to reconstruct the EIT images and the feature’s extraction,
Section IV shows the different prediction models, Sections
V and VI show the results with related discussion.

II. MATERIALS AND METHODS

A. Clinical study

A clinical study took place between February 2020 to
March 2022 in the intensive care unit of the hospital La Pitié
Salpêtrière in Paris (NCT04180410). On the 14th of February
2020, a national ethics committee approved the protocol.

B. Patients

After a successful SBT, patients are examined to see
whether they can be included in the study. In purpose, we



TABLE I
COUNT OF PATIENTS PER CLASS FOR ALL DATASET.

H0 H2 H6 H12 H24 H36 H48
Success 26 25 24 14 18 6 13
Failure 8 6 5 2 3 0 0

Fig. 1. EIT framework: from the EIT system to the EIT images.

selected high risk patients (i.e. patients with a likelihood to fail
extubation based on intrinsic characteristics), to increase the
basic 10 to 25% [13]. The inclusion criteria are: (1) age greater
than 65 years (2) invasive mechanical ventilation duration
superior to 48h (3) known or suspected COPD 1 (4) known or
suspected heart failure.

C. Weaning observation

Patients were included once the physician in charge pre-
scribed extubation. The first visit, H0, occurs moments before
the extubation while the patient is still ventilated. At this time,
the patient is ventilated with the pressure support ventilation
mode. EIT measurements are realized as well as other mea-
sures such as lung and heart ultrasound or blood analysis. After
that first visit, the patient is extubated and observed during 48
hours. The next visits occurs 2, 6, 12, 24, 36 and 48 hours
after the extubation (later referred as H2, H6 and so on). The
count of patients for all dataset is shown in Table I.

Extubation failure is defined as a post-extubation acute
respiratory failure, which can include the following: (1) respi-
ratory rate (RR) > 35 breaths/min (2) SpO2 < 90% with O2
> 5L/min (3) activation of the accessory respiratory muscles
(4) if blood gas available, pH < 7.35 with PaCO2 > 45 mmHg.

Patients that failed the extubation for reasons other than
ventilation failure are excluded of the study at it falls outside
the monitoring scope of the EIT.

D. Data acquisition

At each visit, EIT measurement is realized with the Drager
Pulmovista 500 [14] set to 30 frames/s. The 16 electrodes
belt is positioned between the 4th and 6th intercostal space. A
temporary mark is placed on the thorax to make sure the belt
does not move significantly between takes. Each EIT measures
last for 5 minutes.

III. EIT FRAMEWORK

A. EIT acquisition

Some of the patients were agitated after the extubation, as
they adapted to their new conditions. This created noise in the

1COPD: Chronic Obstructive Pulmonary Disease

TABLE II
MACRO LIST OF THE DIFFERENT USED EIT FEATURES.

Usual features from the literature Added features
CoV [19] Lung shape
GI [12] Lung area

Regionnal distribution [20] Flow EIT
∆Z [21] RSBI EIT

Respiratory rate

EIT signal. Spikes in the signal occur due to cough or rapid
movement from the patient. Drift of conductivity signal occurs
due to sudation or small belt movement during the measure.
To remove the spikes and drift, a bandpass filter is applied
with cutoff frequencies equal to 0.05Hz and 0.7Hz.

For the reconstruction, we use the algorithm GREIT [15],
from the open library EIDORS [16] in Matlab. Different
GREIT parameters were tested to find the one that optimize
the reconstruction [17]. They were optimized as to minimize
the difference between the volume measured by the venti-
lator and the volume estimated through the EIT [18]. The
reconstruction matrix is then exported in our EIT framework
which is implemented using Python programming language.
Two sorts of images are reconstructed: the dynamic images,
which correspond to the images from each recorded frames;
the tidal images, which are the difference from inspiratory and
expiratory frames. All images have a size of 54x64 pixels. The
whole process is sum up in the Figure 1.

B. EIT features extraction

To ensure the capture of the full picture of the ventilation
from the EIT perspective, we included most EIT features
from the literature (cf. Table II). The Center of Ventilation
(CoV) was used to calculate the ventral to dorsal distribution,
as well as the right to left side distribution. The regional
distribution calculates the percentage of ventilation present
on 4 quadrants (ventral left and right sides as well as dorsal
left and right). This metric and the conductivity variation ∆Z,
which corresponds to the sum of each frame, are calculated
on the dynamic and the tidal images.

In addition to the usual features, we added 4 new groups of
EIT features. Lung shape measures the pixel dimension of both
lungs through 6 underlying features. Those 6 features measures
the height and width of both lungs as well as calculating the
compasity (width/height). Lung area count the pixel surface
on the ventral, dorsal left and right side. Two other metrics
in relation with the temporal aspect of the ventilation are also
added, RSBIEIT and flowEIT . The Rapid Shallow Breathing
Index (RSBI) [22] and the ventilation flow are both metrics
already used in ICU. It is possible to calculate EIT equivalent
by taking advantages of the linearity between the ventilation
volume and ∆Z [21].

