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Abstract

Effectively mapping tasks of High Performance Com-
puting (HPC) applications on parallel systems is cru-
cial to assure substantial performance gains. As plat-
forms and applications grow, load imbalance becomes
a priority issue. Even though centralized reschedul-
ing has been a viable solution to mitigate this problem,
its efficiency is not able to keep up with the increas-
ing size of shared memory platforms. To efficiently
solve load imbalance today, and in the years to come,
we should prioritize decentralized strategies developed
for large scale platforms. In this paper, we propose
our Batch Task Migration approach to improve decen-
tralized global rescheduling, ultimately reducing com-
munication costs and preserving task locality. We im-
plemented and evaluated our approach in two different
parallel platforms, using both synthetic workloads and
a molecular dynamics (MD) benchmark. Our solution
was able to achieve speedups of up to 3.75 and 1.15
on rescheduling time, when compared to other centrali-
zed and distributed approaches, respectively. Moreover,
it improved the execution time of MD by factors up to
1.34 and 1.22 when compared to a scenario without load
balancing on two different platforms.
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1 Introduction

Parallel machines are at their best when the workload
is evenly distributed among compute nodes, and idle
time is merely a myth. Unfortunately, strong scaling
applications for these platforms has been a challenge as
long as they have existed. In this context, uneven work-
load distribution and high communication overheads
are the main villains when developing parallel appli-
cations [1]. Concerns towards these problems increase
as systems grow in size and performance, consuming
more resources, specially power, to solve some of the
most complex problems in scientific computing [2, 3].

Applications such as simulations of molecular dy-
namics (MD) and hydrodynamics suffer from load im-
balance due to their intrinsic dynamic and iterative na-
ture [4, 5]. Although rescheduling algorithms have been
able to greatly improve the performance of these ap-
plications [4], new approaches are needed to guarantee
their performance as parallel systems grow. Since map-
ping tasks to processing elements (PEs) is an NP-Hard
problem [6], the increase in application data and plat-
form size makes centralized rescheduling approaches
inefficient. This creates a need for scalable and decen-
tralized rescheduling approaches, avoiding both excess
of data to process and network contention [7].

The two main paths to achieve scalability in global
rescheduling for iterative applications are hierarchical
and distributed approaches. Hierarchical load balanc-
ing explores parallelism using different approaches for
fine-grain and coarse-grain steps [8]. Although scal-
able, hierarchical schedulers are often tied to the same
limitations of centralized approaches, as data is still
aggregated in parent nodes. On the other hand, dis-
tributed load balancing approaches seek to achieve scal-
ability through multiple smaller, decentralized schedul-
ing decisions. Albeit more scalable than hierarchical



approaches, decentralized schedulers have limited sys-
tem information and often incur in higher amounts of
communication.

Despite their notable effectiveness, few are the dis-
tributed strategies in the domain of global reschedul-
ing [9, 10]. In this paper, we present the con-
cept of Batch Task Migration and a novel distributed
global rescheduling algorithm that applies this tech-
nique, called PackDrop. Our approach is based on the
idea of grouping tasks in batches prior to migration de-
cisions, decreasing the communication overhead in the
scheduling decision time and preserving the locality of
migrated tasks [11].

In this paper, we present the following contributions:

1. A highly scalable Batch Task Migration approach
for distributed rescheduling algorithms;

2. A novel distributed rescheduling algorithm,
PackDrop, using our Batch Task Migration
approach;

3. An implementation of our algorithm in a well-
known parallel programming model as well as a
performance evaluation of this implementation.

The remainder of this paper is divided as follows.
Section 2 discusses recent work in dynamic reschedul-
ing of scientific applications. Section 3 presents our
novel approach and the developed algorithms. Section 4
presents a complexity analysis of our distributed algo-
rithm (PackDrop). Section 5 displays implementation
details, execution environments and benchmarks used
in this paper. Section 6 presents our performance eval-
uation methodology and discusses the obtained results.
Finally, Section 7 presents the conclusion of this work
and our plans for future research.

2 Related Work
Global rescheduling is a well-studied problem in High
Performance Computing (HPC) [1, 9, 10, 12, 13, 14,
15]. Redistributing the workload among PEs of a par-
allel system is a way to mitigate load imbalance cre-
ated by dynamic applications. This is done in order
to achieve strong scalability, and thus, efficient use of
computing resources. In this section, we will discuss
how different approaches seek to perform load balanc-
ing in distributed systems, why they lack scalability,
and how we intend to mitigate migration, communica-
tion, and scalability issues in our proposed solution.

