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Abstract—Fractional power control (FPC) is the simplified 
version of open loop power control (OLPC) in long term 
evolution (LTE) that relies on downlink path loss information 
from base station (BS). This allows user equipment (UE) to 
decide which power to use for uplink transmission. However, 
asymmetric behavior of uplink and downlink transmission in 
crowded network might cause unfair transmit power estimation. 
This motivates our investigation of implementing uplink path loss 
and q-learning algorithm to enable UE to decide appropriate 
transmit power on its own. In this study we apply the concept 
of FPC into q-learning, enabling UE to find suitable transmit 
power with respect to uplink path loss. 3GPP uplink path loss 
model is exploited in our study. We compare outputs between our 
proposed method and FPC. . From simulation, we find out that 
DQL performs better as compared to fractional power control 
in terms of signal-to-interference-noise-ratio (SINR) with average 
increase factor of 3.5. 

Index Terms- fractional power control, open loop power 
control, decentralized q-learning, long term evolution 

 
I. INTRODUCTION 

Uplink power control is crucial in managing interference 
and ensuring optimal overall user equipment’s (UE) capacity. 
In long term evolution (LTE), multi-tier network is deployed 
to supervise dense mobile population. Due to this, managing 
interference in uplink transmission became more challenging. 
There are two types of principal uplink power control namely, 
closed loop power control (CLPC) and open loop power 
control (OLPC). Full power control is deployed in CLPC 
where enhanced Node B (eNodeB) stipulate specific transmit 
power for each UE through control signal. Whereas OLPC has 
the option of utilizing either full- or fractional- power controls 
to specify transmit power at UE side [2]. 

Uplink transmission adopts single-carrier FDMA (SC- 
FDMA) to ensure battery survival by optimizing the number 
of symbol per subcarrier. Thus, it is vital to specify the 
correct transmit power to avoid waste of resources (i.e. battery 
life). However, there is a need to balance between battery 
life and ensuring reliable information transmission. Fractional 
power control is widely utilized in previous studies due to its 
simplicity and minimal dependency towards eNodeB. UE is 
able to decide its own transmit power based its own path loss 
measurement with respect to the serving eNodeB. However, 
there is instance where UE is near the edge of the cell and in 
need to transmit at higher power. 

Implementing decentralized q-learning (DQL) at UE would 
enable it to find the most optimal transmit power. DQL is 
a reinforcement learning that allows UE, identified as agent 

to learn the wireless environment on its own and share the 
information with other agent. The learning does not require 
any prior knowledge which improves the decision making 
process. Further, there is no main control element in DQL. 
This enables task distributions among multiple agents. In this 
study, we integrate the fractional power control from [3] 
considering path loss and inter-interference from UEs using 
reward based DQL. This algorithm will be applied in multi- 
tier LTE. DQL algorithm structure introduced by [4] and [5] 
will be the reference of our study. 

The outline of this paper is as follows; Section II 
summarizes works related to our study. Section III elaborates 
our system model. Proposed technique is elaborated in 
Section IV. Section V discuss and analyze our outputs. 
Finally, Section VI concludes our study. 

 
II. RELATED WORKS 

Investigation on q-learning employment in mobile network 
to manage resources and reduce interferences is wide and 
comprehensive. Study by [4] applies cost based multi-agent 
q-learning to manage interference between macro- cell and 
femto- cells by manipulating resource block scheduling. In 
the paper, q-learning algorithm is utilized to enable additional 
interference information exchange between macro eNode B 
and femto eNode B through X2 interface. The approach 
contribute in reducing interference signalling delay between 
macro- and femto-. 

Similarly, [5] utilize reward based q-learning to manage 
multi-tier interferences transmitting at the same frequency. 
Meanwhile, [7] apply DQL to manage mutual downlink in- 
terference between macro- and femto- cell. The author apply 
DQL to observe the impact of setting different of transmit 
power levels on SINR. The most recent works on q-learning 
carried out by [6] where the authors integrate interactive 
learning between multi- agents exploiting the same frequency 
bands in LTE femtocell. 

In [10], the author consider traffic management using q- 
learning where the learning process enables  dynamic  up- 
link and downlink association. While authors in [9] employ 
statistic-based machine learning for uplink power control using 
cloud mechanism in self-organized network (SON) architec- 
ture in LTE. The author model data-driven framework emulat- 
ing real LTE environment to enable practical implementation 
in LTE network. Study in [8] propose employment of control 
parameters to improve open and closed loop power control. 
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III. SYSTEM MODEL 
Our system model is based on simple LTE multi-tier net- 

work. In our model, the focus is on uplink transmission where 
we apply DQL to each UE. We specify maximum UE transmit 
power, Pmax as 24 dBm as proposed by study in [8]. We 
assume the path loss measured at UEs as uplink path loss. Our 
focus is to observe the convergence when DQL is utilized at 
UE. 