It was observed from a previous study, that patients who
failed the extubation have reduced breathing variability than
patients who succeeded [23]. For this reason, we calculate the
coefficient of variation for each EIT features. All of this brings
us to a total of 61 EIT features.



IV. PREDICTION MODELS

A. Models training

At H0, the dataset is made of 26 patients who succeeded the
extubation and 8 patients who failed the extubation (cf. Table
I). Then the number of failures decrease throughout the hours
due to re-intubation that can occurs at different moments. The
number of successes decrease due to patients leaving the ICU
as their condition got better. In addition to that, measurements
from H12 and H36 could not always be realized as night shift
were not always available. H36 and H48 were excluded from
our analysis due to lack of failure cases.

The tree estimators were tested: decision tree [24], random
forest [25] and SVM2 [26]. They were chosen as they are
able of handling databases with few examples. We use the
implementation from the Python library, sickit-Learn.

Different hypotheses have been tested to sort the data. One
stood out significantly by his prediction performance, which
we called ”incremental H”. We made the hypothesis that EIT
results from past dataset, still contains important information
that can be used for the training of the current dataset. To that
end for each dataset Hx (H2, H6, ...), we include past dataset
and the current one for the training set. For the testing set,
we use only data from the current dataset not present in the
training set.

We design our own cross-validation function to ensure that
the training set is balanced between success and failure. The
failure patients are split with 70% for the training set and
30% for the testing set. The number of failure patients for the
training set is then matched with an equal amount of success
patients. The rest of the success patients goes to the testing
set. So for H0, the training set is composed of 12 patients
(6 success and 6 failures) randomly picked. The testing set
contain the 23 remaining patients (20 success and 3 failures).
Those steps are iterated 1000 times to cover various possible
mix. The results of the 1000 iterations are then average to
have an overall performance.

To compare the results, the sensitivity and specificity are
calculated, with failure defined as 1 and success as 0.

B. Models optimization

To optimize the models, we opt to optimize the detection of
patients that are going to fail the extubation. That way we can
increase the accuracy of failure prediction so that clinicians
could react in time to administer adapted therapeutics like
non-invasive ventilation (NIV). Though, doing so diminish
the accuracy to predict success patients. Therefore, we aim
to improve the sensibility.

Each model is optimized through two different methods: (1)
fine-tuning of the hyperparameters through a grid search (see
Table III for the list of hyperparameters) (2) rank the features
depending on their correlation with the outcome and reduce
the number of features to maximize the sensibility. We use
the point biserial correlation as it is designed to calculate the
correlation between discrete and continuous data.

2Support Vector Machine

TABLE III
HYPERPARAMETERS TESTED FOR EACH ESTIMATORS DURING THE

FINE-TUNING OPTIMIZATION

Kernel RBF, Polynomial, SigmoidSVM Regularization parameter [1, 10, 100, 1000]
Criterion Gini, EntropyDecision tree Max depth [2, 3, 4, until leaf is pure]

Nb of estimators [5, 25, 50, 75, 100]
Criterion Gini, EntropyRandom forest

Max depth [2, 3, 4, until leaf is pure]

The point biserial is used to calculate the correlation be-
tween the different features and the extubation outcome. Th
as we want the correlation between discrete and continuous
data.

V. RESULTS

A. Results with default settings

We first use the default hyperparameters from Sickit-Learn
to have a baseline. SVM uses the RBF kernel with the
regularization parameter equal to 1. Decision tree uses the
Gini criterion, the estimator creates new nodes until all leaf
are pure. Random forest generates 100 decision tree estimators
with the same settings than previously stated. By averaging
the results from the different dataset, the decision tree have
a sensibility of 0.55 and a specificity of 0.75; the SVM have
0.44 and 0.92; the random forest have 0.59 and 0.85.

B. Results after optimization

After fine-tuning the different models, the sensitivity is
optimized for the SVM, using the sigmoid kernel with the
regularization parameter equal to 1. Random forest and de-
cision tree both use the entropy criterion as well as a max
depth equal to 2. From our observation, increasing the depths
of the trees increased the specificity while decreasing the
sensitivity. Random forest was optimized with 75 estimators.
The prediction results after the fine-tuning can be seen in Table
IV. From those initial results, the SVM is the best estimator
with regards to the sensitivity, and has equivalent performance
with regards to the specificity.

The features optimization reduces greatly the number of
features for decision tree and random forest. They are respec-
tively left with 7 and 9 from the best features depending on
their point biserial correlation score. The SVM on the other
hand use 42 features. All prediction results for all takes can
be seen in the Table V. Decision tree estimators give the best
specificity but low specificity. The random forest is the best
predictor for the detection of success patients with the highest
specificity. While the SVM has good performance on both
account, making it the most balance.

To understand the effect of the added EIT features, we
computed the prediction models using only the usual EIT
features. Those prediction results are displayed in Table VI
with all previous results. We can observe that the new 4 EIT
features allowed to improve the sensitivity by 12% and the
specificity by 21% for the SVM estimator.



TABLE IV
PREDICTION RESULTS FOR THE EXTUBATION OUTCOME WITH THE

FINE-TUNING. SENSI REFERS TO THE SENSIBILITY AND SPECI TO THE
SPECIFICITY.