In the centralized domain, strategies implement a va-
riety of heuristics in order to achieve an homogeneous
distribution of load. Although centralized algorithms
are used the most, their sequential and data dependent
approach lacks scalability, as load balancing overheads
exceeds its benefits with the increasing amount of input
data. Different scheduling approaches are designed to
tackle this scalability problem, being hierarchical and
distributed the most widespread ones.

Hierarchical algorithms approach load balancing in
different granularity levels, exploring parallelism and
delivering better performance [8, 16]. These strate-
gies are able to acquire as much static system infor-
mation as the centralized techniques, while exploiting
system parallelism. Some hierarchical strategies have
used topology-aware approaches to increase mapping
affinity [12, 14]. Others rely on a hypergraph represen-
tation to precisely describe application communication
patterns [13]. However, these approaches still tend to
create communication bottlenecks and may incur un-
desired overheads to aggregate the required informa-
tion for rescheduling. As parallel systems grow, the
amount of system data increases, and so does the cost
of querying this information, which leads hierarchical
approaches to be inefficient in larger systems.

Work stealing is one of the most broadly used dis-
tributed techniques for balancing load in parallel sys-
tems [17, 18, 19]. The essence of work stealing makes
it a very effective solution for highly irregular parallel
and distributed applications. However, work stealing
may not be as effective, since its concurrent and ran-
domized nature may interfere with iterative application
execution cycle [20].

Also in the distributed domain, diffusive techniques
have been used to irradiate work in an iterative fash-
ion among PEs [9]. Although such an approach is
interesting, since it may not impact much commu-
nication costs, it may also have a high convergence
time, rapidly becoming inefficient in very imbalanced
scenarios. Refinement-based distributed techniques,
on the other hand, are able to provide fast and effi-
cient rescheduling decisions without knowing too much
about system information [10]. The main disadvantage
of these techniques is the lack of affinity in migrated
tasks, diminishing task locality, and thus, increasing to-
tal communication workload.

In the loop scheduling domain, a Bin Packing ori-
ented approach has been able to exploit iteration affinity
by adaptively partitioning loops [21]. Due to its greedy
approach, this strategy can efficiently distribute work



among chunks before scheduling, increasing the overall
application performance.

In this work, we propose a new approach for the dis-
tributed rescheduling domain named PackDrop. We
adopt an approach similar to Bin Packing in order
to preserve task affinity and diminish communication
overheads in a decentralized fashion. Thus, our novel
rescheduling approach intends to take profit from both
distributed and affinity oriented scheduling policies.

3 Batch Task Migration Approach
The role of the global rescheduler is to ultimately
reduce the application makespan. Thus, the sched-
uler policy must incur low overheads as to not over-
shadow its benefits. Moreover, we envision that a
Batch Task Migration approach can ensure a quick and
informed remapping of tasks, basically reducing the
amount of messages during the scheduling decision
process. Therefore, this section is dedicated to present
our PackDrop strategy as a distributed refinement-
based technique that implements our proposed Batch
Task Migration approach.

Overall, our approach intends to:

1. Reduce unnecessary communication between PEs;

2. Exploit locality among tasks in the same PE
through grouped migrations;

3. Accelerate the decision making process;

4. Reduce the application makespan.

We will first explain two algorithms that are used
by PackDrop: BatchAssembly (Algorithm 1) and
BatchSend (Algorithm 2). Then, the complete strategy,
called PackDrop, will be presented in Algorithm 3. The
PackDrop algorithm will be executed on each PE and
communicates with other remote PackDrop instances
via message passing. For clarity, all symbols used in
the algorithms are listed in Table 1.