For this study, we simplify our model into one macro- and 
one femto- cell with a uniform number of UEs on each cell. 
UE in femto- cell is interfered by macro- UE and vice versa 
during uplink transmission. Fig. 1 illustrate uplink interference 
scenario. In the figure, UE 2 connected to neighbouring base 
station (BS) interfere with UE 1 located near the cell edge of 
serving BS. 

 

 
Fig. 1.  Uplink Interference Scenario in Multi-tier Networks 

 

A. Open Loop Power Control 
Elements from simplified open loop power control, also 

known as fractional power control (FPC) is utilized in our 
proposed algorithm as presented by [13] to manage interfer- 
ence during uplink transmission. Generic FPC algorithm, used 
to specify UE uplink transmission power is as follows: 

 
Ptx,ue = min{Pmax,ue, Po + βL + ∆ue} (1) 

where Ptx,ue is UEs transmit power, Pmax is the maximum 
UEs transmit power obtained by distributing maximum power 
level per number of resource blocks, Po is cell specific 
parameter defining the received power per physical resource 
block (PRB), β is path loss compensation factor which can 
be set between 0 and 1, L is the estimated UEs path loss and 
∆ue is control signal received from eNode B. 

If we assume there is no control signal received from eNode 
B, i.e. ∆ue = 0, the equation is further simplified to: 

 
Ptx,ue = min{Pmax,ue, Po + βL} (2) 

which we are able to manipulate both Po and β as pointed 
out in study by [11] [12]. The exploitation of the said variables 
in equation (2) can be specified based on the system’s scenario, 
namely, 
• If UE distribution is more towards the cell edge where 

UE experience severe interference, higher path loss com- 
pensation factor value (i.e. nearing to 1) need to be im- 
plemented, considering fixed target signal-to-interference- 
plus-noise ratio (SINR). 

• If UE distribution is mostly near to eNode B, average 
compensation factor value can be implemented, based on 
target SINR. 

From equation (2), we know that by specifying Pmax,ue 

to the highest UE transmit power (i.e. 24 dBm), Ptx,ur will 
specify the minimum transmit power from Po + βL. Without 
exploiting either Po or β, UE at the cell edge will not be able 
to transmit effectively due to high interference from other tier 
UE. 

B. Decentralized Q-Learning 
Q-learning is a type of reinforcement learning algorithm 

that allows agent(s) to learn by itself based on added and 
discounted value when an action is selected. By applying q- 
learning in our scenario, each agent will be able to exchange 
information with one another. 

From the processing point of view, this would reduce the 
time consumed and the complexity of the system to sense and 
analyze its environment before choosing the right action. In 
other words, each agent(s) involved have the flexibility to learn 
and react accordingly. 

In our model, both power control and SINR is integrated in 
reward based q-learning where the q-values is updated based 
on information on state, c and action, d based on the following 
equation [5]; 

 

Q(c, d) ← Q(c, d) + α ∗ [V I − Q(c, d)] (3) 

where c is a set of q-learning states which determines the q- 
learning conditions, d is a set of possible q-learning actions for 
decision making, α is the learning factor whom value could 
range from 0 to 1, and V I = r + γ ∗ maxd Q(cI, d) is the 
maximum value of the discounted reward received from the 
next set of state. 

IV. DECENTRALIZED Q LEARNING UPLINK 
POWER CONTROL 

This section elaborates the technique used in our study. We 
deploy multi-tier cells where a number of UEs on each cells is 
uniformly distributed as shown in fig. 2. The figure illustrate 
multi-tier region known as macro- cell and small- cell region. 
In addition to that, there is small- cell edge region where it is 
crucial for UE to identify appropriate transmit power. 

It is assumed that each UEs in the serving cell utilize q-
learning algorithm to enable them to select appropriate 
transmit power with corresponding to their distance to the 
serving  BS.  These  UE  will  have  updated  q-learning  table 



in which information is utilized to enable them to select 
appropriate transmit power against the interference and the 
location (i.e. nearing the edge of the cell or near BS). 

TABLE I 
SIMULATION  PARAMETERS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  DQL Uplink Power Control Scenario (Multi-tier Network) 
 

Meanwhile, fig. 3 displays the simulated scenario where 
some of UEs are close to BS while others are closer to the cell 
edge. UEs are uniformly distributed within both macro- and 
small- cell. UE random positions in simulation allow efficient 
DQL  implementation  which  will  be  elaborated  later.  The 

• State our model specify 2 different set of q-learning 
states, namely {P Ledge, P Lcenter} based on uplink path 
loss information measured at UE. Due non-dynamic 
movement of UE, one-dimensional q-learning state is 
utilized. By identifying uplink path loss, we are able to 
test against a set of actions, where; 

• Action comprises of a set of power level, l, specified from 
the maximum UE transmit power, a = {p1, p2, ....., pl} 

• Reward  identify  whether  the  selected  action,  at  the 
specified state provide optimal SINR or not. In this case, 
two set of reward conditions are specified where: 

simulations feature involves in our system model is described 
in Table 1. 