Decision tree Random forest SVM
Sensi Speci Sensi Speci Sensi Speci

H0 0.48 0.61 0.45 0.69 0.30 0.79
H2 0.59 0.55 0.37 0.85 0.70 0.71
H6 0.61 0.60 0.44 0.98 0.83 0.86
H12 0.98 0.57 0.64 0.98 1.00 0.74
H24 0.77 0.59 0.76 0.87 1.00 0.66

Mean 0.69 0.58 0.53 0.87 0.77 0.75

TABLE V
PREDICTION RESULTS FOR THE EXTUBATION OUTCOME AFTER THE

FINE-TUNING AND FEATURES OPTIMIZATION.

Decision tree Random forest SVM
Sensi Speci Sensi Speci Sensi Speci

H0 0.56 0.59 0.54 0.65 0.31 0.81
H2 0.96 0.60 0.91 0.82 0.81 0.70
H6 0.75 0.61 0.57 0.91 0.90 0.84
H12 1.00 0.57 1.00 0.78 1.00 0.72
H24 1.00 0.61 0.76 0.83 1.00 0.58

Mean 0.85 0.59 0.75 0.80 0.80 0.73

We turn to the Table VII to have a finer analysis on
the prediction of each patient. The percentage of accurate
prediction for the SVM estimator shows that the prediction
is accurate hours before the failure.

To finish, a comparison is done between our method and the
one proposed by Longhini [11]. As stated in the introduction,
their best prediction model is achieved with the GI. So, we
compare the prediction capability of the GI on our dataset
against the SVM results after feature optimization VIII.

VI. DISCUSSION

In this work, models to predict the extubation failure for
a patient during weaning period were assessed. The accuracy
over the prediction of patients falling their extubation were

TABLE VI
AVERAGE OF ALL DATASET FOR EACH DIFFERENT MODELS.

Decision tree Random forest SVM
Sensi Speci Sensi Speci Sensi Speci

Usual EIT features 0.71 0.62 0.60 0.78 0.72 0.60
Default hyperparameter 0.55 0.75 0.44 0.92 0.59 0.85
Fine-tuning 0.69 0.58 0.53 0.87 0.77 0.75

With the
additional
features Features optimization 0.85 0.59 0.75 0.80 0.80 0.73

TABLE VII
PERCENTAGE OF ACCURATE PREDICTION FOR EACH FAILURE PATIENT.

THE X ARE TAKES THAT WERE NOT REALIZED

Failure patient H0 H2 H6 H12 H24 Re-intubation [hours]
P01 4 58 100 15
P02 4 97 95 100 100 35
P03 89 93 100 X 100 45
P04 16 70 54 100 24
P09 81 0.5
P14 5 64 100 8
P29 100 1.5
P36 21 89 X X 100 24

TABLE VIII
COMPARISON BETWEEN LONGHINI METHOD ON OUR DATASET AND THE

SVM MODEL AFTER FINE-TUNING.

GI SVM
Sensi Speci Sensi Speci

H0 0.78 0.58 0.31 0.81
H2 0.83 0.64 0.81 0.70
H6 0.80 0.96 0.90 0.84
H12 0.50 1.00 1.00 0.72
H24 0.67 0.94 1.00 0.58
Mean 0.72 0.82 0.80 0.73

prioritized for optimization. For the fine-tuning results, the
best estimator is the SVM (cf. Table IV).

We observe that optimizing the features significantly im-
proved the results for decision tree and random forest methods,
but stayed relatively the same for SVM. In terms of pure
sensitivity, the best model is the decision tree. The results with
SVM are more balanced between sensitivity and specificity
tough. Moreover, the sensitivity increases through the hours
demonstrating that the accuracy increases for the failure group,
when it approaches the actual failure.

The Table VI shows the prediction results when using only
the features from the literature. Regardless of the estimator,
the extubation prediction is better when using the additional
EIT features (lung area, lung shape, RSBIEIT and flowEIT ).

Comparing our method with Longhini et al., we observe that
the GI offers better sensibility at the start (H0 and H2). The
GI declines throughout the hours, whereas the opposite effect
occurs for the SVM as the sensitivity continuously increases.
This confirms the findings by Longhini et al. that the GI is
adequate to predict the extubation failure at the start of the
extubation. Though, we observe that a more complex model
is needed afterwards.

One of the limitations of the study is low number failure
patients, especially for H12 and H24. Though for such study,
it is not possible to reach a balance dataset as the usual failure
rate is around 10 to 25%.

To conclude, we were able to construct a reliable prediction
model for the extubation failure using EIT measurements. Our
model has better performance near the hours before the failure
(cf. Table VII), but most patients have already an accurate
prediction 2 hours after the extubation, and continue to have
consistent prediction afterward. The use of standard machine
learning estimators was the most relevant in our cases for
two reasons. The first being that they are better fit to handle
database with few examples. Second, those estimators allow
for an easier medical interpretation of the results. Which could
in time be used to make new rules for extubation, using the
EIT.
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