3.1 BatchAssembly Algorithm

The BatchAssembly algorithm is presented in Algo-
rithm 1. It uses an estimated batch size (s), a set of
local tasks (T ), the current PE load and a threshold for
PE loads (v), to create a list of leaving packs (LT ). The

Table 1: List of symbols, variables and functions.
Symbol Meaning Definition

v Load threshold in % Equation 1
ub(load,v) Upper bound of load with threshold v Equation 1
load Compute load of the local PE
loadtask(t) Compute load of a task t Equation 2
loadset(T ) Load of a set (T ) Equation 2
T Set of tasks Equation 2
ps Estimate number of tasks in a LT Equation 3
ttc Total number of tasks in the system Equation 3

→ Remote procedure call Section 3
⇒ Reduction process Section 3
loadavg Average system load of a PE Section 3.1
rand(S) Random element of S Section 3.2
M Mapping of tasks Section 3.3
P Global set of PEs Section 3.3
Gossip Start of information propagation Section 3.3
pack Set of leaving tasks Section 3.3

LT List of sets of tasks leaving a PE Algorithm 1
L Set of tasks assemblying a batch, subset of T Algorithm 1
s Threshold of load in a batch of tasks Algorithm 1
G Target for task receiving Algorithm 2
BG Pairs expecting migration ack Algorithm 2
Send(T )→ G Send a set T to target G Algorithm 2
Idl Local PE identifier Algorithm 3
TaskMap Call runtime system to start migrations Algorithm 3

threshold is used to calculate an upper bound of the av-
erage system load (loadavg), using Equation 1. The load
of any set of tasks is given by Equation 2.

ub(load,v) = (1+ v)× load (1)

loadset(T ) = ∑
t∈T

loadtask(t) | T is a set of tasks (2)

With this information, each PE will take the task with
the smallest load within its pool, and add it to a set of
tasks (L) (lines 3− 5). Then, if the sum of all tasks in
the pack (L) is greater than the expected batch size (s),
the batch is assembled and the strategy starts creating
another one (lines 6− 9). The process is repeated un-
til the load of the set becomes greater than the upper
bound (line 2).

Any unfinished packs should be sent even if these are
not complete. This is done in order to prioritize migra-
tion from overloaded PEs, even if they cannot assemble
a complete batch. A PE that receives this load will not
receive as much load as others, but since the PE will not
overload, it should not be prejudicial to global system
balance.

3.2 BatchSend Algorithm
The BatchSend algorithm is presented in Algo-
rithm 2. The algorithm will use the LT s, produced by
BatchAssembly, and the set of Targets, produced by an



Input: s, load threshold of a batch; T , set of local
tasks; loadavg, average global PE load; v,
imbalance tolerance ratio.

Output: LT , list of packs leaving this PE.
1 L←∅, LT ←∅
2 while loadset(T )> ub(loadavg,v) do
3 t← a ∈ T | a is the lower bound of T
4 T ← T \ {t}
5 L← L ∪ {t}
6 if loadset(L)> s then
7 LT ← LT ∪ {L}
8 L←∅
9 end

10 end
11 LT ← LT ∪ {L}

Algorithm 1: BatchAssembly

information propagation step (Gossip [22]), in order to
schedule packs on remote PEs. This will produce a set
of expected Batch/Target (BG) pairs, which should be
confirmed by the remote target.

For each subset b ∈ LT (as assigned in Algo-
rithm 1), the algorithm will select a random target from
G (line 3). It will invoke a remote Send procedure on
the target g (line 4), and register its attempt in a pair (b,
g). This pair is then stored in the expecting confirmation
set (BG) (line 5).

Input: LT , set of tasks leaving the local PE; G, set
of possible migration targets.

Output: BG, set of expected migrations.
1 BG←∅
2 foreach b ∈ LT do
3 g ← rand(G)
4 Send(b)→ g
5 BG← BG ∪ {(b, g)}
6 end

Algorithm 2: BatchSend

In case of negative responses from remote Send pro-
cedures, Algorithm 2 may initiate another round of
sends with the failed attempts so every member of LT
is migrated.

3.3 PackDrop Algorithm

The PackDrop strategy is presented in Algorithm 3.
For the sake of simplicity, packs will be a short for

“set of leaving tasks” in this algorithm (recall Sec-
tions 3.1 and 3.2).

PackDrop will run individually on each PE, in a dis-
tributed fashion. It will produce a new mapping (M′)
using a current local mapping of tasks to PEs (M), a lo-
cal load (load), a local PE identification (Idl) and the
global set of PEs (P). The mapping of tasks is defined
as M : T → P, which describes the relation of each task
to its corresponding physical location. A local mapping
of tasks contains only tasks that are assigned to the cur-
rent PE.