As mentioned before, UEs in both macro- and small- cell 
adopt q-learning algorithm, enabling them learn uplink path 

(
SINR,   if Paction 

r = 
0, otherwise 

> Po + βL 

loss information and select the right power level action. In 
our proposed model, equation (2) is integrated in reward based 
q-learning equation (3). 

 

 
Fig. 3.  Simulated UE distribution in multi-tier cells (macr0- and small-) 

 
In our model, each multi-agent q-learning is implemented 

where each UE has a set of states and  actions.  Reward- 
based condition is implemented in the algorithm to enable the 
learning process. The details of our q-learning algorithm are 
as follows: 

• Exploration our model employ nearly full exploration 
strategy (i.e. E = 0.9) at the beginning of the iteration 
to enable the agent to identify the best action. The 
exploration strategy is then reduced (i.e. E = 0.5) to 
allow the agent to explore and exploit at the same time. 
This is then reduced to the most minimal exploration 
(i.e. E = 0.05) and finally, full exploitation strategy is 
implemented. 

• Q-learning variables the learning factors in our model 
is set to a fixed value where, learning rate, α = 0.5 and 
the reward discount, γ = 0.9. 

• Updated q-value equation (3) is deployed to update the 
q-value based on selected state and action. 

To briefly summarize the sequence process of our q-learning 
model, each agent (i.e. UE) starts by identifying the state based 
on the path loss calculated. From here, it selects an action, 
which is then used compute the reward. This is updated to 
produce q-value using equation (3) as mentioned earlier. The 
process continues until we reach convergence. 

 
V. FINDINGS AND ANALYSIS 

This section presents the findings of our study where our 
focus is to see the convergence of q-learning algorithm with 
respect to SINR. The SINR value will indicate the efficiency 
of applying DQL. We also compare our model with fractional 
power control elaborated in open loop power control subsec- 
tion, based on equation (2). SINR for macro- and small- UE 
is computed using the following formula: 

Parameter Value 
Number of cells (N) 2 cells, one macro- and one small- cell 
Cell radius Macro- cell = 500m; small- cell = 40m 
System bandwidth 3 MHz 
Number of PRBs 15 
BS antenna gain Macro- = 14 dBi; Small- = 5dBi 
UE antenna gain 0 dBi 
Max UE transmit power 24 dBm 
Noise power -169 dBm/Hz 

 



 

 
 

Fig. 5.  Average SINR vs. Number of Iterations 
 
 
 
 

Fig. 4.  Decentralized q-learning flow of process 
 
 
 

Pmue ∗ Gmue ∗ Gant 

SINRmbs = Isue 

(4) 
+ N Fig. 6.  SINR comparison between DQL and FPC 

 
Psue ∗ Gsue ∗ Gant VI. CONCLUSION 

SINRsbs = Imue 

(5) 
+ N It  can  be  concluded  from  the  results  that  our  proposed 

method is able to optimize UE transmit power. This is crucial 
Where Pmue  and Psue  is the received power for macro- 

and small- UE respectively, Gmue and Gsue is macro- and 
small- UE antenna gain, Gant is the BS antenna gain, Imue 

and Isue are co-tier interferences.  We  consider  that  each 
UE in the serving cell is interfered by one UE from the 
neighbouring cell. The interference power vary as the transmit 
power vary. This is due to q-learning implemented parallel for 
both macro- and femto- UE. The algorithm deploy epsilon- 
greedy policy where initial iteration, almost all actions are 
explored. This is gradually decreased until the q-value reached 
its optimality. We utilize simple path loss model (PL = 15.3 
+ 37.6 log10(distance)) where we disregard shadowing and 
penetration loss for the time being. 

As mentioned earlier, the first part (40 per cent of the 
iterations) prompts the algorithm to explore principally all 
set of actions available. This is followed by partial (E = 0.5) 
and minimal (E = 0.05) exploration. Finally, full exploitation 
is applied. From here, we obtain convergence graph of ac- 
cumulated SINR of all UEs. The result depicted by average 
SINR of all UE versus number of iterations is displayed in 
fig. 5. In the figure, the initial part has variation due to the 
exploration strategy employed. Meanwhile, there is increase 
in SINR on the second and the third parts of the exploration 
strategy. Finally, full exploitation can be seen at the last part 
of the iteration where the graph converges. 

Further, fig. 6 demonstrates SINR comparison between our 
proposed method and fractional power control. In the figure, 
our proposed method is depicted by green block bar whilst 
fractional power control is represented by the red dotted bar. 
It can be seen that our proposed method has shown better 
performance with an increase factor of 3.5 as compared to 
conventional fractional power control. 

especially if UE is located at the edge of the cell. The 
implementation of DQL would enable UE to learn indepen- 
dently. This would allow UE to specify transmit power without 
the need to wait for transmission control from BS. In other 
words, it would reduce transmission establishment in uplink. 
Future works include the utilization of DQL in asymmetric 
transmissions to reduce multi-tier network load. 
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