The first part of the algorithm (lines 1− 6) is the in-
formation sharing and setup process. This process is
done through 2 global reductions of average PE load
(line 2) and global number of tasks (line 3). In this im-
plementation we used two constants: (i) v is set to 0.05
in order to limit the imbalance at 5% (line 5); and (ii) in
Equation 3, a constant is set to 2, in order to determine
ps.

ps = 2− |P|
ttc

(3)

This configuration aims to both increase communi-
cation efficiency (later explained in Section 4) and en-
sure precise balancing. Finally, as ps grows, so does the
communication efficiency, but in order to do so, fine-
grain migrations are compromised.

Next, PEs are divided between two different work-
flows (line 7). At this time, overloaded PEs will start
the BatchAssembly algorithm (line 8), which was pre-
viously explained in Algorithm 1. Meanwhile, under-
loaded PEs will initiate a Gossip Protocol [22] in or-
der to inform other elements they are willing to receive
work (line 11). Gossip is a well-known epidemic algo-
rithm used to spread messages on a system, providing
fast convergence and near-global awareness of shared
information.

Once information propagation is done, each PE must
synchronize to start the remapping process (line 13). At
this point, PEs will send their packs using BatchSend
(Algorithm 2) asynchronously (line 14). After a pack is
sent, PEs will accept or reject it based on their current
load. This is done via a three-way handshake, so both
parts confirm the migration.

If one or more packs were not successfully ex-
changed, an overloaded PE must attempt a new
BatchSend, in order to achieve load balance, as speci-
fied in Section 3.2. Once PEs know their new mappings,
tasks are migrated and the strategy is finished, request-
ing the confirmed migrations to the underlying runtime



Input: M, local mapping of tasks; load, local PE
load; P, set of all PEs in the system; Idl ,
local PE identifier.

Output: M′, new mapping of local tasks.
1 M′←∅
2 loadavg← (AveragePeLoadReduction(load)⇒ P)
3 ttc← (TotalTaskCountReduction(|M|)⇒ P)

4 ats← loadavg
ttc

// Average task size

5 v← 0.05
// 5% precision on balance

6 s← ats× ps // Pack

load

7 if load > ub(loadavg,v) then
8 packs← BatchAssembly(s,T (M), load,v)
9 else

10 packs←∅
11 G← (Gossip→ P) // Targets for

migration

12 end
13 −−−SynchronizationBarrier−−−

/* Requests are processed as they are

received back */
14 R← BatchSend(packs,G)

// Implicit synchronization in

TaskMap

15 TaskMap(R,M,M′, Idl)
Algorithm 3: PackDrop

system (RTS) on line 15. The TaskMap function will
take care of informing the new mapping (M′) to all tasks
received via Send and removed via BatchSend.

PackDrop intends to remap tasks to PEs in a dis-
tributed, workload-aware fashion. This approach may
be the basis for new batch task migration distributed
strategies that might take other factors into account.

4 Analysis of the Algorithm
This section presents an analysis of PackDrop (Algo-
rithm 3). Symbols presented in this section are avail-
able on Tables 1 and 2. The complexity of the in-
formation propagation (Gossip) has being evaluated as
O(log f outn) [10], where f out is the Gossip fanout and
n is the number of PEs in the system. Here we use
f out = 2, in order to avoid network congestion.

For the sake of simplicity, in the remainder of this
analysis, the number of tasks in the system will be re-

Table 2: List of symbols used in the Analysis of the
Algorithm.

Symbol Meaning

f out Gossip protocol’s fanout
pc Computational (processing) base cost
cc Communication base cost
C(A) The complexity class of a given function A
m Number of tasks in the system
ml max(|T |) in an overloaded PE

ferred to as m, and the costs for computation and com-
munication will be represented as pc and cc, respec-
tively. We also assume cc > pc for all concurrent sce-
narios, since communication costs are several orders of
magnitude higher than computational costs. C(A) is re-
ferred here as the complexity class of a given workload
A, similar to its total cost. Unmentioned lines are as-
sumed to have non-varying costs, and thus will not in-
terfere in the asymptotic analysis.

Lines 2 and 3 are global reductions, which have a
well-known cost of O(log n). Lines 8 and 11 are con-
current, so their cost will be the maximum among them:

max(C(BatchAssembly),C(Gossip)) (4)

We also know that the worst case for BatchAssembly
(Algorithm 1) is rather unrealistic, since it would as-
sume that a single PE contains m tasks and a single task
may have a load greater than the average system load,
being O(m− 1), assuming 1 would not be migrated,
asymptotically, O(m).

Thus, the cost of lines 8 and 11 is:

max((pc×m), (cc× log n)) (5)

and since cc is several orders of magnitude bigger than
pc, we could assume C(BatchAssembly) ∈ C(Gossip),
which makes the complexity of these lines to O(log n).

Finally, line 14 will have a complexity equal to the
largest number of packs migrated by an overloaded PE.
Let ps be the average number of tasks inside of an LT ,
and ml the maximum number of tasks in a given over-
loaded PE. At this step, a solution without Batch Task
Migration would have a cost of cc×ml , while our ap-
proach will divide this complexity by ps. This is the
most expensive part of Algorithm 3, and as such it is
the most interesting one to optimize. Our final asymp-
totic complexity is:



C(PackDrop) = O(ml/ps)+O(log n) (6)

This shows that determining a good ps value is cru-
cial to achieve the best performance with this algo-
rithm. Higher values of ps will lower communica-
tion complexity, but may lead to an imprecise schedul-
ing. In our implementation, we chose to vary the value
of ps around a base value of 2, according to system
load and characteristics, as described in Equation 3.
BatchAssembly (Algorithm 1) stores tasks in LT in an
increasing load order. So, even though our average pack
should have around 2 tasks, as their load vary, we are
able to include more tasks at a lower communication
cost. This way, we attempt precise load balance, while
still preserving task locality after migration.

It is important to note that different applications may
react differently to different values of ps. This is spe-
cially related to application load variance. The ps factor
may be fine-tuned to each specific application and plat-
form, but we believe a reasonable, generic, approach
such as the provided by Equation 3 is enough to pro-
vide balance to most applications and systems, while
still harvesting the advantages of the Batch Task Migra-
tion approach.

5 Implementation
PackDrop was implemented as a load balancing strat-
egy in Charm++1, a parallel programming model that
provides a load balancing framework based on mi-
gration of its parallel, message-driven objects, the
chares [23]. Chares are mapped as tasks to PEs and the
Charm++ RTS provides the load information needed for
our rescheduling strategy.

The Charm++ RTS allows for the desired asyn-
chronous behavior of PackDrop. It also provides the
necessary reduction and quiescence detection mecha-
nisms used in this implementation. Reductions are used
to evaluate the total number of chares and the average
load in the system, while the quiescence detection is
necessary to finalize the information propagation step
of the algorithm.
Charm++ provides application-independent load bal-

ancing, which means that any application may use
global rescheduling strategies implemented for this
RTS. This way, any of the available applications for

1Available at: https://github.com/viniciusmctf/
packdrop-code/tree/SBAC-Release

Charm++ can be used to evaluate and compare our strat-
egy to other load balancers in this RTS.

During load balancing in the Charm++ RTS, each in-
stance of PackDrop runs as an individual chare. Remote
procedures in the algorithms (→) were implemented
as messages exchanged between objects. Reductions
(⇒) used the RTS provided interface (CkReduction).
The three-way handshake, necessary to acknowledge a
Send, was implemented with message exchanges. Fi-
nally, synchronization barriers in our algorithms use ei-
ther quiescence detection or reductions.

5.1 Benchmarks
We experimented our strategy with 2 benchmarks that
are publicly available for Charm++. The first one is
a synthetic benchmark called LB Test. It simulates
work with a variety of communication topologies, such
as ring, meshes and randomized patterns. LB Test is
known to have a low migration cost, with light chares,
and most of its load bound to computation, instead of
communication.

The second one is a molecular dynamics application
called LeanMD2. This application simulates the behav-
ior of atoms and it mimics the force computation done
in the state-or-the-art NAMD application, which was
the winner of the Golden Bell Award [4]. LeanMD
uses geometric decomposition in a three-dimensional
(3D) simulation space. However, since the number of
simulated atoms in each region affects the number of
exchanged messages, it has an irregular and dynamic
communication pattern, even though it respects the ge-
ometric distribution.

5.2 Other schedulers
We compare the performance of PackDrop to other
strategies available on Charm++. More specifically,
strategies that may be selected by Charm++’s workload-
aware Meta-balancer [24]. An overall description of
each one of these load balancing strategies is presented
below:

• Re f ine is a refinement-based strategy that tries to
minimize the number of migrated tasks, exchang-
ing load among PEs. This strategy is specially ef-
ficient if the system imbalance is low, and may not
be able to deal with high imbalance due to its lim-
ited migration approach.

2Available at: http://charmplusplus.org/miniApps



• Greedy creates two heaps, one for tasks (max-min)
and one for PEs (min-max). Then, it assigns tasks
to PEs, associating the most work-heavy tasks with
the least loaded PEs. This strategy provides a good
load balance, but may incur in high migration over-
head.

• Distributed, also known as Grapevine, is a dis-
tributed strategy based on epidemic communica-
tion and probabilistic transfer of work. This strat-
egy has good scalability, but does not perform as
well as centralized ones in smaller scenarios.

• Dummy, a centralized load balancer that does not
remap tasks but still gathers system information as
other centralized approaches. This is the represen-
tative of a scenario without load balancing.

6 Performance Evaluation
We used two platforms to evaluate the performance of
PackDrop:

• Platform 1: A cluster called Graphene from
Grid’5000 with 4 PEs per node and a Gigabit Eth-
ernet interconnection network.

• Platform 2: A subset of a larger computational
cluster called Santos Dumont from the Brazil-
ian National Laboratory for Scientific Computing
(LNCC) with 24 PEs per node and an Infiniband
interconnection network.

All applications were compiled with gcc with the
following flags: -std=c++11 -O3. Details of both
platforms are available on Table 3.

In the next sections we present the metrics used to
compare PackDrop with Greedy, Re f ine, Distributed
and Dummy. Then, we discuss the results obtained in
both platforms presented in Table 3 and the scalability
of PackDrop. All raw data of our results, as well as
parsing scripts for analysis are publicly available3.

6.1 Metrics
Application time (makespan) is one of the most rele-
vant metrics to evaluate load balancers. Since migra-
tions may induce high overheads and could impact com-
munication costs, a bad load balancing strategy may

3Available at: https://github.com/eclufsc/
packdrop-data-analysis

Table 3: Overview of the experimental platforms.

Characteristics Platform 1 Platform 2

# of nodes 32 16 – 32
# of CPUs/node 4 (UMA) 2×12 (NUMA)
CPU Model Intel Xeon X3440 Intel Xeon E5-2695v2
CPU Freq. 2.53GHz 2.4GHz
RAM/node 16GB 64GB
Network Gigabit Ethernet Infiniband FDR
OS Ubuntu 14.04 RedHat Linux 6.4
GCC version 5.4.0 5.3.1
Charm++ version 6.8.1 6.8.1
Communication UDP MPI 3.1.0

present fast decision times, while increasing load im-
balance considerably. Thus, the overall execution time
of the application will also be increased. This is a pow-
erful metric to measure both load balancing precision
and the overall impact of the strategy on parallel appli-
cations.

Load balancer decision time, on the other hand, is an
indicator of its scalability. Some centralized schedulers,
such as Greedy, work very well on local machines,
with a reasonable data input. However, when executing
on distributed memory environments, the scalability of
centralized strategies is limited due to their high deci-
sion time in these scenarios. Throughout this section,
load balancer decision time will also be referred to as
rescheduling time.

6.2 Evaluation on Platform 1

All experiments executed on Platform 1 were compiled
with Charm++ using the --with-production option,
combined with the specifications detailed on Table 3.
Overall, 32 homogeneous compute nodes were used,
with a total of 128 PEs.

6.2.1 Evaluation with Synthetic Load

LB Test experiments had a total of 18,990 tasks, ex-
ecuted over 150 iterations, performing load balance
every 40 iterations. Task loads varied from 30ms to
9,000ms, which provides reasonable load imbalance,
causing global rescheduling to be useful in this case.
Ring, 2D mesh and 3D mesh communication topolo-
gies were used to provide different levels of migration
impact and communication costs.



Table 4: Average application time for LB Test on Plat-
form 1.

Scheduler Network Topologies

Ring Mesh2D Mesh3D

Distributed 47.493s 48.648s 49.055s
Greedy 46.541s 49.560s 51.068s
Dummy 52.430s 53.172s 53.941s
PackDrop 46.816s 47.371s 47.974s
Re f ine 45.491s 46.293s 47.219s

Each configuration of the benchmark was executed
15 times, with results depicted in Table 4. Observed
application times present a maximum 2% standard de-
viation from the mean. Results for Greedy show how
different communication topologies affect the schedul-
ing performance. Since Greedy migrates many tasks,
the more they communicate, the more migrations im-
pact the application time.

The increased in communication cost can be verified
among all scheduling strategies, but in none as much as
in Greedy. Our novel approach (PackDrop) has outper-
formed the other decentralized strategy (Distributed) in
the LB Test case in this scale. However, since the plat-
form is not large enough to present all of the poten-
tial gains of decentralized strategies, Re f ine still out-
performed any other scheduler in this benchmark. Nev-
ertheless, this indicates a good scalability potential for
PackDrop, specially in a cluster with high communica-
tion overhead due to its Gigabit Ethernet connection.

6.2.2 Evaluation with Molecular Dynamics

LeanMD experiments generated a 9×9×9 space, with
a total of 27,702 tasks. Each execution ran 500 itera-
tions, with a first rescheduling step at the 10th iteration.
Rescheduling periods (RP) of every 30 (short) and ev-
ery 60 (long) iterations were used, providing different
impacts of rescheduling on the application. Greedy and
Dummy were excluded from this evaluation due to their
high cost in an application such as LeanMD.

Each configuration of LeanMD was executed 10
times, making a total of 5,000 iterations per configu-
ration and are depicted in Table 5. Observed applica-
tion times presented a standard deviation from the mean
lower than 2% for all results presented.

Results show a better overall performance of
PackDrop, outperforming the other strategies in the two

Table 5: Average application time for LeanMD on Plat-
form 1.

Scheduler Rescheduling Period Rescheduling Time
Short Long

Distributed 69.356s 68.360s 167.044ms
PackDrop 55.984s 55.516s 143.103ms
Re f ine 59.357s 55.899s 539.836ms

scenarios chosen. Since our strategy migrates groups of
tasks, it preserves locality of tasks after migration. Be-
cause of that, it was able to outperform Distributed.

The Rescheduling Time, presented in Table 5, shows
the time taken by the periodical rescheduling (LB), task
migration and the first iteration after the LB call. It
shows the increased cost of Re f ine, which is due to
both information aggregation costs and dealing with the
high amounts of application data in a centralized fash-
ion. PackDrop displays its effectiveness in reschedul-
ing time, outperforming the other strategies and result-
ing in an overall better application time.

6.3 Evaluation on Platform 2

All experiments executed on Platform 2 were compiled
with Charm++ using the --with-production option,
combined with the specifications detailed on Table 3.
Different numbers of homogeneous 2× 12 PEs com-
pute nodes (2 NUMA-nodes with 12 cores each) were
used to evaluate the scalability of PackDrop. We ranged
from 16 (384 PEs) to 32 (768 PEs) unique nodes in our
evaluation. In this platform, we focused on the LeanMD
application, since LB Test’s synthetic behavior is well
represented in Section 6.2.1.

6.3.1 Evaluation with Molecular Dynamics

LeanMD experiments generated a 10× 15× 10 space,
with a total of 171K tasks. Each execution ran 100
iterations, with a first rescheduling step at the 9th it-
eration. Rescheduling was performed every 30 itera-
tions and each configuration of LeanMD was executed
10 times, making a total of 1,000 iterations per config-
uration.

Results of mean application and rescheduling time
are displayed in Figure 1 (to the left and right, respec-
tively), both in a log scale to better exhibit the dif-
ferences between Distributed and PackDrop. In this
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Figure 1: LeanMD execution results on Platform 2, dis-
played in logarithmic scale.

evaluation, Re f ine had a very low efficiency, being 1s
slower than Greedy in the 384 PEs scenario. It was able
to perform better as we increased the number of PEs,
but was ultimately unable to compete with distributed
approaches.

Distributed benefits from this platform due to Infini-
band’s low latency communication costs, which reflects
on improved total application times, as seen in Fig-
ure 1. PackDrop followed it closely and we can see
that its rescheduling time in larger systems outperforms
Distributed.

The rescheduling and application time results of
LeanMD in this platform highlight the importance of
using scalable approaches to balance system load, as
well as using available parallelism in execution envi-
ronments. This is specially visible in Greedy results on
Figure 1, where the application performance was de-
creased after the global rescheduling process. Increased
migration costs and higher hop counts in communica-
tion, consequences of load balancing, heavily impacted
LeanMD in this case.

6.4 Performance Evaluation Overview
Most scientific applications today seek strong scaling,
increasing their computational platforms to solve prob-
lems faster. Our results showed that, to achieve such an
objective, an application must implement efficient load
balancing strategies. We presented PackDrop as a so-
lution for scalable rescheduling of work in distributed
memory systems.

Section 6.2.1 showed that PackDrop is able to effec-
tively balance the load. Results highlight the impor-
tance of load balancing even in synthetic loads. The
LB Test benchmark used has very low migration and
communication overhead, and most of its work is done
locally, which is optimal for rescheduling evaluation

of raw computational workload. Moreover, LB Test is
known for having a very low migration cost and simple
tasks, which enhances the effectiveness of centralized
approaches such as Re f ine. These results also portray
the addition of communication overheads in different
topologies (2, 4, and 6 communication edges for Ring,
Mesh2D, and Mesh3D, respectively). As communica-
tion affects the application time more, migrations im-
pact the total application time more, as we can see in
the Greedy results.

In Sections 6.2.2 and 6.3.1, we evaluated PackDrop
in LeanMD (better described in Section 5.1). This
represents “a real world-like” scenario, in which ap-
plications may have dynamic communication patterns
and high migration overhead. Results presented here
highlight the overhead of centralized rescheduling ap-
proaches when joined with large-scale applications
(171K tasks) and big environments, which increases
work and information aggregation costs, respectively.

Distributed outperformed our approach in Platform
2, due to its more refined take on load balancing and
high-speed network interconnection. However, the re-
sults show that PackDrop and its locality friendly batch-
ing of tasks for migration guarantees better perfor-
mance in Platform 1, which portrays a Gigabit Ether-
net interconnection. Finally, PackDrop was able to effi-
ciently scale applications among all observed platforms,
and had a faster rescheduling time than Distributed in
most of the observed cases.

7 Conclusion
In this paper we have presented the Batch Task Migra-
tion approach for distributed global rescheduling. It in-
tends to preserve task communication locality, migrat-
ing multiple work units from a source to the same desti-
nation, in order to balance system load. This preserves
communication efficiency, while other workload-aware
strategies perform rescheduling without considering
task locality.

Our approach also mitigates communication costs
during algorithm execution time. We guarantee this by
transmitting information about multiple migrations at
a time, in batches. Thanks to this, our novel scheduler
(presented in Section 3.3) has an increased performance
in high communication overhead platforms, discussed
in Section 6.2.

We have evaluated our strategy in two different exe-
cution environments. The first was a high communica-



tion cost, 4 cores/node cluster, executing over 32 cores.
In this scenario, PackDrop had a rescheduling speedup
of up to 3.75 and 1.15 when compared to centralized
and distributed approaches, respectively (Section 6.2).

The second scenario was a highly coupled cluster
with low communication overhead, with 24 cores/node.
We executed our experiments varying platform size
from 16 to 32 nodes. In this scenario, rescheduling
time of PackDrop and Distributed were very similar,
although both had a time up to 3 orders of magnitude
faster than any centralized approach. This reinforces the
relevance of work in the distributed scheduling domain,
and approaches such as our Batch Task Migration.

7.1 Future Work

Future work on this theme includes the use of Batch
Task Migration in the communication-aware domain.
Since our approach already has locality-based benefits,
combining this with communication pattern informa-
tion may incur on even greater performance increase in
applications [16, 25]. We believe a novel strategy fo-
cused on the Stencil programming model is something
to be considered, prioritizing migration of edges among
PEs, instead of random parts of the stencil [26].

Further work will also be developed in order to in-
crease performance in heterogeneous clusters. These
may have heterogeneous processing capacities and net-
work capabilities, which enhances complexity of load
balancing significantly [20, 27]. In this given scenario,
enhancing rescheduling decision processes may be cru-
cial to ensure gains in application performance. Finally,
we also intend to evaluate the impact of fine-tuning the
ps factor in different computing platforms.
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[8] G. Zheng, A. Bhatelé, E. Meneses, and L. V.
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